Endocarditis pp 121-183 | Cite as

Treatment of Native Valve Endocarditis: General Principles and Therapy for Specific Organisms

  • Donald C. Vinh
  • John M. Embil


Minimal Inhibitory Concentration Infective Endocarditis Invasive Aspergillosis Antimicrob Agent Mycotic Aneurysm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Olaison L, Pettersson G. Current best practices and guidelines indications for surgical intervention in infective endocarditis. Infect Dis Clin North Am. 2002;16(2):453–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Mylonakis E, Calderwood SB. Infective endocarditis in adults. N Engl J Med. 2001;345(18):1318–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Moreillon P, Que YA. Infective endocarditis. Lancet. 2004;363(9403):139–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoen B AF, Selton-Suty C, Beguinot I, et al. for the Association pour l’Etude et la Prévention de l’Endocardite Infectieuse (AEPEI) Study Group. Changing profile of infective endocarditis: results of a 1-year survey in France. JAMA. 2002;288(1):75–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Tornos P, Iung B, Permanyer-Miralda G, et al. Infective endocarditis in Europe: lessons from the Euro heart survey. Heart. 2005;91(5):571–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Lambert RJ, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol. 2000;88(5):784–90.PubMedCrossRefGoogle Scholar
  7. 7.
    European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID). EUCAST Definitive Document E.Def 1.2, May 2000: Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin Microbiol Infect. 2000;6(9):503–8.CrossRefGoogle Scholar
  8. 8.
    Shanson DC. New guidelines for the antibiotic treatment of streptococcal, enterococcal and staphylococcal endocarditis. J Antimicrob Chemother. 1998;42(3):292–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu YQ, Zhang YZ, Gao PJ. Novel concentration-killing curve method for estimation of bactericidal potency of antibiotics in an in vitro dynamic model. Antimicrob Agents Chemother. 2004;48(10):3884–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis. 2004;38(6):864–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson WR, Karchmer AW, Dajani AS, et al. Antibiotic treatment of adults with infective endocarditis due to streptococci, enterococci, staphylococci, and HACEK microorganisms. American Heart Association. JAMA. 1995;274(21):1706–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Elliott TS, Foweraker J, Gould FK, et al. Working Party of the British Society for Antimicrobial Chemotherapy. Guidelines for the antibiotic treatment of endocarditis in adults: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother. 2004;54(6):971–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Finberg RW, Moellering RC, Tally FP, et al. The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis. 2004;39(9):1314–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Henriques Normark B, Normark S. Antibiotic tolerance in pneumococci. Clin Microbiol Infect. 2002;8(10):613–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Delahaye F, Hoen B, McFadden E, et al. Treatment and prevention of infective endocarditis. Expert Opin Pharmacother. 2002;3(2):131–45.PubMedCrossRefGoogle Scholar
  16. 16.
    LaPlante KL, Rybak MJ. Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2004;48(12):4665–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Nannini EC, Singh KV, Murray BE. Relapse of type A beta-lactamase-producing Staphylococcus aureus native valve endocarditis during cefazolin therapy: revisiting the issue. Clin Infect Dis. 2003;37(9):1194–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Hessen MT, Kaye D. Principles of use of antibacterial agents. Infect Dis Clin North Am. 2004;18(3):435–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Chambers HF, Mills J, Drake TA, et al. Failure of a once-daily regimen of cefonicid for treatment of endocarditis due to Staphylococcus aureus. Rev Infect Dis. 1984;6(Suppl 4):S870–4.PubMedGoogle Scholar
  20. 20.
    Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of ß-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am. 2003;17(3):503–28.CrossRefGoogle Scholar
  21. 21.
    Levison ME. Pharmacodynamics of antimicrobial drugs. Infect Dis Clin North Am. 2004;18(3):451–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Perry JD, Jones AL, Gould FK. Glycopeptide tolerance in bacteria causing endocarditis. J Antimicrob Chemother. 1999;44(1):121–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Hanslik T, Hartig C, Jurand C, et al. Clinical significance of tolerant strains of streptococci in adults with infective endocarditis. Clin Microbiol Infect. 2003;9(8):852–7.PubMedCrossRefGoogle Scholar
  24. 24.
    May J, Shannon K, King A, et al. Glycopeptide tolerance in Staphylococcus aureus. J Antimicrob Chemother. 1998;42(2):189–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Olaison L, Hogevik H, Alestig K. Fever, C-reactive protein, and other acute-phase reactants during treatment of infective endocarditis. Arch Intern Med. 1997;157(8):885–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Blumberg EA, Robbins N, Adimora A, et al. Persistent fever in association with infective endocarditis. Clin Infect Dis. 1992;15(6):983–90.PubMedGoogle Scholar
  27. 27.
    Horstkotte D, Follath F, Gutschik E, et al. Task Force Members on Infective Endocarditis of the European Society of Cardiology; ESC Committee for Practice Guidelines (CPG); Document Reviewers. Guidelines on prevention, diagnosis and treatment of infective endocarditis executive summary; the task force on infective endocarditis of the European society of cardiology. Eur Heart J. 2004;25(3):267–76.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoen B. Special issues in the management of infective endocarditis caused by gram-positive cocci. Infect Dis Clin North Am. 2002;16(2):437–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Cabell CH, Jollis JG, Peterson GE, et al. Changing patient characteristics and the effect on mortality in endocarditis. Arch Intern Med. 2002;162(1):90–4.PubMedCrossRefGoogle Scholar
  30. 30.
    [No authors listed]. Antibiotic treatment of streptococcal, enterococcal, and staphylococcal endocarditis. Working Party of the British Society for Antimicrobial Chemotherapy. Heart. 1998;79(2):207–10.Google Scholar
  31. 31.
    Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev. 2002;15(4):613–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Jacobs JA, Tjhie JH, Smeets MG, et al. Genotyping by amplified fragment length polymorphism analysis reveals persistence and recurrence of infection with Streptococcus anginosus group organisms. J Clin Microbiol. 2003;41(7):2862–6.PubMedCrossRefGoogle Scholar
  33. 33.
    The National Commmittee for Clinical Laboratory Standards (NCCLS) Performance Standards for Antimicrobial Susceptibility Testing - Thirteenth Informational Supplement M100–S13. NCCLS, Wayne, PA, USA. 2003.Google Scholar
  34. 34.
    Baxter R. Infective endocarditis. N Engl J Med. 2002;346(10):782–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Uh Y, Shin DH, Jang IH, et al. Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from blood cultures in Korea. J Antimicrob Chemother. 2004;53(6):1095–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Doern GV, Ferraro MJ, Brueggemann AB, et al. Emergence of high rates of antimicrobial resistance among viridans group streptococci in the United States. Antimicrob Agents Chemother. 1996;40(4):891–4.PubMedGoogle Scholar
  37. 37.
    Levy CS, Kogulan P, Gill VJ, et al. Endocarditis caused by penicillin-resistant viridans streptococci: 2 cases and controversies in therapy. Clin Infect Dis. 2001;33(4):577–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Levitz RE. Prosthetic-valve endocarditis caused by penicillin-resistant Streptococcus mitis. N Engl J Med. 1999;340(23):1843–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Spanik S, Trupl J, Kunova A, et al. Viridans streptococcal bacteraemia due to penicillin-resistant and penicillin-sensitive streptococci: analysis of risk factors and outcome in 60 patients from a single cancer centre before and after penicillin is used for prophylaxis. Scand J Infect Dis. 1997;29(3):245–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Diekema DJ, Beach ML, Pfaller MA, et al; SENTRY Participants Group. Antimicrobial resistance in viridans group streptococci among patients with and without the diagnosis of cancer in the USA, Canada and Latin America. Clin Microbiol Infect. 2001;7(3):152–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Westling K, Julander I, Ljungman P, et al. Reduced susceptibility to penicillin of viridans group streptococci in the oral cavity of patients with haematological disease. Clin Microbiol Infect. 2004;10(10):899–903.PubMedCrossRefGoogle Scholar
  42. 42.
    Tuohy M, Washington JA. Antimicrobial susceptibility of viridans group streptococci. Diagn Microbiol Infect Dis. 1997;29(4):277–80.PubMedCrossRefGoogle Scholar
  43. 43.
    Gordon KA, Beach ML, Biedenbach DJ, et al. Antimicrobial susceptibility patterns of beta-hemolytic and viridans group streptococci: report from the SENTRY Antimicrobial Surveillance Program (1997–2000). Diagn Microbiol Infect Dis. 2002;43(2):157–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Seppala H, Haanpera M, Al-Juhaish M, et al. Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora. J Antimicrob Chemother. 2003;52(4):636–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Johnson AP, Warner M, Broughton K, et al. Antibiotic susceptibility of streptococci and related genera causing endocarditis: analysis of UK reference laboratory referrals, January 1996 to March 2000. BMJ. 2001;322(7283):395–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Graham JC, Gould FK. Role of aminoglycosides in the treatment of bacterial endocarditis. J Antimicrob Chemother. 2002;49(3):437–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Wilson WR, Giuliani ER, Geraci JE. Treatment of penicillin-sensitive streptococcal endocarditis. Mayo Clin Proc. 1982;57(2):95–100.PubMedGoogle Scholar
  48. 48.
    Wilson WR, Geraci JE. Treatment of streptococcal infective endocarditis. Am J Med. 1985;78(6B):128–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Hurle A, Nistal JF, Gutierrez JA, et al. Isolated apical intracavitary left ventricular abscess in a normal heart: a rare complication of Streptococcus milleri endocarditis. Cardiovasc Surg. 1996;4(1):61–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Levandowski RA. Streptococcus milleri endocarditis complicated by myocardial abscess. South Med J. 1985;78(7):892–893.PubMedCrossRefGoogle Scholar
  51. 51.
    Woo PC, Tse H, Chan KM, et al. “Streptococcus milleri” endocarditis caused by Streptococcus anginosus. Diagn Microbiol Infect Dis. 2004;48(2):81–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the committee on rheumatic Fever, endocarditis, and kawasaki disease, council on cardiovascular disease in the young, and the councils on clinical cardiology, stroke, and cardiovascular surgery and anesthesia, american heart association—executive summary: endorsed by the infectious diseases society of America. Circulation. 2005;111(23): 3167–3184.CrossRefGoogle Scholar
  53. 53.
    Kennedy HF, Gemmell CG, Bagg J, et al. Antimicrobial susceptibility of blood culture isolates of viridans streptococci: relationship to a change in empirical antibiotic therapy in febrile neutropenia. J Antimicrob Chemother. 2001;47(5):693–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Quinn JP, DiVincenzo CA, Lucks DA, et al. Serious infections due to penicillin-resistant strains of viridans streptococci with altered penicillin-binding proteins. J Infect Dis. 1988;157(4):764–9.PubMedGoogle Scholar
  55. 55.
    Bochud PY, Eggiman P, Calandra T, et al. Bacteremia due to viridans streptococcus in neutroopenic patients with cancer: Clinical spectrum and risk factors. Clin Infect Dis. 1994;18(1):25–31.PubMedGoogle Scholar
  56. 56.
    Docze A, Mraz M, Grey E, et al. Penicillin resistance in viridans streptococcal bacteremia is related with high mortality. Scand J Infect Dis. 2003;35(11–12):916–7.PubMedGoogle Scholar
  57. 57.
    Schlegel L, Grimont F, Ageron E, et al. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int J Syst Evol Microbiol. 2003;53(Pt 3):631–45.PubMedCrossRefGoogle Scholar
  58. 58.
    van’t Wout JW, Bijlmer HA. Bacteremia Due to Streptococcus gallolyticus, or the Perils of Revised Nomenclature in Bacteriology. Clin Infect Dis. 2005;40(7):1070–1.PubMedCrossRefGoogle Scholar
  59. 59.
    Hoen B, Chirouze C, Cabell CH, et al. International Collaboration on Endocarditis Study Group. Emergence of endocarditis due to group D streptococci: findings derived from the merged database of the International Collaboration on Endocarditis. Eur J Clin Microbiol Infect Dis. 2005;24(1):12–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Siegman-Igra Y, Schwartz D. Streptococcus bovis revisited: a clinical review of 81 bacteremic episodes paying special attention to emerging antibiotic resistance. Scand J Infect Dis. 2003;35(2):90–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Barrau K, Boulamery A, Imbert G, et al. Causative organisms of infective endocarditis according to host status. Clin Microbiol Infect. 2004;10(4):302–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Kupferwasser I, Darius H, Muller AM, et al. Clinical and morphological characteristics in Streptococcus bovis endocarditis: a comparison with other causative microorganisms in 177 cases. Heart. 1998;80(3):276–80.PubMedGoogle Scholar
  63. 63.
    Duval X, Papastamopoulos V, Longuet P, et al. Definite streptococcus bovis endocarditis: characteristics in 20 patients. Clin Microbiol Infect. 2001;7(1):3–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Pergola V, Di Salvo G, Habib G, et al. Comparison of clinical and echocardiographic characteristics of Streptococcus bovis endocarditis with that caused by other pathogens. Am J Cardiol. 2001;88(8):871–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Tripodi MF, Adinolfi LE, Ragone E, et al. Streptococcus bovis endocarditis and its association with chronic liver disease: an underestimated risk factor. Clin Infect Dis. 2004;38(10):1394–400.PubMedCrossRefGoogle Scholar
  66. 66.
    Gonzalez-Juanatey C, Gonzalez-Gay MA, Llorca J, et al. Infective endocarditis due to Streptococcus bovis in a series of nonaddict patients: clinical and morphological characteristics of 20 cases and review of the literature. Can J Cardiol. 2003;19(10):1139–45.PubMedGoogle Scholar
  67. 67.
    Biarc J, Nguyen IS, Pini A, et al. Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S.bovis). Carcinogenesis. 2004;25(8):1477–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Beebe JL, Koneman EW. Recovery of uncommon bacteria from blood: association with neoplastic disease. Clin Microbiol Rev. 1995;8(3):336–56.PubMedGoogle Scholar
  69. 69.
    Klein RS, Catalano MT, Edberg SC, et al. Streptococcus bovis septicemia and carcinoma of the colon. Ann Intern Med. 1979;91(4):560–2.PubMedGoogle Scholar
  70. 70.
    Gonzlez-Quintela A, Martinez-Rey C, Castroagudin JF, et al. Prevalence of liver disease in patients with Streptococcus bovis bacteraemia. J Infect. 2001;42(2):116–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg. 2004;139(7):760–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Brouqui P, Raoult D. Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev. 2001;14(1):177–207.PubMedCrossRefGoogle Scholar
  73. 73.
    Liao CH, Teng LJ, Hsueh PR, et al. Nutritionally variant streptococcal infections at a University Hospital in Taiwan: disease emergence and high prevalence of beta-lactam and macrolide resistance. Clin Infect Dis. 2004;38(3):452–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Collins MD, Lawson PA. The genus Abiotrophia (Kawamura et al.) is not monophyletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb. nov., Granulicatella elegans comb. nov. and Granulicatella balaenopterae comb. nov. Int J Syst Evol Microbiol. 2000;50(Pt 1):365–9.PubMedGoogle Scholar
  75. 75.
    Ruoff KL. Nutritionally variant streptococci. Clin Microbiol Rev. 1991;4(2):184–90.PubMedGoogle Scholar
  76. 76.
    Roggenkamp A, Abele-Horn M, Trebesius KH, et al. Abiotrophia elegans sp. nov., a possible pathogen in patients with culture-negative endocarditis. J Clin Microbiol. 1998;36(1):100–4.PubMedGoogle Scholar
  77. 77.
    Hepburn MJ, Fraser SL, Rennie TA, et al. Septic arthritis caused by Granulicatella adiacens: diagnosis by inoculation of synovial fluid into blood culture bottles. Rheumatol Int. 2003;23(5):255–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Tuohy MJ, Procop GW, Washington JA. Antimicrobial susceptibility of Abiotrophia adiacens and Abiotrophia defectiva. Diagn Microbiol Infect Dis. 2000;38(3):189–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Murray CK, Walter EA, Crawford S, et al. Abiotrophia bacteremia in a patient with neutropenic fever and antimicrobial susceptibility testing of Abiotrophia isolates. Clin Infect Dis. 2001;32(10):E140–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Bouvet A. Human endocarditis due to nutritionally variant streptococci: streptococcus adjacens and Streptococcus defectivus. Eur Heart J. 1995;16(Suppl B):24–7.PubMedGoogle Scholar
  81. 81.
    Stein DS, Nelson KE. Endocarditis due to nutritionally deficient streptococci: therapeutic dilemma. Rev Infect Dis. 1987;9(5):908–16.PubMedGoogle Scholar
  82. 82.
    Cooksey RC, Swenson JM. In vitro antimicrobial inhibition patterns of nutritionally variant streptococci. Antimicrob Agents Chemother. 1979;16(4):514–8.PubMedGoogle Scholar
  83. 83.
    Christensen JJ, Gruhn N, Facklam RR. Endocarditis caused by Abiotrophia species. Scand J Infect Dis. 1999;31(2):210–2.PubMedCrossRefGoogle Scholar
  84. 84.
    Aronin SI, Mukherjee SK, West JC, et al. Review of pneumococcal endocarditis in adults in the penicillin era. Clin Infect Dis. 1998;26(1):165–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Taylor SN, Sanders CV. Unusual manifestations of invasive pneumococcal infection. Am J Med. 1999;107(1A):12S–27S.PubMedCrossRefGoogle Scholar
  86. 86.
    Siegel M, Timpone J. Penicillin-resistant Streptococcus pneumoniae endocarditis: a case report and review. Clin Infect Dis. 2001;32(6):972–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Munoz P, Sainz J, Rodriguez-Creixems M, et al. Austrian syndrome caused by highly penicillin-resistant Streptococcus pneumoniae. Clin Infect Dis. 1999;29(6):1591–2.PubMedCrossRefGoogle Scholar
  88. 88.
    Breiman RF, Butler JC, Tenover FC, et al. Emergence of drug-resistant pneumococcal infections in the United States. JAMA. 1994;271(23):1831–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Butler JC, Hofmann J, Cetron MS, et al. The continued emergence of drug-resistant Streptococcus pneumoniae in the United States: an update from the Centers for Disease Control and Prevention’s Pneumococcal Sentinel Surveillance System. J Infect Dis. 1996;174(5):986–93.PubMedGoogle Scholar
  90. 90.
    Bruinsma N, Kristinsson KG, Bronzwaer S, et al. European Antimicrobial Resistance Surveillance System (EARSS). Trends of penicillin and erythromycin resistance among invasive Streptococcus pneumoniae in Europe. J Antimicrob Chemother. 2004;54(6):1045–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Whitney CG, Farley MM, Hadler J, et al. Active Bacterial Core Surveillance Program of the Emerging Infections Program Network. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med. 2000;343(26):1917–24.PubMedCrossRefGoogle Scholar
  92. 92.
    Collignon PJ, Turnidge JD. Antibiotic resistance in Streptococcus pneumoniae. Med J Aust. 2000; 173(Suppl):S58–64.PubMedGoogle Scholar
  93. 93.
    Chambers HF. Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis. 1999;179(Suppl 2):S353–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Baquero F, Garcia-Rodriguez JA, Garcia de Lomas J, and the Spanish Surveillance Group for Respiratory Pathogens. Antimicrobial resistance of 1, 113 Streptococcus pneumoniae isolates from patients with respiratory tract infections in Spain: results of a 1-year (1996–1997) multicenter surveillance study. Antimicrob Agents Chemother. 1999;43(2):357–9.PubMedGoogle Scholar
  95. 95.
    Decousser JW, Pina P, Viguier F, et al. ColBVH Study Group. Invasive Streptococcus pneumoniae in France: antimicrobial resistance, serotype, and molecular epidemiology findings from a monthly national study in 2000 to 2002. Antimicrob Agents Chemother. 2004;48(9):3636–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Low DE, de Azavedo J, Weiss K, et al. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in Canada during 2000. Antimicrob Agents Chemother. 2002;46(5):1295–301.PubMedCrossRefGoogle Scholar
  97. 97.
    Oteo J, Alos JI, Gomez-Garces JL. Antimicrobial resistance of Streptococcus pneumoniae isolates in 1999 and 2000 in Madrid, Spain: a multicentre surveillance study. J Antimicrob Chemother. 2001;47(2):215–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Vanderkooi OG, Low DE, Green K, et al. Toronto Invasive Bacterial Disease Network. Predicting antimicrobial resistance in invasive pneumococcal infections. Clin Infect Dis. 2005;40(9):1288–97.PubMedCrossRefGoogle Scholar
  99. 99.
    Pottumarthy S, Fritsche TR, Jones RN. Comparative activity of oral and parenteral cephalosporins tested against multidrug-resistant Streptococcus pneumoniae: report from the SENTRY Antimicrobial Surveillance Program (1997–2003). Diagn Microbiol Infect Dis. 2005;51(2):147–50.PubMedCrossRefGoogle Scholar
  100. 100.
    Morrissey I, Robbins M, Viljoen L, et al. Antimicrobial susceptibility of community-acquired respiratory tract pathogens in the UK during 2002/3 determined locally and centrally by BSAC methods. J Antimicrob Chemother. 2005;55(2):200–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Clarke P, Murchan S, Smyth EG, et al. Antimicrobial susceptibility of invasive isolates of Streptococcus pneumoniae in Ireland. Clin Microbiol Infect. 2004;10(7):657–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Hortal M, Lovgren M, de la Hoz F, et al. PAHO SIREVA-Vigia Study Group. Antibiotic resistance in Streptococcus pneumoniae in six Latin American countries: 1993–1999 surveillance. Microb Drug Resist. 2001;7(4):391–401.PubMedCrossRefGoogle Scholar
  103. 103.
    Viladrich PF, Gudiol F, Linares J, et al. Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemother. 1991;35(12):2467–72.PubMedGoogle Scholar
  104. 104.
    Lindberg J, Prag J, Schonheyder HC. Pneumococcal endocarditis is not just a disease of the past: an analysis of 16 cases diagnosed in Denmark 1986–1997. Scand J Infect Dis. 1998;30(5):469–72.PubMedCrossRefGoogle Scholar
  105. 105.
    Finley JC, Davidson M, Parkinson AJ, et al. Pneumococcal endocarditis in Alaska natives. A population-based experience, 1978 through 1990. Arch Intern Med. 1992;152(8):1641–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Lindberg J, Fangel S. Recurrent endocarditis caused by Streptococcus pneumoniae. Scand J Infect Dis. 1999;31(4):409–10.PubMedCrossRefGoogle Scholar
  107. 107.
    Baddour LM. Infective endocarditis caused by beta-hemolytic streptococci. The Infectious Diseases Society of America’s Emerging Infections Network. Clin Infect Dis. 1998;26(1):66–71.PubMedCrossRefGoogle Scholar
  108. 108.
    Lefort A, Lortholary O, Casassus P, et al. beta-Hemolytic Streptococci Infective Endocarditis Study Group. Comparison between adult endocarditis due to beta-hemolytic streptococci (serogroups A, B, C, and G) and Streptococcus milleri: a multicenter study in France. Arch Intern Med. 2002;162(21):2450–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Mohan UR, Walters S, Kroll JS. Endocarditis due to group A beta-hemolytic Streptococcus in children with potentially lethal sequelae: 2 cases and review. Clin Infect Dis. 2000;30(3):624–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Upton A, Drinkovic D, Pottumarthy S, et al. Culture results of heart valves resected because of streptococcal endocarditis: insights into duration of treatment to achieve valve sterilization. J Antimicrob Chemother. 2005;55(2):234–239.PubMedCrossRefGoogle Scholar
  111. 111.
    Johnson AP, Warner M, Woodford N, et al. Antibiotic resistance among enterococci causing endocarditis in the UK: analysis of isolates referred to a reference laboratory. BMJ. 1998;317(7159):629–30.PubMedGoogle Scholar
  112. 112.
    Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 1990;3(1):46–65.PubMedGoogle Scholar
  113. 113.
    Fontana R, Grossato A, Ligozzi M, et al. In vitro response to bactericidal activity of cell wall-active antibiotics does not support the general opinion that enterococci are naturally tolerant to these antibiotics. Antimicrob Agents Chemother. 1990;34(8):1518–1522.PubMedGoogle Scholar
  114. 114.
    Murray BE. Diversity among multidrug-resistant enterococci. Emerg Infect Dis. 1998;4(1):37–47.PubMedCrossRefGoogle Scholar
  115. 115.
    Rice LB. Emergence of vancomycin-resistant enterococci. Emerg Infect Dis. 2001;7(2):183–187.PubMedCrossRefGoogle Scholar
  116. 116.
    Signoretto C, Boaretti M, Canepari P. Peptidoglycan synthesis by Enterococcus faecalis penicillin binding protein 5. Arch Microbiol. 1998;170(3):185–190.PubMedCrossRefGoogle Scholar
  117. 117.
    Dina J, Malbruny B, Leclercq R. Nonsense mutations in the lsa-like gene in Enterococcus faecalis isolates susceptible to lincosamides and Streptogramins A. Antimicrob Agents Chemother. 2003;47(4):2307–2309.PubMedCrossRefGoogle Scholar
  118. 118.
    Singh KV, Weinstock GM, Murray BE. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother. 2002;46(6):1845–1850.PubMedCrossRefGoogle Scholar
  119. 119.
    Bozdogan B, Berrezouga L, Kuo MS, et al. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother. 1999;43(4):925–929.PubMedGoogle Scholar
  120. 120.
    Min YH, Jeong JH, Choi YJ, et al. Heterogeneity of macrolide-lincosamide-streptogramin B resistance phenotypes in enterococci. Antimicrob Agents Chemother. 2003;47(11):3415–3420.PubMedCrossRefGoogle Scholar
  121. 121.
    McManus MC. Mechanisms of bacterial resistance to antimicrobial agents. Am J Health Syst Pharm. 1997;54(12):1420–1433.PubMedGoogle Scholar
  122. 122.
    Goodhart GL. In vivo v in vitro susceptibility of enterococcus to trimethoprim-sulfamethoxazole. A pitfall. JAMA. 1984;252(19):2748–2479.PubMedCrossRefGoogle Scholar
  123. 123.
    Grayson ML, Thauvin-Eliopoulos C, Eliopoulos GM, et al. Failure of trimethoprim-sulfamethoxazole therapy in experimental enterococcal endocarditis. Antimicrob Agents Chemother. 1990;34(9):1792–1792.PubMedGoogle Scholar
  124. 124.
    Simjee S, Gill MJ. Gene transfer, gentamicin resistance and enterococci. J Hosp Infect. 1997;36(4):249–259.PubMedCrossRefGoogle Scholar
  125. 125.
    Herman DJ, Gerding DN. Screening and treatment of infections caused by resistant enterococci. Antimicrob Agents Chemother. 1991;35(2):215–219.PubMedGoogle Scholar
  126. 126.
    Hodges TL, Zighelboim-Daum S, Eliopoulos GM, et al. Antimicrobial susceptibility changes in Enterococcus faecalis following various penicillin exposure regimens. Antimicrob Agents Chemother. 1992;36(1):121–125.PubMedGoogle Scholar
  127. 127.
    Storch GA, Krogstad DJ. Antibiotic-induced lysis of enterococci. J Clin Invest. 1981;68(3):639–645.PubMedCrossRefGoogle Scholar
  128. 128.
    Fontana R, Boaretti M, Grossato A, et al. Paradoxical response of Enterococcus faecalis to the bactericidal activity of penicillin is associated with reduced activity of one autolysin. Antimicrob Agents Chemother. 1990;34(2):314–320.PubMedGoogle Scholar
  129. 129.
    Qin X, Singh KV, Xu Y, et al. Effect of disruption of a gene encoding an autolysin of Enterococcus faecalis OG1RF. Antimicrob Agents Chemother. 1998;42(11):2883–2888.PubMedGoogle Scholar
  130. 130.
    Moellering RC Jr, Weinberg AN. Studies on antibiotic syngerism against enterococci. II. Effect of various antibiotics on the uptake of 14 C-labeled streptomycin by enterococci. J Clin Invest. 1971;50(12):2580–2584.PubMedCrossRefGoogle Scholar
  131. 131.
    Horodniceanu T, Bougueleret L, El-Solh N, et al. High-level, plasmid-borne resistance to gentamicin in Streptococcus faecalis subsp. zymogenes. Antimicrob Agents Chemother. 1979;16(5):686–9.PubMedGoogle Scholar
  132. 132.
    Pfaller MA, Jones RN, Doern GV, et al. Survey of blood stream infections attributable to gram-positive cocci: frequency of occurrence and antimicrobial susceptibility of isolates collected in 1997 in the United States, Canada, and Latin America from the SENTRY Antimicrobial Surveillance Program. SENTRY Participants Group. Diagn Microbiol Infect Dis. 1999;33(4):283–97.PubMedCrossRefGoogle Scholar
  133. 133.
    Landman D, Quale JM. Management of infections due to resistant enterococci: a review of therapeutic options. J Antimicrob Chemother. 1997;40(2):161–70.PubMedCrossRefGoogle Scholar
  134. 134.
    Donabedian SM, Thal LA, Hershberger E, et al. Molecular characterization of gentamicin-resistant Enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol. 2003;41(3):1109–13.PubMedCrossRefGoogle Scholar
  135. 135.
    Miranda G, Lee L, Kelly C, et al. Antimicrobial resistance from enterococci in a pediatric hospital. Plasmids in Enterococcus faecalis isolates with high-level gentamicin and streptomycin resistance. Arch Med Res. 2001;32(2):159–63.PubMedCrossRefGoogle Scholar
  136. 136.
    Eliopoulos GM, Farber BF, Murray BE, et al. Ribosomal resistance of clinical enterococcal to streptomycin isolates. [sic]. Antimicrob Agents Chemother. 1984;25(3): 398–399.PubMedGoogle Scholar
  137. 137.
    Ono S, Muratani T, Matsumoto T. Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob Agents Chemother. 2005;49(7): 2954–2958.PubMedCrossRefGoogle Scholar
  138. 138.
    Fontana R, Aldegheri M, Ligozzi M, et al. Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother. 1994;38(9):1980–1983.PubMedGoogle Scholar
  139. 139.
    Kaye D. Enterococci. Biologic and epidemiologic characteristics and in vitro susceptibility. Arch Intern Med. 1982;142(11):2006–2009.PubMedCrossRefGoogle Scholar
  140. 140.
    DiazGranados CA, Zimmer SM, Klein M, et al. Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: a meta-analysis. Clin Infect Dis. 2005;41(3):327–333.PubMedCrossRefGoogle Scholar
  141. 141.
    Linden PK. Treatment options for vancomycin-resistant enterococcal infections. Drugs. 2002;62(3):425–441.PubMedCrossRefGoogle Scholar
  142. 142.
    Mascini EM, Bonten MJ. Vancomycin-resistant enterococci: consequences for therapy and infection control. Clin Microbiol Infect. 2005;11(Suppl 4):43–56.PubMedCrossRefGoogle Scholar
  143. 143.
    Safdar A, Bryan CS, Stinson S, et al. Prosthetic valve endocarditis due to vancomycin-resistant Enterococcus faecium: treatment with chloramphenicol plus minocycline. Clin Infect Dis. 2002;34(11):E61–63.PubMedCrossRefGoogle Scholar
  144. 144.
    Archuleta S, Murphy B, Keller MJ. Successful treatment of vancomycin-resistant Enterococcus faecium endocarditis with linezolid in a renal transplant recipient with human immunodeficiency virus infection. Transpl Infect Dis. 2004;6(3):117–119.PubMedCrossRefGoogle Scholar
  145. 145.
    Moellering RC. Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med. 2003;138(2):135–142.PubMedGoogle Scholar
  146. 146.
    Paladino JA. Linezolid: an oxazolidinone antimicrobial agent. Am J Health Syst Pharm. 2002;59(24):2413–2425.PubMedGoogle Scholar
  147. 147.
    Miyazaki S, Fujikawa T, Kobayashi I, et al. The in vitro and in vivo antibacterial characterization of vancomycin and linezolid against vancomycin-susceptible and -resistant enterococci. J Antimicrob Chemother. 2002;50(6):971–974.PubMedCrossRefGoogle Scholar
  148. 148.
    El-Khoury J, Fishman JA. Linezolid in the treatment of vancomycin-resistant Enterococcus faecium in solid organ transplant recipients: report of a multicenter compassionate-use trial. Transpl Infect Dis. 2003;5(3):121–125.PubMedCrossRefGoogle Scholar
  149. 149.
    Ang JY, Lua JL, Turner DR, et al. Vancomycin-resistant Enterococcus faecium endocarditis in a premature infant successfully treated with linezolid. Pediatr Infect Dis J. 2003;22(12):1101–1103.PubMedCrossRefGoogle Scholar
  150. 150.
    Ravindran V, John J, Kaye GC, et al. Successful use of oral linezolid as a single active agent in endocarditis unresponsive to conventional antibiotic therapy. J Infect. 2003;47(2):164–166.PubMedCrossRefGoogle Scholar
  151. 151.
    Rao N, White GJ. Successful treatment of Enterococcus faecalis prosthetic valve endocarditis with linezolid. Clin Infect Dis. 2002;35(7):902–904.PubMedCrossRefGoogle Scholar
  152. 152.
    Babcock HM, Ritchie DJ, Christiansen E, et al. Successful treatment of vancomycin-resistant Enterococcus endocarditis with oral linezolid. Clin Infect Dis. 2001;32(9):1373–1375.PubMedCrossRefGoogle Scholar
  153. 153.
    Zimmer SM, Caliendo AM, Thigpen MC, et al. Failure of linezolid treatment for enterococcal endocarditis. Clin Infect Dis. 2003;37(3):e29–30.PubMedCrossRefGoogle Scholar
  154. 154.
    Pai MP, Rodvold KA, Schreckenberger PC, et al. Risk factors associated with the development of infection with linezolid- and vancomycin-resistant Enterococcus faecium. Clin Infect Dis. 2002;35(10):1269–1272.PubMedCrossRefGoogle Scholar
  155. 155.
    Gonzales RD, Schreckenberger PC, Graham MB, et al. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet. 2001;357(9263): 1179.PubMedCrossRefGoogle Scholar
  156. 156.
    Ruggero KA, Schroeder LK, Schreckenberger PC, et al. Nosocomial superinfections due to linezolid-resistant Enterococcus faecalis: evidence for a gene dosage effect on linezolid MICs. Diagn Microbiol Infect Dis. 2003;47(3):511–513.PubMedCrossRefGoogle Scholar
  157. 157.
    Sweeney MT, Zurenko GE. In vitro activities of linezolid combined with other antimicrobial agents against Staphylococci, Enterococci, Pneumococci, and selected gram-negative organisms. Antimicrob Agents Chemother. 2003;47(6):1902–1906.PubMedCrossRefGoogle Scholar
  158. 158.
    Miro JM, Anguera I, Cabell CH, et al. International Collaboration on Endocarditis Merged Database Study Group. Staphylococcus aureus native valve infective endocarditis: report of 566 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis. 2005;41(4):507–514.PubMedCrossRefGoogle Scholar
  159. 159.
    Fowler VG Jr, Miro JM, Hoen B, et al. ICE Investigators. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA. 2005;293(24):3012–3021.PubMedCrossRefGoogle Scholar
  160. 160.
    Chang FY, MacDonald BB, Peacock JE Jr, et al. A prospective multicenter study of Staphylococcus aureus bacteremia: incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine (Baltimore). 2003;82(5):322–332.CrossRefGoogle Scholar
  161. 161.
    Roder BL, Wandall DA, Frimodt-Moller N, et al. Clinical features of Staphylococcus aureus endocarditis: a 10-year experience in Denmark. Arch Intern Med. 1999;159(5):462–469.PubMedCrossRefGoogle Scholar
  162. 162.
    Vilacosta I, Graupner C, San Roman JA, et al. Risk of embolization after institution of antibiotic therapy for infective endocarditis. J Am Coll Cardiol. 2002;39(9): 1489–1495.PubMedCrossRefGoogle Scholar
  163. 163.
    Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis. 2001;7(2): 178–182.PubMedCrossRefGoogle Scholar
  164. 164.
    Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520–532.PubMedCrossRefGoogle Scholar
  165. 165.
    Livermore DM. Antibiotic resistance in staphylococci. Int J Antimicrob Agents. 2000;16(Suppl 1):S3–10.PubMedGoogle Scholar
  166. 166.
    Woodford N. Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin Microbiol Infect. 2005;11(Suppl 3):2–21.PubMedCrossRefGoogle Scholar
  167. 167.
    Zetola N, Francis JS, Nuermberger EL, et al. Community-acquired meticillin-resistant Staphylococ-cus aureus: an emerging threat. Lancet Infect Dis. 2005;5(5):275–286.PubMedCrossRefGoogle Scholar
  168. 168.
    Lin JC, Wu JS, Chang FY. Community-acquired methicillin-resistant Staphylococcus aureus endocarditis with septic embolism of popliteal artery: a case report. J Microbiol Immunol Infect. 2000;33(1):57–59.PubMedGoogle Scholar
  169. 169.
    Cosgrove SE, Qi Y, Kaye KS, et al. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol. 2005;26(2):166–174.PubMedCrossRefGoogle Scholar
  170. 170.
    Melzer M, Eykyn SJ, Gransden WR, et al. Is methicillin-resistant Staphylococcus aureus more virulent than methicillin-susceptible S. aureus? A comparative cohort study of British patients with nosocomial infection and bacteremia. Clin Infect Dis. 2003;37(11): 1453–1460.PubMedCrossRefGoogle Scholar
  171. 171.
    Cosgrove SE, Sakoulas G, Perencevich EN, et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):53–59.PubMedCrossRefGoogle Scholar
  172. 172.
    Hurley JC. Comparison of mortality associated with methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia: an ecological analysis. Clin Infect Dis. 2003;37(6):866–868.PubMedCrossRefGoogle Scholar
  173. 173.
    Chang FY. Staphylococcus aureus bacteremia and endocarditis. J Microbiol Immunol Infect. 2000;33(2): 63–68.PubMedGoogle Scholar
  174. 174.
    Pittet D, Harding I. Infective endocarditis and glycopeptides. J Infect. 1998;37(2):127–135.PubMedCrossRefGoogle Scholar
  175. 175.
    Rubinstein E, Carbon C. Staphylococcal endocarditis—recommendations for therapy. Clin Microbiol Infect. 1998;4(Suppl 2):S27–33.PubMedGoogle Scholar
  176. 176.
    Chang FY, Peacock JE Jr, Musher DM, et al. Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine (Baltimore). 2003;82(5): 333–339.CrossRefGoogle Scholar
  177. 177.
    Siegman-Igra Y, Reich P, Orni-Wasserlauf R, et al.The role of vancomycin in the persistence or recurrence of Staphylococcus aureus bacteraemia. Scand J Infect Dis. 2005;37(8):572–578.PubMedCrossRefGoogle Scholar
  178. 178.
    Fowler VG Jr, Kong LK, Corey GR, et al. Recurrent Staphylococcus aureus bacteremia: pulsed-field gel electrophoresis findings in 29 patients. J Infect Dis. 1999;179(5):1157–1161.PubMedCrossRefGoogle Scholar
  179. 179.
    Levine DP, Fromm BS, Reddy BR. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med. 1991;115(9):674–680.PubMedGoogle Scholar
  180. 180.
    Small PM, Chambers HF. Vancomycin for Staphylococcus aureus endocarditis in intravenous drug users. Antimicrob Agents Chemother. 1990;34(6): 1227–1231.PubMedGoogle Scholar
  181. 181.
    Clinical and Laboratory Standards Institute (CLSI/NCCLS). Approved Standard, 15th informational supplement, CLSI/NCCLS document M07–6, Table 2C:110–115. 2005.Google Scholar
  182. 182.
    Andrade-Baiocchi S, Tognim MC, Baiocchi OC, et al. Endocarditis due to glycopeptide-intermediate Staphylococcus aureus: case report and strain characterization. Diagn Microbiol Infect Dis. 2003;45(2):149–152.PubMedCrossRefGoogle Scholar
  183. 183.
    Woods CW, Cheng AC, Fowler VG Jr, et al. Endocarditis caused by Staphylococcus aureus with reduced susceptibility to vancomycin. Clin Infect Dis. 2004;38(8):1188–1191.PubMedCrossRefGoogle Scholar
  184. 184.
    Takayama Y, Hanaki H, Irinoda K, et al. Investigation of methicillin-resistant Staphylococcus aureus showing reduced vancomycin susceptibility isolated from a patient with infective endocarditis. Int J Antimicrob Agents. 2003;22(6):567–573.PubMedCrossRefGoogle Scholar
  185. 185.
    Leung KT, Tong MK, Siu YP, et al. Treatment of vancomycin-intermediate Staphylcoccus aureus endocarditis with linezolid. Scand J Infect Dis. 2004;36(6–7): 483–485.PubMedCrossRefGoogle Scholar
  186. 186.
    Sakoulas G, Eliopoulos GM, Fowler VG Jr, et al. Reduced susceptibility of Staphylococcus aureus to vancomycin and platelet microbicidal protein correlates with defective autolysis and loss of accessory gene regulator (agr) function. Antimicrob Agents Chemother. 2005;49(7):2687–2692.PubMedCrossRefGoogle Scholar
  187. 187.
    Ruef C. Epidemiology and clinical impact of glycopeptide resistance in Staphylococcus aureus. Infection. 2004;32(6):315–327.PubMedCrossRefGoogle Scholar
  188. 188.
    Mallaval FO, Carricajo A, Delavenna F, et al. Detection of an outbreak of methicillin-resistant Staphylococcus aureus with reduced susceptibility to glycopeptides in a French hospital. Clin Microbiol Infect. 2004;10(5):459–461.PubMedCrossRefGoogle Scholar
  189. 189.
    Howden BP, Ward PB, Charles PG, et al. Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin Infect Dis. 2004;38(4): 521–528.PubMedCrossRefGoogle Scholar
  190. 190.
    Charles PG, Ward PB, Johnson PD, et al. Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis. 2004;38(3):448–451.PubMedCrossRefGoogle Scholar
  191. 191.
    Khosrovaneh A, Riederer K, Saeed S, et al. Frequency of reduced vancomycin susceptibility and heterogeneous subpopulation in persistent or recurrent methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2004;38(9):1328–1330.PubMedCrossRefGoogle Scholar
  192. 192.
    Sieradzki K, Roberts RB, Haber SW, et al.The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N Engl J Med. 1999;340(7):517–523.PubMedCrossRefGoogle Scholar
  193. 193.
    Srinivasan A, Dick JD, Perl TM. Vancomycin resistance in staphylococci. Clin Microbiol Rev. 2002;15(3):430–438.PubMedCrossRefGoogle Scholar
  194. 194.
    Nandakumar R, Raju G. Isolated tricuspid valve endocarditis in nonaddicted patients: a diagnostic challenge. Am J Med Sci. 1997;314(3):207–212.PubMedCrossRefGoogle Scholar
  195. 195.
    Sandre RM, Shafran SD. Infective endocarditis: review of 135 cases over 9 years. Clin Infect Dis. 1996;22(2): 276–286.PubMedGoogle Scholar
  196. 196.
    Robbins MJ, Frater RW, Soeiro R, et al. Influence of vegetation size on clinical outcome of right-sided infective endocarditis. Am J Med. 1986;80(2):165–171.PubMedCrossRefGoogle Scholar
  197. 197.
    Remetz MS, Quagliarello V. Endovascular infections arising from right-sided heart structures. Cardiol Clin. 1992;10(1):137–149.PubMedGoogle Scholar
  198. 198.
    Ginzton LE, Siegel RJ, Criley JM. Natural history of tricuspid valve endocarditis: a two dimensional echocardiographic study. Am J Cardiol. 1982;49(8):1853–1859.PubMedCrossRefGoogle Scholar
  199. 199.
    Celebi G, Aydin M, Akduman D, et al. Tricuspid endocarditis causing massive pulmonary embolism in a non-addicted patient without any underlying cardiac disease. Scand J Infect Dis. 2004;36(11–12):889–890.PubMedCrossRefGoogle Scholar
  200. 200.
    Kim N, Lazar JM, Cunha BA, et al. Multi-valvular endocarditis. Clin Microbiol Infect. 2000;6(4):207–212.PubMedCrossRefGoogle Scholar
  201. 201.
    Petti CA, Fowler VG Jr. Staphylococcus aureus bacteremia and endocarditis. Cardiol Clin. 2003; 21(2):219–233.PubMedCrossRefGoogle Scholar
  202. 202.
    Chambers HF, Miller RT, Newman MD. Right-sided Staphylococcus aureus endocarditis in intravenous drug abusers: two-week combination therapy. Ann Intern Med. 1988;109(8):619–624.PubMedGoogle Scholar
  203. 203.
    DiNubile MJ. Short-course antibiotic therapy for right-sided endocarditis caused by Staphylococcus aureus in injection drug users. Ann Intern Med. 1994;121(11): 873–876.PubMedGoogle Scholar
  204. 204.
    Torres-Tortosa M, de Cueto M, Vergara A, et al. Prospective evaluation of a two-week course of intravenous antibiotics in intravenous drug addicts with infective endocarditis. Grupo de Estudio de Enfermedades Infecciosas de la Provincia de Cadiz. Eur J Clin Microbiol Infect Dis. 1994;13(7):559–564.PubMedCrossRefGoogle Scholar
  205. 205.
    Dworkin RJ, Lee BL, Sande MA, et al. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet. 1989;334(8671):1071–1073.CrossRefGoogle Scholar
  206. 206.
    Heldman AW, Hartert TV, Ray SC, et al. Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: prospective randomized comparison with parenteral therapy. Am J Med. 1996; 101(1):68–76.PubMedCrossRefGoogle Scholar
  207. 207.
    Ribera E, Gomez-Jimenez J, Cortes E, et al. Effectiveness of cloxacillin with and without gentamicin in short-term therapy for right-sided Staphylococcus aureus endocarditis. A randomized, controlled trial. Ann Intern Med. 1996;125(12):969–974.PubMedGoogle Scholar
  208. 208.
    Hurbanek J, Jaffer A, Tomford JW, et al. A 46-year-old intravenous drug user with fever. Cleve Clin J Med. 2003;70(10):906–908.PubMedCrossRefGoogle Scholar
  209. 209.
    Bayer AS, Blomquist IK, Bello E, et al. Tricuspid valve endocarditis due to Staphylococcus aureus. Correlation of two-dimensional echocardiography with clinical outcome. Chest. 1988;93(2):247–253.PubMedCrossRefGoogle Scholar
  210. 210.
    Hecht SR, Berger M. Right-sided endocarditis in intravenous drug users. Prognostic features in 102 episodes. Ann Intern Med. 1992;117(7):560–566.PubMedGoogle Scholar
  211. 211.
    Rouveix E, Witchitz S, Bouvet E, et al.Tricuspid infective endocarditis: 56 cases. Eur Heart J. 1984;5(Suppl C):111–115.PubMedGoogle Scholar
  212. 212.
    Sklaver AR, Hoffman TA, Greenman RL. Staphylococcal endocarditis in addicts. South Med J. 1978;71(6):638–643.PubMedGoogle Scholar
  213. 213.
    Roder BL, Wandall DA, Espersen F, et al. Neurologic manifestations in Staphylococcus aureus endocarditis: a review of 260 bacteremic cases in nondrug addicts. Am J Med. 1997;102(4):379–386.PubMedCrossRefGoogle Scholar
  214. 214.
    Heiro M, Nikoskelainen J, Engblom E, et al. Neurologic manifestations of infective endocarditis: a 17-year experience in a teaching hospital in Finland. Arch Intern Med. 2000;160(18):2781–2787.PubMedCrossRefGoogle Scholar
  215. 215.
    Whitby M. Fusidic acid in septicaemia and endocarditis. Int J Antimicrob Agents. 1999;12(Suppl 2):S17–22.PubMedCrossRefGoogle Scholar
  216. 216.
    Pavie J, Lefort A, Zarrouk V, et al. Efficacies of quinupristin-dalfopristin combined with vancomycin in vitro and in experimental endocarditis due to methicillin-resistant Staphylococcus aureus in relation to cross-resistance to macrolides, lincosamides, and streptogramin B- type antibiotics. Antimicrob Agents Chemother. 2002;46(9):3061–3064.PubMedCrossRefGoogle Scholar
  217. 217.
    Fantin B, Leclercq R, Ottaviani M, et al. In vivo activities and penetration of the two components of the streptogramin RP 59500 in cardiac vegetations of experimental endocarditis. Antimicrob Agents Chemother. 1994;38(3):432–437.PubMedGoogle Scholar
  218. 218.
    Anwer S, Keefer MC, Evans TG. Quinupristin/dalfopristin for treatment of MRSA endocarditis refractory to conventional therapy. Infect Dis Clin Practice. 1998;7:414–416.CrossRefGoogle Scholar
  219. 219.
    Sgarabotto D, Cusinato R, Narne E, et al. Synercid plus vancomycin for the treatment of severe methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci infections: evaluation of 5 cases. Scand J Infect Dis. 2002;34(2):122–126.PubMedCrossRefGoogle Scholar
  220. 220.
    Drew RH, Perfect JR, Srinath L, et al. Treatment of methicillin-resistant staphylococcus aureus infections with quinupristin-dalfopristin in patients intolerant of or failing prior therapy. For the Synercid Emergency-Use Study Group. J Antimicrob Chemother. 2000;46(5):775–784.PubMedCrossRefGoogle Scholar
  221. 221.
    Dailey CF, Dileto-Fang CL, Buchanan LV, et al.Efficacy of linezolid in treatment of experimental endocarditis caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45(8):2304–2308.PubMedCrossRefGoogle Scholar
  222. 222.
    LaPlante KL, Rybak MJ. Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2004;48(12):4665–4672.PubMedCrossRefGoogle Scholar
  223. 223.
    Bassetti M, Di Biagio A, Del Bono V, et al. Successful treatment of methicillin-resistant Staphylococcus aureus endocarditis with linezolid. Int J Antimicrob Agents. 2004;24(1):83–84.PubMedCrossRefGoogle Scholar
  224. 224.
    Chiang FY, Climo M. Efficacy of linezolid alone or in combination with vancomycin for treatment of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(9):3002–3004.PubMedCrossRefGoogle Scholar
  225. 225.
    Ruiz ME, Guerrero IC, Tuazon CU. Endocarditis caused by methicillin-resistant Staphylococcus aureus: treatment failure with linezolid. Clin Infect Dis. 2002;35(8):1018–1020.PubMedCrossRefGoogle Scholar
  226. 226.
    Potoski BA, Mangino JE, Goff DA. Clinical failures of linezolid and implications for the clinical microbiology laboratory. Emerg Infect Dis. 2002;8(12):1519–1520.PubMedGoogle Scholar
  227. 227.
    Sperber SJ, Levine JF, Gross PA. Persistent MRSA bacteremia in a patient with low linezolid levels. Clin Infect Dis. 2003;36(5):675–676.PubMedCrossRefGoogle Scholar
  228. 228.
    Tsiodras S, Gold HS, Sakoulas G, et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet. 2001;358(9277):207–208.PubMedCrossRefGoogle Scholar
  229. 229.
    Wilson P, Andrews JA, Charlesworth R, et al. Linezolid resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother. 2003;51(1):186–188.PubMedCrossRefGoogle Scholar
  230. 230.
    Cunha, BA. Methicillin-resistant Staphylococcus aureus: clinical manifestations and antimicrobial therapy. Clin Microbiol Infect. 2005;11(Suppl 4):33–42.PubMedCrossRefGoogle Scholar
  231. 231.
    Sakoulas G, Eliopoulos GM, Alder J, et al. Efficacy of daptomycin in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(5):1714–1718.PubMedCrossRefGoogle Scholar
  232. 232.
    Cha R, Rybak MJ. Daptomycin against multiple drug-resistant staphylococcus and enterococcus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations. Diagn Microbiol Infect Dis. 2003;47(3):539–546.PubMedCrossRefGoogle Scholar
  233. 233.
    Mohan SS, McDermott BP, Cunha BA. Methicillin-resistant Staphylococcus aureus prosthetic aortic valve endocarditis with paravalvular abscess treated with daptomycin. Heart Lung. 2005;34(1):69–71.PubMedCrossRefGoogle Scholar
  234. 234.
    Michiels MJ, Bergeron MG. Differential increased survival of staphylococci and limited ultrastructural changes in the core of infected fibrin clots after daptomycin administration. Antimicrob Agents Chemother. 1996;40(1):203–211.PubMedGoogle Scholar
  235. 235.
    d’Udekem Y, David TE, Feindel CM, et al. Long-term results of surgery for active infective endocarditis. Eur J Cardiothorac Surg. 1997;11(1):46–52.PubMedCrossRefGoogle Scholar
  236. 236.
    Roder BL, Wandall DA, Espersen F, et al. A study of 47 bacteremic Staphylococcus aureus endocarditis cases: 23 with native valves treated surgically and 24 with prosthetic valves. Scand Cardiovasc J. 1997;31(5): 305–309.PubMedCrossRefGoogle Scholar
  237. 237.
    Mourvillier B, Trouillet JL, Timsit JF, et al. Infective endocarditis in the intensive care unit: clinical spectrum and prognostic factors in 228 consecutive patients. Intensive Care Med. 2004;30(11):2046–2052.PubMedCrossRefGoogle Scholar
  238. 238.
    Remadi JP, Najdi G, Brahim A, et al. Superiority of surgical versus medical treatment in patients with Staphylococcus aureus infective endocarditis. Int J Cardiol. 2005;99(2):195–199.PubMedCrossRefGoogle Scholar
  239. 239.
    Chu VH, Cabell CH, Abrutyn E, et al. International Collaboration on Endocarditis Merged Database Study Group. Native valve endocarditis due to coagulase-negative staphylococci: report of 99 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis. 2004;39(10):1527–1530.PubMedCrossRefGoogle Scholar
  240. 240.
    Vinh DC, Embil JM. Device-Related Infections: A Review. J Long Term Eff Med Implants. 2005;15(5):467–488.PubMedCrossRefGoogle Scholar
  241. 241.
    Caputo GM, Archer GL, Calderwood SB, et al. Native valve endocarditis due to coagulase-negative staphylococci. Clinical and microbiologic features. Am J Med. 1987;83(4):619–625.PubMedCrossRefGoogle Scholar
  242. 242.
    Etienne J, Eykyn SJ. Increase in native valve endocarditis caused by coagulase negative staphylococci: an Anglo-French clinical and microbiological study. Br Heart J. 1990;64(6):381–384.PubMedCrossRefGoogle Scholar
  243. 243.
    Baddour LM, Phillips TN, Bisno AL. Coagulase-negative staphylococcal endocarditis. Occurrence in patients with mitral valve prolapse. Arch Intern Med. 1986;146(1):119–121.PubMedCrossRefGoogle Scholar
  244. 244.
    Zinkernagel AS, Speck RF, Ruef C, et al. Rapidly destructive Staphylococcus epidermidis endocarditis. Infection. 2005;33(3):148–150.PubMedCrossRefGoogle Scholar
  245. 245.
    Miele PS, Kogulan PK, Levy CS, et al. Seven cases of surgical native valve endocarditis caused by coagulase-negative staphylococci: An underappreciated disease. Am Heart J. 2001;142(4):571–576.PubMedCrossRefGoogle Scholar
  246. 246.
    Pfaller MA, Herwaldt LA. Laboratory, clinical, and epidemiological aspects of coagulase-negative staphylococci. Clin Microbiol Rev. 1988;1(3):281–299.PubMedGoogle Scholar
  247. 247.
    Gill VJ, Manning CB, Ingalls CM. Correlation of penicillin minimum inhibitory concentrations and penicillin zone edge appearance with staphylococcal beta-lactamase production. J Clin Microbiol. 1981;14(4):437–440.PubMedGoogle Scholar
  248. 248.
    Narayani TV, Shanmugam J, Naseema K, et al. Correlation between beta-lactamase production and MIC values against penicillin with coagulase negative staphylococci. J Postgrad Med. 1989;35(3):147–151.PubMedGoogle Scholar
  249. 249.
    Carbon C. MRSA and MRSE: is there an answer? Clin Microbiol Infect. 2000;6(Suppl 2):17–22.PubMedCrossRefGoogle Scholar
  250. 250.
    Pierre J, Williamson R, Bornet M, et al. Presence of an additional penicillin-binding protein in methicillin-resistant Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, and Staphylococcus simulans with a low affinity for methicillin, cephalothin, and cefamandole. Antimicrob Agents Chemother. 1990;34(9):1691–1694.PubMedGoogle Scholar
  251. 251.
    Martineau F, Picard FJ, Lansac N, et al. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 2000;44(2):231–238.PubMedCrossRefGoogle Scholar
  252. 252.
    Brandt CM, Rouse MS, Tallan BM, et al.Effective treatment of cephalosporin-rifampin combinations against cryptic methicillin-resistant beta-lactamase-producing coagulase-negative staphylococcal experimental endocarditis. Antimicrob Agents Chemother. 1995;39(8):1815–1819.PubMedGoogle Scholar
  253. 253.
    Archer GL, Pennell E. Detection of methicillin resistance in staphylococci by using a DNA probe. Antimicrob Agents Chemother. 1990;34(9):1720–1724.PubMedGoogle Scholar
  254. 254.
    Busch-Sorensen C, Frimodt-Moller N, Miller GH, et al. Aminoglycoside resistance among Danish blood culture isolates of coagulase-negative staphylococci. APMIS. 1996;104(12):873–880.PubMedCrossRefGoogle Scholar
  255. 255.
    Schmitz FJ, Fluit AC, Gondolf M, et al. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother. 1999; 43(2):253–259.PubMedCrossRefGoogle Scholar
  256. 256.
    Enright M, Zawadski P, Pickerill P, et al. Molecular evolution of rifampicin resistance in Streptococcus pneumoniae. Microb Drug Resist. 1998;4(1):65–70.PubMedCrossRefGoogle Scholar
  257. 257.
    Karchmer AW, Archer GL, Dismukes WE. Staphylococcus epidermidis causing prosthetic valve endocarditis: microbiologic and clinical observations as guides to therapy. Ann Intern Med. 1983;98(4):447–455.PubMedGoogle Scholar
  258. 258.
    Maniati M, Petinaki E, Kontos F, et al. Rapid increase in numbers of Staphylococcus epidermidis strains with reduced susceptibility to teicoplanin in Greece. Int J Antimicrob Agents. 2005;25(4):346–348.PubMedCrossRefGoogle Scholar
  259. 259.
    Muller AA, Mauny F, Bertin M, et al. Relationship between glycopeptide use and decreased susceptibility to teicoplanin in isolates of coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis. 2004;23(5):375–379.PubMedCrossRefGoogle Scholar
  260. 260.
    Sloos JH, van de Klundert JA, Dijkshoorn L, et al. Changing susceptibilities of coagulase-negative staphylococci to teicoplanin in a teaching hospital. J Antimicrob Chemother. 1998;42(6):787–791.PubMedCrossRefGoogle Scholar
  261. 261.
    Adler H, Widmer A, Frei R. Emergence of a teicoplanin-resistant small colony variant of Staphylococcus epidermidis during vancomycin therapy. Eur J Clin Microbiol Infect Dis. 2003;22(12):746–748.PubMedCrossRefGoogle Scholar
  262. 262.
    Lodise TP, McKinnon PS, Levine DP, Rybak MJ. Predictors of mortality and impact of initial therapy in outcomes in intravenous drug users with Staphylococcus aureus infective endocarditis. Program and abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; September 27–30, 2002; San Diego, California. Abstract L-765. 2002.Google Scholar
  263. 263.
    Cerca N, Martins S, Cerca F, et al. Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J Antimicrob Chemother. 2005;56(2):331–336.PubMedCrossRefGoogle Scholar
  264. 264.
    O’Hare MD, Felmingham D, Gruneberg RN. The bactericidal activity of vancomycin and teicoplanin against methicillin-resistant strains of coagulase negative Staphylococcus spp. J Antimicrob Chemother. 1989; 23(5):800–802.PubMedCrossRefGoogle Scholar
  265. 265.
    Raad I, Alrahwan A, Rolston K. Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin Infect Dis. 1998;26(5):1182–1187.PubMedCrossRefGoogle Scholar
  266. 266.
    Biavasco F, Vignaroli C, Varaldo PE. Glycopeptide resistance in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis. 2000;19(6):403–417.PubMedCrossRefGoogle Scholar
  267. 267.
    Wong SS, Ho PL, Woo PC, et al. Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. Clin Infect Dis. 1999;29(4):760–767.PubMedCrossRefGoogle Scholar
  268. 268.
    Sieradzki K, Villari P, Tomasz A. Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother. 1998; 42(1):100–107.PubMedGoogle Scholar
  269. 269.
    Del’ Alamo L, Cereda RF, Tosin I, et al. Antimicrobial susceptibility of coagulase-negative staphylococci and characterization of isolates with reduced susceptibility to glycopeptides. Diagn Microbiol Infect Dis. 1999; 34(3):185–191.PubMedCrossRefGoogle Scholar
  270. 270.
    John MA, Pletch C, Hussain Z. In vitro activity of quinupristin/dalfopristin, linezolid, telithromycin and comparator antimicrobial agents against 13 species of coagulase-negative staphylococci. J Antimicrob Chemother. 2002;50(6):933–938.PubMedCrossRefGoogle Scholar
  271. 271.
    Jones RN, Ballow CH, Biedenbach DJ, et al. Antimicrobial activity of quinupristin-dalfopristin (RP 59500, Synercid) tested against over 28, 000 recent clinical isolates from 200 medical centers in the United States and Canada. Diagn Microbiol Infect Dis. 1998;31(3):437–451.PubMedCrossRefGoogle Scholar
  272. 272.
    Fantin B, Leclercq R, Merle Y, et al. Critical influence of resistance to streptogramin B-type antibiotics on activity of RP 59500 (quinupristin-dalfopristin) in experimental endocarditis due to Staphylococcus aureus. Antimicrob Agents Chemother. 1995;39(2):400–405.PubMedGoogle Scholar
  273. 273.
    Sander A, Beiderlinden M, Schmid EN, et al. Clinical experience with quinupristin-dalfopristin as rescue treatment of critically ill patients infected with methicillin-resistant staphylococci. Intensive Care Med. 2002;28(8):1157–1160.PubMedCrossRefGoogle Scholar
  274. 274.
    Bearden DT. Clinical pharmacokinetics of quinupristin/dalfopristin. Clin Pharmacokinet. 2004;43(4): 239–252.PubMedCrossRefGoogle Scholar
  275. 275.
    Luh KT, Hsueh PR, Teng LJ, et al. Quinupristin-dalfopristin resistance among gram-positive bacteria in Taiwan. Antimicrob Agents Chemother. 2000; 44(12):3374–3380.PubMedCrossRefGoogle Scholar
  276. 276.
    French G. Safety and tolerability of linezolid. J Antimicrob Chemother. 2003;51(Suppl 2):45–53.CrossRefGoogle Scholar
  277. 277.
    Gerson SL, Kaplan SL, Bruss JB, et al. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother. 2002;46(8):2723–2726.PubMedCrossRefGoogle Scholar
  278. 278.
    Spellberg B, Yoo T, Bayer AS. Reversal of linezolid-associated cytopenias, but not peripheral neuropathy, by administration of vitamin B6. J Antimicrob Chemother. 2004;54(4):832–835.PubMedCrossRefGoogle Scholar
  279. 279.
    Hancock RE. Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis. 2005;5(4):209–218.PubMedCrossRefGoogle Scholar
  280. 280.
    Kennedy S, Chambers HF. Daptomycin (LY146032) for prevention and treatment of experimental aortic valve endocarditis in rabbits. Antimicrob Agents Chemother. 1989;33(9):1522–1525.PubMedGoogle Scholar
  281. 281.
    Gander S, Kinnaird A, Finch R. Telavancin: in vitro activity against staphylococci in a biofilm model. J Antimicrob Chemother. 2005;56(2):337–343.PubMedCrossRefGoogle Scholar
  282. 282.
    Freney J, Brun Y, Bes M, et al. Staphylococcus lugdunensis sp. nov. and Staphylococcus schleiferi sp. nov., two species from human clinical specimens. Int J Syst Bacteriol. 1988;38:168–172.CrossRefGoogle Scholar
  283. 283.
    Herchline TE, Ayers LW. Occurrence of Staphylococcus lugdunensis in consecutive clinical cultures and relationship of isolation to infection. J Clin Microbiol. 1991;29(3):419–421.PubMedGoogle Scholar
  284. 284.
    Seenivasan MH, Yu VL. Staphylococcus lugdunensis endocarditis—the hidden peril of coagulase-negative staphylococcus in blood cultures. Eur J Clin Microbiol Infect Dis. 2003;22(8):489–491.PubMedCrossRefGoogle Scholar
  285. 285.
    Fleurette J, Bes M, Brun Y, et al. Clinical isolates of Staphylococcus lugdunensis and S. schleiferi: bacteriological characteristics and susceptibility to antimicrobial agents. Res Microbiol. 1989;140(2):107–118.PubMedCrossRefGoogle Scholar
  286. 286.
    Van Hoovels L, De Munter P, Colaert J, et al. Three cases of destructive native valve endocarditis caused by Staphylococcus lugdunensis. Eur J Clin Microbiol Infect Dis. 2005;24(2):149–152.PubMedCrossRefGoogle Scholar
  287. 287.
    Herchline TE, Barnishan J, Ayers LW, et al. Penicillinase production and in vitro susceptibilities of Staphylococcus lugdunensis. Antimicrob Agents Chemother. 1990;34(12):2434–2435.PubMedGoogle Scholar
  288. 288.
    Jones RM, Jackson MA, Ong C, et al. Endocarditis caused by Staphylococcus lugdunensis. Pediatr Infect Dis J. 2002;21(3):265–268.PubMedCrossRefGoogle Scholar
  289. 289.
    Paterson DL, Nuttall N. Serious infections due to Staphylococcus lugdunensis. Aust N Z J Med. 1997; 27(5):591.PubMedGoogle Scholar
  290. 290.
    Vandenesch F, Etienne J, Reverdy ME, et al. Endocarditis due to Staphylococcus lugdunensis: report of 11 cases and review. Clin Infect Dis. 1993;17(5):871–876.PubMedGoogle Scholar
  291. 291.
    Dan M, Marien GJ, Goldsand G. Endocarditis caused by Staphylococcus warneri on a normal aortic valve following vasectomy. Can Med Assoc J. 1984;131(3): 211–213.PubMedGoogle Scholar
  292. 292.
    Wood CA. Significant infection caused by Staphylococcus warneri.J Clin Microbiol. 1992;30(8):2216–2217.PubMedGoogle Scholar
  293. 293.
    Stollberger C, Wechsler-Fordos A, Geppert F, et al. Staphylococcus warneri endocarditis after implantation of a lumbar disc prosthesis in an immunocompetent patient. J Infect. 2005; Epub ahead of print.Google Scholar
  294. 294.
    Sandoe JA, Kerr KG, Reynolds GW, et al. Staphylococcus capitis endocarditis: two cases and review of the literature. Heart. 1999;82(3):e1–3.PubMedGoogle Scholar
  295. 295.
    Garduno E, Marquez I, Beteta A, et al. Staphylococcus saprophyticus causing native valve endocarditis. Scand J Infect Dis. 2005;37(9):690–691.Google Scholar
  296. 296.
    Singh VR, Raad I. Fatal Staphylococcus saprophyticus native valve endocarditis in an intravenous drug addict. J Infect Dis. 1990;162(3):783–784.PubMedGoogle Scholar
  297. 297.
    Kloos WE, Schleifer KH. Isolation and characterization of staphylococci from human skin. II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Bacteriol. 1975;25:62–79.CrossRefGoogle Scholar
  298. 298.
    Geraci JE, Wilson WR. Symposium on infective endocarditis. III. Endocarditis due to gram-negative bacteria. Report of 56 cases. Mayo Clin Proc. 1982;57(3): 145–148.PubMedGoogle Scholar
  299. 299.
    Anderson MJ, Janoff EN. Klebsiella endocarditis: report of two cases and review. Clin Infect Dis. 1998;26(2):468–474.PubMedCrossRefGoogle Scholar
  300. 300.
    Branger S, Casalta JP, Habib G, et al. Escherichia coli endocarditis: seven new cases in adults and review of the literature. Eur J Clin Microbiol Infect Dis. 2005; Epub ahead of print.Google Scholar
  301. 301.
    Watanakunakorn C, Kim J. Mitral valve endocarditis caused by a serum-resistant strain of Escherichia coli. Clin Infect Dis. 1992;14(2):501–505.PubMedGoogle Scholar
  302. 302.
    Fernandez Guerrero ML, Aguado JM, Arribas A et al. The spectrum of cardiovascular infections due to Salmonella enterica: a review of clinical features and factors determining outcome. Medicine (Baltimore). 2004;83(2):123–138.CrossRefGoogle Scholar
  303. 303.
    Tindall BJ. Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol. 2005;55(Pt 1):521–524.PubMedCrossRefGoogle Scholar
  304. 304.
    Huang DB, DuPont HL. Problem pathogens: extra-intestinal complications of Salmonella enterica serotype Typhi infection. Lancet Infect Dis. 2005; 5(6):341–348.PubMedCrossRefGoogle Scholar
  305. 305.
    Bestetti RB, Figueiredo JF, Da Costa JC. Salmonella tricuspid endocarditis in an intravenous drug abuser with human immunodeficiency virus infection. Int J Cardiol. 1991;30(3):361–362.PubMedCrossRefGoogle Scholar
  306. 306.
    Khan GQ, Kadri SM, Hassan G, et al. Salmonella typhi endocarditis: a case report.J Clin Pathol. 2003;56(10): 801–802.PubMedCrossRefGoogle Scholar
  307. 307.
    Cohen JI, Bartlett JA, Corey GR. Extra-intestinal manifestations of salmonella infections. Medicine (Baltimore). 1987;66(5):349–388.Google Scholar
  308. 308.
    Tassios PT, Vatopoulos AC, Mainas E, et al. Molecular analysis of ampicillin-resistant sporadic Salmonella typhi and Salmonella paratyphi B clinical isolates. Clin Microbiol Infect. 1997;3(3):317–323.PubMedCrossRefGoogle Scholar
  309. 309.
    Fernandez Guerrero ML, Torres Perea R, Verdejo Morcillo C, et al. Treatment of experimental endocarditis due to ampicillin-susceptible or ampicillin-resistant Salmonella enteritidis. Antimicrob Agents Chemother. 1996;40(7):1589–1593.PubMedGoogle Scholar
  310. 310.
    Cherubin CE, Eng RH, Smith SM, et al. Cephalosporin therapy for salmonellosis. Questions of efficacy and cross resistance with ampicillin. Arch Intern Med. 1986;146(11):2149–2152.PubMedCrossRefGoogle Scholar
  311. 311.
    Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;32(2):263–269.PubMedCrossRefGoogle Scholar
  312. 312.
    Hsu RB, Lin FY, Chen RJ, et al. Antimicrobial drug resistance in salmonella-infected aortic aneurysms. Ann Thorac Surg. 2005;80(2):530–536.PubMedCrossRefGoogle Scholar
  313. 313.
    du Plessis JP, Govendrageloo K, Levin SE. Right-sided endocarditis due to Salmonella typhi. Pediatr Cardiol. 1997;18(6):443–444.PubMedCrossRefGoogle Scholar
  314. 314.
    Alvarez-Elcoro S, Soto-Ramirez L, Mateos-Mora M. Salmonella bacteremia in patients with prosthetic heart valves. Am J Med. 1984;77(1):61–63.PubMedCrossRefGoogle Scholar
  315. 315.
    Angulo FJ, Johnson KR, Tauxe RV, et al. Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: implications for the use of fluoroquinolones in food animals. Microb Drug Resist. 2000;6(1):77–83.PubMedCrossRefGoogle Scholar
  316. 316.
    Su LH, Chiu CH, Chu C, et al. Antimicrobial resistance in nontyphoid Salmonella serotypes: a global challenge. Clin Infect Dis. 2004;39(4):546–551.PubMedCrossRefGoogle Scholar
  317. 317.
    Chiu CH, Su LH, Chu C. Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin Microbiol Rev. 2004; 17(2):311–322.PubMedCrossRefGoogle Scholar
  318. 318.
    Cohen PS, O’Brien TF, Schoenbaum SC, et al. The risk of endothelial infection in adults with salmonella bacteremia. Ann Intern Med. 1978;89(6):931–932.PubMedGoogle Scholar
  319. 319.
    Soravia-Dunand VA, Loo VG, Salit IE. Aortitis due to Salmonella: report of 10 cases and comprehensive review of the literature. Clin Infect Dis. 1999;29(4):862–868.PubMedCrossRefGoogle Scholar
  320. 320.
    Oskoui R, Davis WA, Gomes MN. Salmonella aortitis. A report of a successfully treated case with a comprehensive review of the literature. Arch Intern Med. 1993;153(4):517–525.PubMedCrossRefGoogle Scholar
  321. 321.
    Muller BT, Wegener OR, Grabitz K, et al. Mycotic aneurysms of the thoracic and abdominal aorta and iliac arteries: experience with anatomic and extra-anatomic repair in 33 cases.J Vasc Surg. 2001;33(1): 106–113.PubMedCrossRefGoogle Scholar
  322. 322.
    Shekar R, Rice TW, Zierdt CH, et al. Outbreak of endocarditis caused by Pseudomonas aeruginosa serotype O11 among pentazocine and tripelennamine abusers in Chicago. J Infect Dis. 1985;151(2):203–208.PubMedGoogle Scholar
  323. 323.
    Bicanic TA, Eykyn SJ. Hospital-acquired, native valve endocarditis caused by Pseudomonas aeruginosa. J Infect. 2002;44(2):137–139.PubMedCrossRefGoogle Scholar
  324. 324.
    Jimenez-Lucho VE, Saravolatz LD, Medeiros AA, et al. Failure of therapy in pseudomonas endocarditis: selection of resistant mutants. J Infect Dis. 1986;154(1): 64–68.PubMedGoogle Scholar
  325. 325.
    Reyes MP, Lerner AM. Current problems in the treatment of infective endocarditis due to Pseudomonas aeruginosa. Rev Infect Dis. 1983;5(2):314–321.PubMedGoogle Scholar
  326. 326.
    Gavin PJ, Suseno MT, Cook FV, et al. Left-sided endocarditis caused by Pseudomonas aeruginosa: successful treatment with meropenem and tobramycin. Diagn Microbiol Infect Dis. 2003;47(2):427–430.PubMedCrossRefGoogle Scholar
  327. 327.
    Komshian SV, Tablan OC, Palutke W, et al. Characteristics of left-sided endocarditis due to Pseudomonas aeruginosa in the Detroit Medical Center. Rev Infect Dis. 1990;12(4):693–702.PubMedGoogle Scholar
  328. 328.
    Jones RN, Kirby JT, Beach ML, et al. Geographic variations in activity of broad-spectrum beta-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY Antimicrobial Surveillance Program (1997–2000). Diagn Microbiol Infect Dis. 2002;43(3):239–243.PubMedCrossRefGoogle Scholar
  329. 329.
    Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis. 2004;4(8):519–527.PubMedCrossRefGoogle Scholar
  330. 330.
    Bisharat N, Goldstein L, Raz R, et al. Gram-Negative anaerobic endocarditis: two case reports and review of the literature. Eur J Clin Microbiol Infect Dis. 2001;20(9):651–654.PubMedGoogle Scholar
  331. 331.
    Falagas ME, Siakavellas E. Bacteroides, Prevotella, and Porphyromonas species: a review of antibiotic resistance and therapeutic options. Int J Antimicrob Agents. 2000;15(1):1–9.PubMedCrossRefGoogle Scholar
  332. 332.
    Brook I. Endocarditis due to anaerobic bacteria. Cardiology. 2002;98(1–2):1–5.PubMedCrossRefGoogle Scholar
  333. 333.
    Weber G, Borer A, Riesenberg K, et al. Infective endocarditis due to Fusobacterium nucleatum in an intravenous drug abuser. Eur J Clin Microbiol Infect Dis. 1999;18(9):655–657.PubMedCrossRefGoogle Scholar
  334. 334.
    Moreira AL, Haslett PA, Symmans WF. Propionibacterium acnes as the cause of endocarditis in a liver transplant recipient. Clin Infect Dis. 2000;30(1):224–226.PubMedCrossRefGoogle Scholar
  335. 335.
    Mohsen AH, Price A, Ridgway E, et al. Propionibacterium acnes endocarditis in a native valve complicated by intraventricular abscess: a case report and review. Scand J Infect Dis. 2001;33(5):379–380.PubMedCrossRefGoogle Scholar
  336. 336.
    Lazar JM, Schulman DS. Propionibacterium acnes prosthetic valve endocarditis: a case of severe aortic insufficiency. Clin Cardiol. 1992;15(4):299–300.PubMedCrossRefGoogle Scholar
  337. 337.
    Funke G, von Graevenitz A, Clarridge JE 3rd, et al. Clinical microbiology of coryneform bacteria. Clin Microbiol Rev. 1997;10(1):125–159.PubMedGoogle Scholar
  338. 338.
    Benjamin DK Jr, Miro JM, Hoen B, et al; ICE-MD Study Group. Candida endocarditis: contemporary cases from the International Collaboration of Infectious Endocarditis Merged Database (ICE-mD). Scand J Infect Dis. 2004;36(6–7):453–455.PubMedCrossRefGoogle Scholar
  339. 339.
    Ellis ME, Al-Abdely H, Sandridge A, et al. Fungal endocarditis: evidence in the world literature, 1965–1995. Clin Infect Dis. 2001;32(1):50–62.PubMedCrossRefGoogle Scholar
  340. 340.
    Blanc V, Lavarde V, Thanh NT, Tri HH, et al. Postoperative Cryptococcus neoformans endocarditis. Clin Microbiol Infect. 1996;2(1):66–69.PubMedGoogle Scholar
  341. 341.
    Banerjee U, Gupta K, Venugopal P. A case of prosthetic valve endocarditis caused by Cryptococcus neoformans var. neoformans. J Med Vet Mycol. 1997;35(2): 139–141.PubMedCrossRefGoogle Scholar
  342. 342.
    Boden WE, Fisher A, Medeiros A, et al. Bioprosthetic endocarditis due to Cryptococcus neoformans. J Cardiovasc Surg (Torino). 1983;24(2):164–166.Google Scholar
  343. 343.
    Muehrcke DD, Lytle BW, Cosgrove DM 3rd. Surgical and long-term antifungal therapy for fungal prosthetic valve endocarditis. Ann Thorac Surg. 1995;60(3):538–543.PubMedCrossRefGoogle Scholar
  344. 344.
    Marier R, Zakhireh B, Downs J, et al. Trichosporon cutaneum endocarditis.Scand J Infect Dis. 1978;10(3): 225–226.PubMedGoogle Scholar
  345. 345.
    Reyes CV, Stanley MM, Rippon JW. Trichosporon beigelii endocarditis as a complication of peritoneovenous shunt. Hum Pathol. 1985;16(8):857–859.PubMedCrossRefGoogle Scholar
  346. 346.
    Ramos JM, Cuenca-Estrella M, Gutierrez F, et al. Clinical case of endocarditis due to Trichosporon inkin and antifungal susceptibility profile of the organism. J Clin Microbiol. 2004;42(5):2341–2344.PubMedCrossRefGoogle Scholar
  347. 347.
    Mooty MY, Kanj SS, Obeid MY, et al. A case of Trichosporon beigelii endocarditis. Eur J Clin Microbiol Infect Dis. 2001;20(2):139–142.PubMedCrossRefGoogle Scholar
  348. 348.
    Maeder M, Vogt PR, Schaer G, et al. Aortic homograft endocarditis caused by Rhodotorula mucilaginosa. Infection. 2003;31(3):181–183.PubMedGoogle Scholar
  349. 349.
    Naveh Y, Friedman A, Merzbach D, et al. Endocarditis caused by Rhodotorula successfully treated with 5-fluorocytosine. Br Heart J. 1975;37(1):101–104.PubMedCrossRefGoogle Scholar
  350. 350.
    Bhatti S, Vilenski L, Tight R, et al. Histoplasma endocarditis: clinical and mycologic features and outcomes. J Infect. 2005;51(1):2–9.PubMedCrossRefGoogle Scholar
  351. 351.
    Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Second Edition. NCCLS document M27–A2 [ISBN 1–56238-469–4]. NCCLS, Pennsylvania, USA. 2002.Google Scholar
  352. 352.
    Clinical and Laboratory Standards Institute (CLSI). Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; Proposed Guideline. NCCLS document M44-P [ISBN 1–56238-488–0]. NCCLS, Pennsylvania, USA. 2003.Google Scholar
  353. 353.
    Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. NCCLS document M38-A [ISBN 1–56238-470–8]. NCCLS, Pennsylvania, USA. 2002.Google Scholar
  354. 354.
    Rex JH, Pfaller MA, Galgiani JN, et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis. 1997;24(2):235–247.PubMedGoogle Scholar
  355. 355.
    De Pauw BE. New antifungal agents and preparations. Int J Antimicrob Agents. 2000;16(2):147–150.PubMedCrossRefGoogle Scholar
  356. 356.
    Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;49(Suppl 1):7–10.PubMedCrossRefGoogle Scholar
  357. 357.
    Masia Canuto M, Gutierrez Rodero F. Antifungal drug resistance to azoles and polyenes. Lancet Infect Dis. 2002;2(9):550–563.PubMedCrossRefGoogle Scholar
  358. 358.
    Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. Clin Infect Dis. 2000;30(4):662–678.PubMedCrossRefGoogle Scholar
  359. 359.
    Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother. 2002;49 (Suppl 1):31–36.PubMedCrossRefGoogle Scholar
  360. 360.
    Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis. 1999;29(6):1402–1407.PubMedCrossRefGoogle Scholar
  361. 361.
    Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis. 1998;27(3):603–618.PubMedCrossRefGoogle Scholar
  362. 362.
    Linden P, Williams P, Chan KM. Efficacy and safety of amphotericin B lipid complex injection (ABLC) in solid-organ transplant recipients with invasive fungal infections. Clin Transplant. 2000;14(4 Pt 1):329–339.PubMedCrossRefGoogle Scholar
  363. 363.
    Wiley JM, Seibel NL, Walsh TJ. Efficacy and safety of amphotericin B lipid complex in 548 children and adolescents with invasive fungal infections. Pediatr Infect Dis J. 2005;24(2):167–174.PubMedCrossRefGoogle Scholar
  364. 364.
    Wingard JR. Efficacy of amphotericin B lipid complex injection (ABLC) in bone marrow transplant recipients with life-threatening systemic mycoses. Bone Marrow Transplant. 1997;19(4):343–347.PubMedCrossRefGoogle Scholar
  365. 365.
    Walsh TJ, Hiemenz JW, Seibel NL, et al. Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis. 1998;26(6):1383–1396.PubMedCrossRefGoogle Scholar
  366. 366.
    Groll AH, Giri N, Petraitis V, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000;182(1):274–282.PubMedCrossRefGoogle Scholar
  367. 367.
    Rubinstein E. Amphotericin B and 5-fluorocytosine penetration into blood and fibrin clots. Chemotherapy. 1979;25(5):249–253.PubMedCrossRefGoogle Scholar
  368. 368.
    Rubinstein E, Noriega ER, Simberkoff MS, et al. Tissue penetration of amphotericin B in Candida endocarditis. Chest. 1974;66(4):376–377.PubMedCrossRefGoogle Scholar
  369. 369.
    Arikan S, Rex JH. Nystatin LF (Aronex/Abbott). Curr Opin Investig Drugs. 2001;2(4):488–495.PubMedGoogle Scholar
  370. 370.
    Offner F, Krcmery V, Boogaerts M, et al. EORTC Invasive Fungal Infections Group. Liposomal nystatin in patients with invasive aspergillosis refractory to or intolerant of amphotericin B. Antimicrob Agents Chemother. 2004;48(12):4808–4812.PubMedCrossRefGoogle Scholar
  371. 371.
    Van den Bossche H, Willemsens G, Cools W, et al. Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem Soc Trans. 1983;11(6):665–667.PubMedGoogle Scholar
  372. 372.
    Vanden Bossche H, Bellens D, Cools W, et al. Cytochrome P-450: target for itraconazole. Drug Dev Res. 1986;8(287–298).Google Scholar
  373. 373.
    Maertens JA. History of the development of azole derivatives. Clin Microbiol Infect. 2004;10(Suppl 1):1–10.PubMedCrossRefGoogle Scholar
  374. 374.
    Brammer KW, Farrow PR, Faulkner JK. Pharmacokinetics and tissue penetration of fluconazole in humans. Rev Infect Dis. 1990;12(Suppl 3):S318–326.PubMedGoogle Scholar
  375. 375.
    Nettles RE, Nichols LS, Bell-McGuinn K, et al. Successful treatment of Trichosporon mucoides infection with fluconazole in a heart and kidney transplant recipient. Clin Infect Dis. 2003;36(4):E63–66.PubMedCrossRefGoogle Scholar
  376. 376.
    Pappas PG, Rex JH, Sobel JD, et al. Infectious Diseases Society of America. Guidelines for treatment of candidiasis. Clin Infect Dis. 2004;38(2):161–189.PubMedCrossRefGoogle Scholar
  377. 377.
    Groll AH, Gea-Banacloche JC, Glasmacher A, et al. Clinical pharmacology of antifungal compounds. Infect Dis Clin North Am. 2003;17(1):159–191.PubMedCrossRefGoogle Scholar
  378. 378.
    Longman LP, Hibbert SA, Martin MV. Efficacy of fluconazole in prophylaxis and treatment of experimental Candida endocarditis. Rev Infect Dis. 1990;12(Suppl 3):S294–298.PubMedGoogle Scholar
  379. 379.
    Arndt CA, Walsh TJ, McCully CL, et al. Fluconazole penetration into cerebrospinal fluid: implications for treating fungal infections of the central nervous system. J Infect Dis. 1988;157(1):178–180.PubMedGoogle Scholar
  380. 380.
    Duswald KH, Penk A, Pittrow L. High-dose therapy with fluconazole > or = 800 mg day-1. Mycoses. 1997;40(7–8):267–277.PubMedCrossRefGoogle Scholar
  381. 381.
    Pierard GE, Arrese JE, Pierard-Franchimont C. Itraconazole. Expert Opin Pharmacother. 2000;1(2): 287–304.PubMedCrossRefGoogle Scholar
  382. 382.
    Marr KA, Crippa F, Leisenring W, et al. Itraconazole versus fluconazole for prevention of fungal infections in patients receiving allogeneic stem cell transplants. Blood. 2004;103(4):1527–1533.PubMedCrossRefGoogle Scholar
  383. 383.
    Winston DJ, Maziarz RT, Chandrasekar PH, et al. Intravenous and oral itraconazole versus intravenous and oral fluconazole for long-term antifungal prophylaxis in allogeneic hematopoietic stem-cell transplant recipients. A multicenter, randomized trial. Ann Intern Med. 2003;138(9):705–713.PubMedGoogle Scholar
  384. 384.
    Donnelly JP, De Pauw BE. Voriconazole-a new therapeutic agent with an extended spectrum of antifungal activity. Clin Microbiol Infect. 2004;10(Suppl 1):107–117.PubMedCrossRefGoogle Scholar
  385. 385.
    Perea JR, Diaz De Rada BS, Quetglas EG, et al. Oral versus intravenous therapy in the treatment of systemic mycosis. Clin Microbiol Infect. 2004;10(Suppl 1):96–106.PubMedCrossRefGoogle Scholar
  386. 386.
    Lutsar I, Roffey S, Troke P. Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Clin Infect Dis. 2003;37(5):728–732.PubMedCrossRefGoogle Scholar
  387. 387.
    Schwartz S, Milatovic D, Thiel E. Successful treatment of cerebral aspergillosis with a novel triazole (voriconazole) in a patient with acute leukaemia. Br J Haematol. 1997;97(3):663–665.PubMedCrossRefGoogle Scholar
  388. 388.
    Baddley JW, Pappas PG. Antifungal combination therapy: clinical potential. Drugs. 2005;65(11):1461–1480.PubMedCrossRefGoogle Scholar
  389. 389.
    Jessup CJ, Ryder NS, Ghannoum MA. An evaluation of the in vitro activity of terbinafine. Med Mycol. 2000;38(2):155–159.PubMedGoogle Scholar
  390. 390.
    Schiraldi GF, Cicero SL, Colombo MD, et al. Refractory pulmonary aspergillosis: compassionate trial with terbinafine. Br J Dermatol. 1996;134(Suppl 46):25–29.PubMedCrossRefGoogle Scholar
  391. 391.
    Moore CB, Walls CM, Denning DW. In vitro activities of terbinafine against Aspergillus species in comparison with those of itraconazole and amphotericin B. Antimicrob Agents Chemother. 2001;45(6):1882–1885.PubMedCrossRefGoogle Scholar
  392. 392.
    Ryder NS, Leitner I. Synergistic interaction of terbinafine with triazoles or amphotericin B against Aspergillus species. Med Mycol. 2001;39(1):91–95.PubMedGoogle Scholar
  393. 393.
    Mosquera J, Sharp A, Moore CB, et al. In vitro interaction of terbinafine with itraconazole, fluconazole, amphotericin B and 5-flucytosine against Aspergillus spp. J Antimicrob Chemother. 2002;50(2):189–194.PubMedCrossRefGoogle Scholar
  394. 394.
    Marr K. Combination antifungal therapy: where are we now, and where are we going? Oncology (Williston Park). 2004;18(13 Suppl 7):24–29.Google Scholar
  395. 395.
    Hauser M, Hess J, Belohradsky BH. Treatment of Candida albicans endocarditis: case report and a review. Infection. 2003;31(2):125–127.PubMedCrossRefGoogle Scholar
  396. 396.
    Louie A, Liu W, Miller DA, et al. Efficacies of high-dose fluconazole plus amphotericin B and high-dose fluconazole plus 5-fluorocytosine versus amphotericin B, fluconazole, and 5-fluorocytosine monotherapies in treatment of experimental endocarditis, endophthalmitis, and pyelonephritis due to Candida albicans. Antimicrob Agents Chemother. 1999;43(12):2831–2840.PubMedGoogle Scholar
  397. 397.
    Girmenia C, Venditti M, Martino P. Fluconazole in combination with flucytosine in the treatment of fluconazole-resistant Candida infections. Diagn Microbiol Infect Dis. 2003;46(3):227–231.PubMedCrossRefGoogle Scholar
  398. 398.
    Scheven M, Junemann K, Schramm H, et al. Successful treatment of a Candida albicans sepsis with a combination of flucytosine and fluconazole. Mycoses. 1992; 35(11–12):315–316.PubMedGoogle Scholar
  399. 399.
    Pfaller MA, Diekema DJ, Messer SA, et al. In vitro activities of caspofungin compared with those of fluconazole and itraconazole against 3, 959 clinical isolates of Candida spp., including 157 fluconazole-resistant isolates. Antimicrob Agents Chemother. 2003;47(3):1068–1071.PubMedCrossRefGoogle Scholar
  400. 400.
    Jimenez-Exposito MJ, Torres G, Baraldes A, et al. Native valve endocarditis due to Candida glabrata treated without valvular replacement: a potential role for caspofungin in the induction and maintenance treatment. Clin Infect Dis. 2004;39(7):e70–73.PubMedCrossRefGoogle Scholar
  401. 401.
    Rajendram R, Alp NJ, Mitchell AR, et al. Candida prosthetic valve endocarditis cured by caspofungin therapy without valve replacement. Clin Infect Dis. 2005;40(9):e72–74.PubMedCrossRefGoogle Scholar
  402. 402.
    Nevado J, De Alarcon A, Hernandez A. Caspofungin: a new therapeutic option for fungal endocarditis. Clin Microbiol Infect. 2005;11(3):248.PubMedCrossRefGoogle Scholar
  403. 403.
    Kirkpatrick WR, Perea S, Coco BJ, et al. Efficacy of caspofungin alone and in combination with voriconazole in a Guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother. 2002;46(8):2564–2568.PubMedCrossRefGoogle Scholar
  404. 404.
    Hajdu R, Thompson R, Sundelof JG, et al. Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743, 872). Antimicrob Agents Chemother. 1997;41(11):2339–2344.PubMedGoogle Scholar
  405. 405.
    Prabhu RM, Orenstein R. Failure of caspofungin to treat brain abscesses secondary to Candida albicans prosthetic valve endocarditis. Clin Infect Dis. 2004;39(8):1253–1254.PubMedCrossRefGoogle Scholar
  406. 406.
    Pierrotti LC, Baddour LM. Fungal endocarditis, 1995–2000. Chest. 2002;122(1):302–310.PubMedCrossRefGoogle Scholar
  407. 407.
    Rubinstein E, Lang R. Fungal endocarditis. Eur Heart J. 1995;16(Suppl B):84–89.PubMedGoogle Scholar
  408. 408.
    Nadir E, Rubinstein E. Fungal Endocarditis. Curr Infect Dis Rep. 2004;6(4):276–282.PubMedCrossRefGoogle Scholar
  409. 409.
    Utley JR, Mills J, Roe BB. The role of valve replacement in the treatment of fungal endocarditis. J Thorac Cardiovasc Surg. 1975;69(2):255–258.PubMedGoogle Scholar
  410. 410.
    Rex JH, Bennett JE, Sugar AM, et al. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med. 1994;331(20):1325–1330.PubMedCrossRefGoogle Scholar
  411. 411.
    Rex JH, Pappas PG, Karchmer AW, et al. National Institute of Allergy and Infectious Diseases Mycoses Study Group. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis. 2003;36(10):1221–1228.PubMedCrossRefGoogle Scholar
  412. 412.
    Wells CJ, Leech GJ, Lever AM, et al. Treatment of native valve Candida endocarditis with fluconazole. J Infect. 1995;31(3):233–235.PubMedCrossRefGoogle Scholar
  413. 413.
    Martino P, Meloni G, Cassone A. Candidal endocarditis and treatment with fluconazole and granulocyte-macrophage colony-stimulating factor. Ann Intern Med. 1990;112(12):966–967.PubMedGoogle Scholar
  414. 414.
    Westling K, Thalme A, Julander I. Candida albicans tricuspid valve endocarditis in an intravenous drug addict: successful treatment with fluconazole. Scand J Infect Dis. 2005;37(4):310–311.PubMedCrossRefGoogle Scholar
  415. 415.
    Melgar GR, Nasser RM, Gordon SM, et al. Fungal prosthetic valve endocarditis in 16 patients. An 11-year experience in a tertiary care hospital. Medicine (Baltimore). 1997;76(2):94–103.CrossRefGoogle Scholar
  416. 416.
    Johnston PG, Lee J, Domanski M, et al. Late recurrent Candida endocarditis. Chest. 1991;99(6):1531–1533.PubMedCrossRefGoogle Scholar
  417. 417.
    Mrowczynski W, Wojtalik M. Caspofungin for Candida endocarditis. Pediatr Infect Dis J. 2004;23(4):376.PubMedGoogle Scholar
  418. 418.
    Gumbo T, Taege AJ, Mawhorter S, et al. Aspergillus valve endocarditis in patients without prior cardiac surgery. Medicine (Baltimore). 2000;79(4):261–268.CrossRefGoogle Scholar
  419. 419.
    Xie L, Gebre W, Szabo K, et al. Cardiac aspergillosis in patients with acquired immunodeficiency syndrome: a case report and review of the literature. Arch Pathol Lab Med. 2005;129(4):511–515.PubMedGoogle Scholar
  420. 420.
    El-Hamamsy I, Durrleman N, Stevens LM, et al. Aspergillus endocarditis after cardiac surgery. 80. 2005;1(359–364).Google Scholar
  421. 421.
    Friedman AH, Chishti MI, Henkind P. Endogenous ocular aspergillosis. Ophthalmologica. 1974;168(3):197–205.PubMedCrossRefGoogle Scholar
  422. 422.
    Irles D, Bonadona A, Pofelski J, et al. [Aspergillus flavus endocarditis on a native valve]. Arch Mal Coeur Vaiss. 2004;97(2):172–175.PubMedGoogle Scholar
  423. 423.
    Hope WW, Walsh TJ, Denning DW. The invasive and saprophytic syndromes due to Aspergillus spp. Med Mycol. 2005;43(Suppl 1):S207–238.PubMedCrossRefGoogle Scholar
  424. 424.
    Stevens DA, Kan VL, Judson MA, et al. Practice guidelines for diseases caused by Aspergillus. Infectious Diseases Society of America. Clin Infect Dis. 2000;30(4):696–709.PubMedCrossRefGoogle Scholar
  425. 425.
    Denning DW. Invasive aspergillosis. Clin Infect Dis. 1998;26(4):781–803.PubMedCrossRefGoogle Scholar
  426. 426.
    Kappe R, Schulze-Berge A, Sonntag HG. Evaluation of eight antibody tests and one antigen test for the diagnosis of invasive aspergillosis. Mycoses. 1996;39(1–2):13–23.PubMedCrossRefGoogle Scholar
  427. 427.
    Marr KA, Balajee SA, McLaughlin L, et al. Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: variables that affect performance. J Infect Dis. 2004;190(3):641–649.PubMedCrossRefGoogle Scholar
  428. 428.
    Alexander BD. Diagnosis of fungal infection: new technologies for the mycology laboratory. Transpl Infect Dis. 2002;4(Suppl 3):32–37.PubMedCrossRefGoogle Scholar
  429. 429.
    Rubinstein E, Noriega ER, Simberkoff MS, et al. Fungal endocarditis: analysis of 24 cases and review of the literature. Medicine (Baltimore). 1975;54(4):331–334.Google Scholar
  430. 430.
    Hosking MC, MacDonald NE, Cornel G. Liposomal amphotericin B for postoperative Aspergillus fumigatus endocarditis. Ann Thorac Surg. 1995;59(4):1015–1017.PubMedCrossRefGoogle Scholar
  431. 431.
    Mateos-Colino A, Golpe R, Gonzalez-Rodriguez A, et al. Aspergillus pacemaker endocarditis presenting as pulmonary embolism. Respirology. 2005;10(3):396–398.PubMedCrossRefGoogle Scholar
  432. 432.
    Rao K, Saha V. Medical management of Aspergillus flavus endocarditis. Pediatr Hematol Oncol. 2000;17(5):425–427.PubMedCrossRefGoogle Scholar
  433. 433.
    Kennedy HF, Simpson EM, Wilson N, et al. Aspergillus flavus endocarditis in a child with neuroblastoma. J Infect. 1998;36(1):126–127.PubMedCrossRefGoogle Scholar
  434. 434.
    Longman LP, Martin MV. A comparison of the efficacy of itraconazole, amphotericin B and 5-fluorocytosine in the treatment of Aspergillus fumigatus endocarditis in the rabbit. J Antimicrob Chemother. 1987;20(5):719–724.PubMedCrossRefGoogle Scholar
  435. 435.
    Denning DW, Stevens DA. Antifungal and surgical treatment of invasive aspergillosis: review of 2, 121 published cases. Rev Infect Dis. 1990;12(6):1147–1201.PubMedGoogle Scholar
  436. 436.
    Imhof A, Balajee SA, Fredricks DN, et al. Breakthrough fungal infections in stem cell transplant recipients receiving voriconazole. Clin Infect Dis. 2004;39(5):743–746.PubMedCrossRefGoogle Scholar
  437. 437.
    Herbrecht R, Denning DW, Patterson TF, et al. Invasive Fungal Infections Group of the European Organisation for Research and Treatment of Cancer and the Global Aspergillus Study Group. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–415.PubMedCrossRefGoogle Scholar
  438. 438.
    Reis LJ, Barton TD, Pochettino A, et al. Successful treatment of Aspergillus prosthetic valve endocarditis with oral voriconazole. Clin Infect Dis. 2005;41(5):752–753.PubMedCrossRefGoogle Scholar
  439. 439.
    Martin MV, Yates J, Hitchcock CA. Comparison of voriconazole (UK-109, 496) and itraconazole in prevention and treatment of Aspergillus fumigatus endocarditis in guinea pigs. Antimicrob Agents Chemother. 1997;41(1):13–16.PubMedGoogle Scholar
  440. 440.
    Walsh TJ, Hutchins GM. Aspergillus mural endocarditis. Am J Clin Pathol. 1979;71(6):640–644.PubMedGoogle Scholar
  441. 441.
    Lim ML, Oliver DH, Barasch E. Aspergillus Mural Vegetation Identified by Transesophageal Echocardiography. Echocardiography. 1997;14(3):283–286.PubMedCrossRefGoogle Scholar
  442. 442.
    Mullen P, Jude C, Borkon M, et al. Aspergillus mural endocarditis. Clinical and echocardiographic diagnosis. Chest. 1986;90(3):451–452.PubMedCrossRefGoogle Scholar
  443. 443.
    Wheat LJ, Goldman M, Sarosi G. State-of-the-art review of pulmonary fungal infections. Semin Respir Infect. 2002;17(2):158–181.PubMedCrossRefGoogle Scholar
  444. 444.
    Leznoff A, Frank H, Taussig A, et al. The focal distribution of histoplasmosis in Montreal. Can J Public Health. 1969;60(8):321–325.PubMedGoogle Scholar
  445. 445.
    MacEachern EJ, McDonald JC. Histoplasmin sensitivity in McGill University students. Can J Public Health. 1971;62(5):415–422.PubMedGoogle Scholar
  446. 446.
    Jessamine AG, Macbeth ME, Davies JW. Histoplasmosis in eastern Ontario. Can J Public Health. 1966; 57(1):18–24.PubMedGoogle Scholar
  447. 447.
    Wheat LJ, Kauffman CA. Histoplasmosis. Infect Dis Clin North Am. 2003;17(1):1–19.PubMedCrossRefGoogle Scholar
  448. 448.
    Merz WG, Kodsy S, Merz CS. Recovery of Histoplasma capsulatum from blood in a commercial radiometric Mycobacterium medium. J Clin Microbiol. 1992;30(1): 237–239.PubMedGoogle Scholar
  449. 449.
    Kanawaty DS, Stalker MJ, Munt PW. Nonsurgical treatment of Histoplasma endocarditis involving a bioprosthetic valve. Chest. 1991;99(1):253–256.PubMedCrossRefGoogle Scholar
  450. 450.
    Fisher MC, Koenig GL, White TJ, et al. Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the non-California population of Coccidioides immitis. Mycologia. 2002;94:73–84.CrossRefGoogle Scholar
  451. 451.
    Reuss CS, Hall MC, Blair JE, et al. Endocarditis caused by Coccidioides species. Mayo Clin Proc. 2004;79(11): 1451–1454.PubMedCrossRefGoogle Scholar
  452. 452.
    Chakrabarti J. Diagnostic evaluation of myocardial abscesses. A new look at an old problem. Int J Cardiol. 1995;52(3):189–196.PubMedCrossRefGoogle Scholar
  453. 453.
    Kearney RA, Eisen HJ, Wolf JE. Nonvalvular infections of the cardiovascular system. Ann Intern Med. 1994; 121(3):219–230.PubMedGoogle Scholar
  454. 454.
    Weisz S, Young DG. Myocardial abscess complicating healed myocardial infarction. CMAJ. 1977;116(10): 1156–1158.Google Scholar
  455. 455.
    Delahaye F, Celard M, Roth O, et al. Indications and optimal timing for surgery in infective endocarditis. Heart. 2004;90(6):618–620.PubMedCrossRefGoogle Scholar
  456. 456.
    Chan KL. Early clinical course and long-term outcome of patients with infective endocarditis complicated by perivalvular abscess. CMAJ. 2002;167(1):19–24.PubMedGoogle Scholar
  457. 457.
    Moon MR, Stinson EB, Miller DC. Surgical treatment of endocarditis. Prog Cardiovasc Dis. 1997;40(3):239–264.PubMedCrossRefGoogle Scholar
  458. 458.
    Morris AJ, Drinkovic D, Pottumarthy S, et al. Bacteriological outcome after valve surgery for active infective endocarditis: implications for duration of treatment after surgery. Clin Infect Dis. 2005;41(2):187–194.PubMedCrossRefGoogle Scholar
  459. 459.
    Lopez-Pardo F, Aguilera A, Villa M, et al. Double-chambered right ventricle associated with mural and pulmonic valve endocarditis: description of a clinical case and review of the literature. Echocardiography. 2004;21(2):171–173.PubMedCrossRefGoogle Scholar
  460. 460.
    Caruso A, Iarussi D, Dialetto G, et al. Unusual cases of infective endocarditis. J Am Soc Echocardiogr. 2002;15(1):93–95.PubMedCrossRefGoogle Scholar
  461. 461.
    Grigorov V V, Goldberg L, Manga P, et al. Diagnosis and Management of Complicated Left Atrial Mural Endocarditis: The Role of Transesophageal Echocardiography. Echocardiography. 1999;16(6):585–586.PubMedCrossRefGoogle Scholar
  462. 462.
    Shirani J, Keffler K, Gerszten E, et al. Primary left ventricular mural endocarditis diagnosed by transesophageal echocardiography. J Am Soc Echocardiogr. 1995;8(4):554–556.PubMedCrossRefGoogle Scholar
  463. 463.
    Phuong LK, Link M, Wijdicks E. Management of intracranial infectious aneurysms: a series of 16 cases. Neurosurgery. 2002;51(5):1145–1151.PubMedCrossRefGoogle Scholar
  464. 464.
    Tunkel AR, Kaye D. Neurologic complications of infective endocarditis. Neurol Clin. 1993;11(2):419–440.PubMedGoogle Scholar
  465. 465.
    Barrow DL, Prats AR. Infectious intracranial aneurysms: comparison of groups with and without endocarditis. Neurosurgery. 1990;27(4):562–572.PubMedCrossRefGoogle Scholar
  466. 466.
    Moneta GL, Taylor LM Jr, Yeager RA, et al. Surgical treatment of infected aortic aneurysm. Am J Surg. 1998;175(5):396–399.PubMedCrossRefGoogle Scholar
  467. 467.
    Chiang WC, Tsai JC, Chen SY, et al. Mycotic Aneurysm Caused by Streptococcus constellatus subsp. constellatus. J Clin Microbiol. 2004;42(4):1826–1828.PubMedCrossRefGoogle Scholar
  468. 468.
    Brook I, Frazier EH. Aerobic and anaerobic microbiology of mycotic aortic aneurysm. Clin Infect Dis. 1999;28(4):928–929.PubMedCrossRefGoogle Scholar
  469. 469.
    Nijs A, Vandekerkhof J, Cartuyvels R, et al. Streptococcus pneumoniae-infected aneurysm extending from a persistent lobar pneumonia: case report and review of the literature. Eur J Clin Microbiol Infect Dis. 2002;21(5):389–392.PubMedCrossRefGoogle Scholar
  470. 470.
    Mansur AJ, Grinberg M, Leao PP, et al. Extracranial mycotic aneurysms in infective endocarditis. Clin Cardiol. 1986;9(2):65–72.PubMedCrossRefGoogle Scholar
  471. 471.
    Valero G, Cutrona AF, Watanakunakorn C, et al. Group A Streptococcus septicemia and an infected, ruptured abdominal aortic aneurysm associated with pharyngitis. Clin Infect Dis. 1992;15(3):525–527.PubMedGoogle Scholar
  472. 472.
    McNamara MF, Finnegan MO, Bakshi KR. Abdominal aortic aneurysms infected by Escherichia coli. Surgery. 1985;98(1):87–92.PubMedGoogle Scholar
  473. 473.
    Lee CC, Ng YY, Chou YH, et al. Mycotic aneurysm of the abdominal aorta in a patient undergoing hemodialysis: an unusual complication of Staphylococcus aureus bacteremia. Clin Infect Dis. 2000;30(5):823–824.PubMedCrossRefGoogle Scholar
  474. 474.
    Ting AC, Cheng SW, Ho P, et al. Surgical treatment of infected aneurysms and pseudoaneurysms of the thoracic and abdominal aorta. Am J Surg. 2005;189(2):150–154.PubMedCrossRefGoogle Scholar
  475. 475.
    Noel AA, Gloviczki P, Cherry KJ Jr, et al. United States Cryopreserved Aortic Allograft Registry. Abdominal aortic reconstruction in infected fields: early results of the United States cryopreserved aortic allograft registry. J Vasc Surg. 2002;35(5):847–852.CrossRefGoogle Scholar
  476. 476.
    Cheng NC, Hsu J, Chen JS, et al. Open-window thoracostomy and microvascular muscle flap for severe intrathoracic infection around aortic prosthetic graft. J Thorac Cardiovasc Surg. 2005;129(5):1182–1184.PubMedCrossRefGoogle Scholar
  477. 477.
    Kitamura T, Morota T, Motomura N, et al. Management of infected grafts and aneurysms of the aorta. Ann Vasc Surg. 2005;19(3):335–342.PubMedCrossRefGoogle Scholar
  478. 478.
    Kyriakides C, Kan Y, Kerle M, et al. 11-year experience with anatomical and extra-anatomical repair of mycotic aortic aneurysms. Eur J Vasc Endovasc Surg. 2004;27(6):585–589.PubMedCrossRefGoogle Scholar
  479. 479.
    Corso JE, Kasirajan K, Milner R. Endovascular management of ruptured, mycotic abdominal aortic aneurysm. Am Surg. 2005;71(6):515–517.PubMedGoogle Scholar
  480. 480.
    Gupta AK, Bandyk DF, Johnson BL. In situ repair of mycotic abdominal aortic aneurysms with rifampin-bonded gelatin-impregnated Dacron grafts: a preliminary case report. J Vasc Surg. 1996;24(3):472–476.PubMedCrossRefGoogle Scholar
  481. 481.
    Batt M, Magne JL, Alric P, et al. In situ revascularization with silver-coated polyester grafts to treat aortic infection: early and midterm results. J Vasc Surg. 2003;38(5):983–989.PubMedCrossRefGoogle Scholar
  482. 482.
    Teebken OE, Pichlmaier MA, Brand S, et al. Cryopreserved arterial allografts for in situ reconstruction of infected arterial vessels. Eur J Vasc Endovasc Surg. 2004;27(6):597–602.PubMedCrossRefGoogle Scholar
  483. 483.
    Leseche G, Castier Y, Petit MD, et al. Long-term results of cryopreserved arterial allograft reconstruction in infected prosthetic grafts and mycotic aneurysms of the abdominal aorta. J Vasc Surg. 2001;34(4):616–622.PubMedCrossRefGoogle Scholar
  484. 484.
    Gonzalez-Fajardo JA, Gutierrez V, Martin-Pedrosa M, et al. Endovascular repair in the presence of aortic infection. Ann Vasc Surg. 2005;19(1):94–98.PubMedCrossRefGoogle Scholar
  485. 485.
    Cabell CH, Wang A. Current Treatment Options for Patients with Endocarditis: The Evolving Indications for Cardiac Surgery. Curr Treat Options Cardiovasc Med. 2004;6(6):441–449.PubMedCrossRefGoogle Scholar
  486. 486.
    Rubinovitch B, Pittet D. Infective endocarditis: too ill to be operated? Crit Care. 2002;6(2):106–107.PubMedCrossRefGoogle Scholar
  487. 487.
    Nacht A, Kronzon I. Intracardiac shunts. Crit Care Clin. 1996;12(2):295–319.PubMedCrossRefGoogle Scholar
  488. 488.
    Blumberg EA, Karalis DA, Chandrasekaran K, et al. Endocarditis-associated paravalvular abscesses. Do clinical parameters predict the presence of abscess? Chest. 1995;107(4):898–903.PubMedCrossRefGoogle Scholar
  489. 489.
    Fowler VG Jr, Sakoulas G, McIntyre LM, et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis. 2004;190(6):1140–1149.PubMedCrossRefGoogle Scholar
  490. 490.
    Fowler VG Jr, Olsen MK, Corey GR, et al. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med. 2003;163(17):2066–2072.PubMedCrossRefGoogle Scholar
  491. 491.
    Lesens O, Hansmann Y, Brannigan E, et al. Positive surveillance blood culture is a predictive factor for secondary metastatic infection in patients with Staphylococcus aureus bacteraemia. J Infect. 2004; 48(3):245–252.PubMedCrossRefGoogle Scholar
  492. 492.
    Cunha BA, Gill MV, Lazar JM. Acute infective endocarditis. Diagnostic and therapeutic approach. Infect Dis Clin North Am. 1996;10(4):811–834.PubMedCrossRefGoogle Scholar
  493. 493.
    Lederman MM, Sprague L, Wallis RS, et al. Duration of fever during treatment of infective endocarditis. Medicine (Baltimore). 1992;71(1):52–57.Google Scholar
  494. 494.
    Olaison L, Hogevik H, Alestig K. Fever, C-reactive protein, and other acute-phase reactants during treatment of infective endocarditis. Arch Intern Med. 1997;157(8):885–892.PubMedCrossRefGoogle Scholar
  495. 495.
    Angstwurm K, Borges AC, Halle E, et al. Timing the valve replacement in infective endocarditis involving the brain. J Neurol. 2004;251(10):1220–1226.PubMedCrossRefGoogle Scholar
  496. 496.
    Steckelberg JM, Murphy JG, Ballard D, et al. Emboli in infective endocarditis: the prognostic value of echocardiography. Ann Intern Med. 1991;114(8):635–640.PubMedGoogle Scholar
  497. 497.
    Deprele C, Berthelot P, Lemetayer F, et al. Risk factors for systemic emboli in infective endocarditis. Clin Microbiol Infect. 2004;10(1):46–53.PubMedCrossRefGoogle Scholar
  498. 498.
    Durante Mangoni E, Adinolfi LE, Tripodi MF, et al. Risk factors for “major” embolic events in hospitalized patients with infective endocarditis. Am Heart J. 2003;146(2):311–316.PubMedCrossRefGoogle Scholar
  499. 499.
    Cabell CH, Pond KK, Peterson GE, et al. The risk of stroke and death in patients with aortic and mitral valve endocarditis. Am Heart J. 2001;142(1):75–80.PubMedCrossRefGoogle Scholar
  500. 500.
    Tischler MD, Vaitkus PT. Risk of embolization after institution of antibiotic therapy for infective endocarditis. J Am Coll Cardiol. 2002;39(9):1489–1495.CrossRefGoogle Scholar
  501. 501.
    De Castro S, Magni G, Beni S, et al. Role of transthoracic and transesophageal echocardiography in predicting embolic events in patients with active infective endocarditis involving native cardiac valves. Am J Cardiol. 1997;80(8):1030–1034.PubMedCrossRefGoogle Scholar
  502. 502.
    Rohmann S, Erbel R, Darius H, et al. Prediction of rapid versus prolonged healing of infective endocarditis by monitoring vegetation size. J Am Soc Echocardiogr. 1991;4(5):465–474.PubMedGoogle Scholar
  503. 503.
    Gillinov AM, Shah RV, Curtis WE, et al. Valve replacement in patients with endocarditis and acute neurologic deficit. Ann Thorac Surg. 1996;61(4):1125–1129.PubMedCrossRefGoogle Scholar
  504. 504.
    Maruyama M, Kuriyama Y, Sawada T, et al. Brain damage after open heart surgery in patients with acute cardioembolic stroke. Stroke. 1989;20(10):1305–1310.PubMedGoogle Scholar
  505. 505.
    Matsushita K, Kuriyama Y, Sawada T, et al. Hemorrhagic and ischemic cerebrovascular complications of active infective endocarditis of native valve. Eur Neurol. 1993;33(3):267–274.PubMedCrossRefGoogle Scholar
  506. 506.
    Eishi K, Kawazoe K, Kuriyama Y, et al. Surgical management of infective endocarditis associated with cerebral complications. Multi-center retrospective study in Japan. J Thorac Cardiovasc Surg. 1995;110(6): 1745–1755.PubMedCrossRefGoogle Scholar
  507. 507.
    Ting W, Silverman N, Levitsky S. Valve replacement in patients with endocarditis and cerebral septic emboli. Ann Thorac Surg. 1991;51(1):18–21.PubMedCrossRefGoogle Scholar
  508. 508.
    Trouillet JL, Hoen B, Battik R, et al. [Splenic involvement in infectious endocarditis. Association for the Study and Prevention of Infectious Endocarditis]. Rev Med Interne. 1999;20(3):258–263.Google Scholar
  509. 509.
    Robinson SL, Saxe JM, Lucas CE, et al. Splenic abscess associated with endocarditis. Surgery. 1992;112(4):781–786.PubMedGoogle Scholar
  510. 510.
    Green BT. Splenic abscess: report of six cases and review of the literature. Am Surg. 2001;67(1):80–85.PubMedGoogle Scholar
  511. 511.
    Ting W, Silverman NA, Arzouman DA, et al. Splenic septic emboli in endocarditis. Circulation. 1990; 82(Suppl 5):105–109.Google Scholar
  512. 512.
    Nores M, Phillips EH, Morgenstern L, et al. The clinical spectrum of splenic infarction. Am Surg. 1998;64(2): 182–188.PubMedGoogle Scholar
  513. 513.
    Balcar I, Seltzer SE, Davis S, et al. CT patterns of splenic infarction: a clinical and experimental study. Radiology. 1984;151(3):723–729.PubMedGoogle Scholar
  514. 514.
    Jaroch MT, Broughan TA, Hermann RE. The natural history of splenic infarction. Surgery. 1986;100(4):743–750.PubMedGoogle Scholar
  515. 515.
    Ooi LL, Leong SS. Splenic abscesses from 1987 to 1995. Am J Surg. 1997;174(1):87–93.PubMedCrossRefGoogle Scholar
  516. 516.
    Johnson JD, Raff MJ, Barnwell PA, et al. Splenic abscess complicating infectious endocarditis. Arch Intern Med. 1983;143(5):906–912.PubMedCrossRefGoogle Scholar
  517. 517.
    Simsir SA, Cheeseman SH, Lancey RA, et al. Staged laparoscopic splenectomy and valve replacement in splenic abscess and infective endocarditis. Ann Thorac Surg. 2003;75(5):1635–1637.PubMedCrossRefGoogle Scholar
  518. 518.
    Carbonell AM, Kercher KW, Matthews BD, et al. Laparoscopic splenectomy for splenic abscess. Surg Laparosc Endosc Percutan Tech. 2004;14(5):289–291.PubMedCrossRefGoogle Scholar
  519. 519.
    Yoshikai M, Kamachi M, Kobayashi K, et al. Splenic abscess associated with active infective endocarditis. Jpn J Thorac Cardiovasc Surg. 2002;50(11):478–480.PubMedCrossRefGoogle Scholar
  520. 520.
    The National Commmittee for Clinical Laboratory Standards (NCCLS). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 4th edition; Approved Standard. NCCLS Document M7–A4. Wayne, PA; NCCLS. 1997.Google Scholar
  521. 521.
    Pancharoen C, Thisyakorn C, Lertsapcharoen P, et al. Endocarditis caused by drug-resistant Streptococcus pneumoniae in a child. Scand J Infect Dis. 1999;31(6): 597–598.PubMedCrossRefGoogle Scholar
  522. 522.
    Whitby S, Pallera A, Schaberg DR, et al. Infective endocarditis caused by Streptococcus pneumoniae with high-level resistance to penicillin and cephalosporin. Clin Infect Dis. 1996;23(5):1176–1177.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  • Donald C. Vinh
    • 1
  • John M. Embil
    • 2
  1. 1.Department of Medical Microbiology Basic Medical Sciences BuildingUniversity of ManitobaWinnipegCanada
  2. 2.Infectious Diseases and Medical MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations