Prostate Elastrography

  • Stephen Rosenzweig
  • Liang Zhai
  • Kathryn R. NightingaleEmail author
Part of the Current Clinical Urology book series (CCU)


Elastography of the prostate has shown great promise to help diagnose prostate cancer with high sensitivity (∼70–90 %) and specificity (∼72–87 %) when used for biopsy guidance. The basis for using elastography is given by empirical evidence (i.e., digital rectal examination) and quantitative experiments which have demonstrated that prostate cancer is often stiffer than surrounding prostatic tissue. Using ultrasound or magnetic resonance imaging along with a mechanical excitation, it is possible to generate images of the stiffness of the prostate, thereby guiding biopsy procedures and focal therapies to the stiff regions of the prostate. Several challenges exist with the clinically implemented version of compressive elastography; thus, multiple other elastographic methods are currently under investigation to determine their utility in the context of guiding biopsy procedures, guiding and monitoring focal therapies, and facilitating watchful waiting. This chapter provides a review of the fundamental principles of elasticity imaging, a summary of clinical reports of the utility and challenges with commercially available prostate elasticity imaging systems, and an overview of current research in this field.


Gleason Score Acoustic Radiation Force Impulse Magnetic Resonance Elastography Focal Therapy Shear Wave Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kamoi K, Okihara K, Ochiai A, et al. The utility of transrectal real-time elastography in the diagnosis of prostate cancer. Ultrasound Med Biol. 2008;34(7):1025–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Miyanaga N, Akaza H, Yamakawa M, et al. Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report. Int J Urol. 2006;13(12):1514–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Pallwein L, Mitterberger M, Pinggera G, et al. Sonoelastography of the prostate: comparison with systematic biopsy findings in 492 patients. Eur J Radiol. 2008;65(2):304–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Eggener S, Salomon G, Scardino PT, De la Rosette J, Polascik TJ, Brewster S. Focal therapy for prostate cancer: possibilities and limitations. Eur Urol. 2010;58(1):57–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhai L, Dahl J, Madden J, et al. Three-dimensional acoustic radiation force impulse (ARFI) imaging of human prostates in vivo. Paper presented at ultrasonics symposium. IEEE, 2–5 Nov 2008.Google Scholar
  6. 6.
    Zhai L, Madden J, Foo W-C, et al. Acoustic radiation force impulse imaging of human prostates ex vivo. Ultrasound Med Biol. 2010;36(4):576–88.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhai L, Madden J, Mouraviev V, Polascik T, Nightingale K. Correlation between SWEI and ARFI image findings in ex vivo human prostates. Paper presented at ultrasonics symposium. IEEE International, 20–23 Sep 2009.Google Scholar
  8. 8.
    Salcudean S, French D, Bachmann S, Zahiri-Azar R, Wen X, Morris W. Viscoelasticity modeling of the prostate region using vibro-elastography. In: Larsen R, Nielsen M, Sporring J, editors. Proceedings of the medical image computing and computer-assisted intervention – MICCAI 2006, vol 4190. Heidelberg: Springer; 2006. p. 389–96Google Scholar
  9. 9.
    Mahdavi SS, Moradi M, Wen X, Morris WJ, Salcudean SE. Evaluation of visualization of the prostate gland in vibro-elastography images. Med Image Anal. 2011;15(4):589–600.PubMedCrossRefGoogle Scholar
  10. 10.
    Castaneda B, Hoyt K, Westesson K, et al. Performance of three-dimensional sonoelastography in prostate cancer detection: A comparison between ex vivo and in vivo experiments. Paper presented at ultrasonics symposium. IEEE International, 20–23 Sep 2009.Google Scholar
  11. 11.
    Hoyt K, Castaneda B, Zhang M, et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 2008;4(4):213–25.PubMedGoogle Scholar
  12. 12.
    Taylor LS, Rubens DJ, Porter BC, et al. Prostate cancer: three-dimensional sonoelastography for in vitro detection1. Radiology. 2005;237(3):981–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Arani A, Plewes D, Chopra R. Transurethral prostate magnetic resonance elastography: prospective imaging requirements. Magn Reson Med. 2011;65(2):340–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Arani A, Plewes D, Krieger A, Chopra R. The ­feasibility of endorectal MR elastography for prostate cancer localization. Magn Reson Med. 2011;66:1649–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Chopra R, Arani A, Huang Y, et al. In vivo MR elastography of the prostate gland using a transurethral actuator. Magn Reson Med. 2009;62(3):665–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Kemper J, et al. MR elastography of the prostate: initial in-vivo application, vol. 176. Stuttgart, ALLEMAGNE: Thieme; 2004.Google Scholar
  17. 17.
    Zhang M, Nigwekar P, Castaneda B, et al. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med Biol. 2008;34(7):1033–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Cochlin DL, Ganatra RH, Griffiths DFR. Elastography in the detection of prostatic cancer. Clin Radiol. 2002;57(11):1014–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Miyagawa T, Tsutsumi M, Matsumura T, et al. Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images. Jpn J Clin Oncol. 2009;39(6):394–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Nelson ED, Slotoroff CB, Gomella LG, Halpern EJ. Targeted biopsy of the prostate: the impact of color doppler imaging and elastography on prostate cancer detection and gleason score. Urology. 2007;70(6):1136–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Pallwein L, Aigner F, Faschingbauer R, et al. Prostate cancer diagnosis: value of real-time elastography. Abdom Imag. 2008;33(6):729–35.CrossRefGoogle Scholar
  22. 22.
    Parker KJ, et al. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2011;56(1):R1.PubMedCrossRefGoogle Scholar
  23. 23.
    Salomon G, Köllerman J, Thederan I, et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol. 2008;54(6):1354–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Tsutsumi M, Miyagawa T, Matsumura T, et al. The impact of real-time tissue elasticity imaging (elastography) on the detection of prostate cancer: clinicopathological analysis. Int J Clin Oncol. 2007;12(4):250–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.PubMedGoogle Scholar
  26. 26.
    Kapoor A, Kapoor A, Mahajan G, Sidhu BS. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med Biol. 2011;37(9):1374–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Tsutsumi M, Miyagawa T, Matsumura T, et al. Real-time balloon inflation elastography for prostate cancer detection and initial evaluation of clinicopathologic analysis. Am J Roentgenol. 2010;194(6):W471–6.CrossRefGoogle Scholar
  28. 28.
    Paul EB, Nachiket HG. Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions. Inverse Probl. 2004;20(1):283.CrossRefGoogle Scholar
  29. 29.
    Fehrenbach J. Influence of Poisson’s ratio on elastographic direct and inverse problems. Phys Med Biol. 2007;52(3):707.PubMedCrossRefGoogle Scholar
  30. 30.
    Pallwein L, Mitterberger M, Pelzer A, et al. Ultrasound of prostate cancer: recent advances. Eur Radiol. 2008;18(4):707–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Torr GR. The acoustic radiation force, vol 52. AAPT; 1984.Google Scholar
  32. 32.
    Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force, vol 110. ASA; 2001.Google Scholar
  33. 33.
    Zhai L, Polascik T, Foo W-C, et al. Acoustic radiation force impulse imaging of human prostates: initial in vivo demonstration. Ultrasound Med Biol. 2012;38:50–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Turgay E, Salcudean S, Rohling R. Identifying the mechanical properties of tissue by ultrasound strain imaging. Ultrasound Med Biol. 2006;32(2):221–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Li S, Chen M, Wang W, et al. A feasibility study of MR elastography in the diagnosis of prostate cancer at 3.0 T. Acta Radiol. 2011;52(3):354–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Stephen Rosenzweig
    • 1
  • Liang Zhai
    • 2
  • Kathryn R. Nightingale
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations