Bioactive Polyacetylenes of Carrots in Cancer Prevention

  • Lars Porskjær ChristensenEmail author
Part of the Nutrition and Health book series (NH)


Many epidemiological studies have shown an inverse association of fruit and vegetable intake with cancer risk [1–5], and that the daily intake of fruit and vegetables should be around 400–600 g in order to decrease the risk of this disease [2, 6]. The cancer preventive effects of fruit and vegetables has for many years primarily been ascribed to their contents of vitamins, minerals, fibers and antioxidants, but still the compounds responsible for the cancer preventive effects of these foods are largely unknown. However, if we look at specific vegetables, it may be possible to give a more unambiguous answer to their cancer preventive effect. This is, for example, the case with carrots (Daucus carota L., Apiaceae).


Carrots Polyacetylenes Cancer prevention Anti-inflammatory activity Cytotoxicity Anticancer effect 


  1. 1.
    Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96:1027–39.PubMedCrossRefGoogle Scholar
  2. 2.
    Van’t Veer P, Jansen MCJF, Klerk M, et al. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr. 2000;3:103–7.PubMedGoogle Scholar
  3. 3.
    Greenwald P, Clifford CK, Milner JA. Diet and cancer prevention. Eur J Cancer. 2001;37:948–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Maynard M, Gunnell D, Emmett P, et al. Fruit, vegetables, and antioxidants in childhood and risk of adult cancer: the Boyd Orr cohort. J Epidemiol Community Health. 2003;57:218–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Brandt K, Christensen LP, Hansen-Møller J, et al. Health promoting compounds in vegetables and fruits: a systematic approach for identifying plant components with impact on human health. Trends Food Sci Technol. 2004;15:384–93.CrossRefGoogle Scholar
  6. 6.
    Gundgaard J, Nielsen JN, Olsen J, et al. Increased intake of fruit and vegetables: estimation of impact in terms of life expectancy and healthcare costs. Public Health Nutr. 2003;6:25–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Omenn GS, Goodmann GE, Thornquist MD, et al. Effects of a combination of β(beta)-carotene and vitamin A on lung cancer and cardiovascular disease. N Eng J Med. 1996;334:1150–5.CrossRefGoogle Scholar
  8. 8.
    Greenberg ER, Baron JA, Karagas MR, et al. Mortality associated with low plasma concentration of β(beta)-carotene and the effect of oral supplementation. JAMA. 1996;275:699–703.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Neill ME, Carroll Y, Corridan B, et al. A European carotenoid database to assess carotenoid intakes and its use in a five country comparative study. Br J Nutr. 2001;85:499–507.PubMedCrossRefGoogle Scholar
  10. 10.
    Wright ME, Mayne ST, Swanson CA, et al. Dietary carotenoids, vegetables, and lung cancer risk in women: the Missouri Women’s Health Study (United States). Cancer Causes Control. 2003;14:85–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Michaud DS, Feskanich D, Rimm EB, et al. Intake of specific carotenoids and risk of lung cancer in 2 prospective US cohorts. Am J Clin Nutr. 2000;72:990–7.PubMedGoogle Scholar
  12. 12.
    Knekt P, Järvinen R, Teppo L, et al. Role of various carotenoids in lung cancer prevention. J Natl Cancer Inst. 1999;91:182–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta. 2005;1740:101–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004;70:1103–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res. 2008;52:S128–38.PubMedGoogle Scholar
  16. 16.
    Hercberg S, Kesse-Guyot E, Druesne-Pecollo N, et al. Incidence of cancers, ischemic cardiovascular diseases and mortality during 5-year follow-up after stopping antioxidant vitamins and minerals supplements: a post-intervention follow-up in the SU.VI.MAX Study. Int J Cancer. 2010;127:1875–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Fu H, Zhang L, Yi T, et al. Two new guaiane-type sesquiterpenoids from the fruits ofDaucus carota L. Fitoterapia. 2010;8:443–6.CrossRefGoogle Scholar
  18. 18.
    Yang R-L, Yan Z-H, Lu Y. Cytotoxic phenylpropanoids from carrot. J Agric Food Chem. 2008;56:3024–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Christensen LP, Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal. 2006;41:683–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Christensen LP. Aliphatic C17-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae family. Recent Pat Food Nutr Agric. 2011;3:64–77.PubMedCrossRefGoogle Scholar
  21. 21.
    Christensen LP. Bioactivity of polyacetylenes in food plants. In: Watson RR, Preedy VR, editors. Bioactive foods in promoting health. 1st ed. Oxford: Elsevier Inc., Academic Press; 2009. p. 285–306.Google Scholar
  22. 22.
    Purup S, Larsen E, Christensen LP. Differential effects of falcarinol and related aliphatic C17-polyacetylenes on intestinal cell proliferation. J Agric Food Chem. 2009;57:8290–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Young JF, Duthie SJ, Milne L, et al. Biphasic effect of falcarinol on CaCo-2 cell proliferation, DNA damage, and apoptosis. J Agric Food Chem. 2007;55:618–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Zidorn C, Johrer K, Ganzera M, et al. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem. 2005;53:2518–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Kobæk-Larsen M, Christensen LP, Vach W, et al. Inhibitory effects of feeding with carrots or (−)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. J Agric Food Chem. 2005;53:1823–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Hansen SL, Purup S, Christensen LP. Bioactivity of falcarinol and the influence of processing and storage on its content in carrots (Daucus carota L.). J Sci Food Agric. 2003;83:1010–7.CrossRefGoogle Scholar
  27. 27.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Leonti M, Casu L, Raduner S. Falcarinol is a covalent cannabinoid CB1 receptor antagonist and induces pro-allergic effects in skin. Biochem Pharmacol. 2010;79:1815–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Christensen LP, Jakobsen HB. Polyacetylenes: distribution in higher plants, pharmacological effects and analysis. In: Waksmundzka-Hajnos M, Sherma J, Kowalska T, editors. Thin layer chromatography in phytochemistry, Chromatographic science series, vol. 99. Boca Raton, FL: CRC/Taylor & Francis Group; 2008. p. 757–816.Google Scholar
  30. 30.
    Schmiech L, Alayrac C, Witulski B, et al. Structure determination of bisacetylenic oxylipins in carrots (Daucus carota L.) and enantioselective synthesis of falcarindiol. J Agric Food Chem. 2009;57:11030–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Lund ED. Polyacetylenic carbonyl compounds in carrots. Phytochemistry. 1992;31:3621–3.CrossRefGoogle Scholar
  32. 32.
    Lund ED, White JM. Polyacetylenes in normal and water-stressed “Orlando Gold” carrots (Daucus carota). J Sci Food Agric. 1991;51:507–16.CrossRefGoogle Scholar
  33. 33.
    Christensen LP. Unpublished results.Google Scholar
  34. 34.
    Christensen LP, Christensen KB. HPLC analysis of polyacetylenes. In: Waksmundzka-Hajnos M, Sherma J, editors. High performance liquid chromatography in phytochemical analysis, Chromatographic science series, vol. 102. Boca Raton, FL: CRC/Taylor & Francis Group; 2010. p. 887–916.CrossRefGoogle Scholar
  35. 35.
    Rawson A, Koidis A, Patras A, et al. Modelling the effect of water immersion thermal processing on polyacetylene levels and instrumental colour of carrot disks. Food Chem. 2010;121:62–8.CrossRefGoogle Scholar
  36. 36.
    Søltoft M, Eriksen MR, Trager AWB, et al. Comparison of polyacetylene content in organically and conventionally grown carrots using a fast ultrasonic liquid extraction method. J Agric Food Chem. 2010;58:7673–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Metzger BT, Barnes DM. Polyacetylene diversity and bioactivity in orange market and locally grown colored carrots (Daucus carota L.). J Agric Food Chem. 2009;57:11134–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Metzger BT, Barnes DM, Reed JD. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem. 2008;56:3554–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Schmiech L, Uemura D, Hofmann T. Reinvestigation of the bitter compounds in carrots (Daucus carota L.) by using a molecular sensory science approach. J Agric Food Chem. 2008;56:10252–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Kreutzmann S, Christensen LP, Edelenbos M. Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analyses. LWT- Food Sci Technol. 2008;41:193–205.CrossRefGoogle Scholar
  41. 41.
    Christensen LP, Kreutzmann S. Determination of polyacetylenes in carrot roots (Daucus carota L.) by high-­performance liquid chromatography coupled with diode array detection. J Sep Sci. 2007;30:483–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Kidmose U, Hansen SL, Christensen LP, et al. Effects of genotype, root size, storage, and processing on bioactive compounds in organically grown carrots (Daucus carota L.). J Food Sci. 2004;69:S388–94.CrossRefGoogle Scholar
  43. 43.
    Rai DK, Brunton NP, Koidis A. Characterisation of polyacetylenes isolated from carrot (Daucus carota) extracts by negative ion tandem mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:2231–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Pferschy-Wenzig E-M, Getzinger V, Kunert O, et al. Determination of falcarinol in carrot (Daucus carota L.) genotypes using liquid chromatography/mass spectrometry. Food Chem. 2009;114:1083–90.CrossRefGoogle Scholar
  45. 45.
    Czepa A, Hofmann T. Quantitative studies and sensory analyses on the influence of cultivar, spatial tissue distribution, and industrial processing on the bitter off-taste of carrots (Daucus carota L.) and carrot products. J Agric Food Chem. 2004;52:4508–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Paulsen E, Christensen LP, Andersen KE. Dermatitis from common ivy (Hedera helix L. subsp.helix) in Europe: past, present, and future. Contact Dermatitis. 2010;62:201–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Hansen L, Hammershøy O, Boll PM. Allergic contact dermatitis from falcarinol isolated fromSchefflera arboricola. Contact Dermatitis. 1986;14:91–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Murdoch SR, Dempster J. Allergic contact dermatitis from carrot. Contact Dermatitis. 2000;42:236.PubMedGoogle Scholar
  49. 49.
    Machado S, Silva E, Massa A. Occupational allergic contact dermatitis from falcarinol. Contact Dermatitis. 2002;47:113–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang D, DuBois RN. Prostaglandins and cancer. Gut. 2006;55:115–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Schneider I, Bucar F. Lipoxygenase inhibitors from natural plant sources. Part 1. Medicinal plants with inhibitory activity on arachidonate 5-lipoxygenase and 5-lipoxygenase/cyclooxygenase. Phytother Res. 2005;19:81–102.PubMedCrossRefGoogle Scholar
  52. 52.
    Schneider I, Bucar F. Lipoxygenase inhibitors from natural plant sources. Part 2. Medicinal plants with inhibitory activity on arachidonate 12-lipoxygenase, 15-lipoxygenase and leukotriene receptor antagonists. Phytother Res. 2005;19:263–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Alanko J, Kurahashi Y, Yoshimoto T, et al. Panaxynol, a polyacetylene compound isolated from oriental medicines, inhibits mammalian lipoxygenases. Biochem Pharmacol. 1994;48:1979–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Liu J-H, Zschocke S, Bauer R. A polyacetylenic acetate and a coumarin fromAngelica pubescens f.biserrata. Phytochemistry. 1998;49:211–3.CrossRefGoogle Scholar
  55. 55.
    Uma YR, Kong C-S, Lee JI, et al. Evaluation of chemical constituents fromGlehnia littoralis for antiproliferative activity against HT-29 human colon cancer cells. Process Biochem. 2010;45:114–9.CrossRefGoogle Scholar
  56. 56.
    Prior RM, Lundgaard NH, Light ME, et al. The polyacetylene falcarindiol with COX-1 activity isolated fromAegopodium podagraria L. J Ethnopharmacol. 2007;113:176–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Dang NH, Zhang XF, Zheng MS, et al. Inhibitory constituents against cyclooxygenases fromAralia cordata thunb. Arch Pharm Res. 2005;28:28–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Matsunaga H, Katano M, Yamamoto H, et al. Cytotoxic activity of polyacetylene compounds inPanax ginseng C. A. Meyer. Chem Pharm Bull. 1990;38:3480–2.PubMedCrossRefGoogle Scholar
  59. 59.
    Ahn B-Z, Kim S-I. Relation between structure and cytotoxic activity of panaxydol analogues against L1210 cells. Arch Pharm. 1988;321:61–3.CrossRefGoogle Scholar
  60. 60.
    Cunsolo F, Ruberto G, Amico V, et al. Bioactive metabolites from sicilian marine fennel.Crithmum maritimum. J Nat Prod. 1993;56:1598–600.PubMedCrossRefGoogle Scholar
  61. 61.
    Bernart MW, Cardellina II JH, Balaschak MS, et al. Cytotoxic falcarinol oxylipins fromDendropanax arboreus. J Nat Prod. 1996;59:748–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Fujioka T, Furumi K, Fujii H, et al. Antiproliferative constituents from Umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root ofAngelica japonica. Chem Pharm Bull. 1999;47:96–100.PubMedCrossRefGoogle Scholar
  63. 63.
    Young JF, Christensen LP, Theil PK, et al. The polyacetylenes falcarinol and falcarindiol affect stress responses in myotube cultures in a biphasic manner. Dose Response. 2008;6:239–51.PubMedCrossRefGoogle Scholar
  64. 64.
    Calabrese EJ. Hormesis: from marginalization to mainstream: a case for hormesis as the default dose-response model in risk assessment. Toxicol Appl Pharmacol. 2004;197:125–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Ahn B-Z, Kim S-I. Heptadeca-1,8  t-diene-4,6-diyne-3,10-diol, a further cytotoxic substance from Korean ginseng roots which is active against L1210 cells. Planta Med. 1988;54:183.PubMedCrossRefGoogle Scholar
  66. 66.
    Sun S, Du G-J, Qi L-W, et al. Hydrophobic constituents and their potential anticancer activities from Devil’s Club (Oplopanax horridus Miq.). J Ethnopharmacol. 2010;132:280–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Kuo Y-C, Lin YL, Huang C-P, et al. A tumor cell growth inhibitor fromSaposhnikovae divaricata. Cancer Invest. 2002;20:955–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Arscott SA, Tanumihardjo SA. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comp Rev Food Sci Food Safety. 2010;9:223–39.CrossRefGoogle Scholar
  69. 69.
    Baranska M, Schulz H, Baranski R, et al. In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. J Agric Food Chem. 2005;53:6565–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Kjeldsen F, Christensen LP, Edelenbos M. Changes in volatile compounds of carrots (Daucus carota L.) during refrigerated and frozen storage. J Agric Food Chem. 2003;51:5400–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Chemical Engineering, Biotechnology and Environmental TechnologyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations