Folate Nutrition in Skin Health and Skin Cancer Prevention

  • Yira Bermudez
  • Katharine Cordova
  • Joshua D. Williams
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

This chapter will discuss the role of folate nutrition in the unique environment of human skin. The folates are a family of structurally similar, water-soluble, B vitamins, which have been well documented as vital in promoting human health and preventing disease. Optimized folate nutrient levels support many biochemical processes important for the maintenance and function of healthy skin. This importance is underscored by potential links between folate deficiency and psoriasis, vitiligo, exfoliative dermatitis, glossitis, and skin cancers. Human skin is particularly prone to the development of carcinomas. It is established that skin cancer risk correlates with exposure to the complete carcinogen, ultraviolet radiation (UVR) from sunlight. Total avoidance of solar exposure is impractical.

Keywords

Folate Skin physiology Dermatology Skin cancer Folic acid 

Abbreviations

5,10-Methylene-H4folate

5,10-Methylenetetrahydrofolate

5-Formyl-H4folate

5-Formyltetrahydrofolate

5-FU

5-Fluorouracil

5-Methyl-H2folate

5-Methyldihydrofolate

5-Methyl-H4folate

5-Methyltetrahydrofolate

AICAR

Aminoimidazol-4-carboxamide ribonucleotide

DHFR

Dihydrofolate reductase

dTMP

Deoxythymidylate monophosphate

dUMP

Deoxyuridylate monophosphate

FAICAR

N-Formylaminoimidazol-4-carboxamide ribonucleotide

FDA

Food and Drug Administration

FGAR

N-Formylglycinamide ribonucleotide

FOLR1

Folate receptor

FPGS

Floyl-polyl-gamma(γ)-glutamate

FRα

Folate receptor alpha

GAR

Glycinamide ribonucleotide

GGH

Gamma(γ)-glutamyl hydrolase

H2folate

Dihydrofolate

H4folate

Tetrahydrofolate

HCP

Heme carrier protein

Hcy

Homocysteine

hPCFT

Human proton coupled folate transporters

MS

Methionine synthase

MTHFR

Methylenetetrahydrofolate reductase

MTX

Methotrexate

NADPH

Nicotinamide adenine dinucleotide phosphate

O2

Atmospheric oxygen

O3

Ozone

RCS

Reactive carbonyl species

RDA

Recommended dietary allowances

RFC

Reduced folate carrier

ROS

Reactive oxygen species

SAM

S-Adenosylmethionine

SHMT

Hydroxymethyltransferase

SPF

Sun protection factor

TS

Thymidylate synthase

UV

Ultraviolet

UV-A

Ultraviolet light wavelength A (315–400 nm)

UV-B

Ultraviolet light wavelength B (280–315 nm)

UV-C

Ultraviolet light wavelength C (100–280 nm)

UVR

Ultraviolet radiation

References

  1. 1.
    Willis L. Treatment of pernicious anaemia of pregnancy and tropical anaemia with special reference to yeast extract as curative agent. Br Med J. 1931;1:1059–64.CrossRefGoogle Scholar
  2. 2.
    Angier RB, et al. The structure and synthesis of the liver L. casei factor. Science. 1946;103(2683):667–9.CrossRefGoogle Scholar
  3. 3.
    Mitchell HK, Snell EE, Williams RJ. The concentration of “folic acid”. J Am Chem Soc. 1941;63:2284.CrossRefGoogle Scholar
  4. 4.
    Institute of Medicine. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Food and Nutrition Board NAoS, editor. Washington, DC: National Academy Press; 1998.Google Scholar
  5. 5.
    Raiten DJ, Fisher KD. Assessment of folate methodology used in the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). J Nutr. 1995;125(5):1371S–98.PubMedGoogle Scholar
  6. 6.
    Bialostosky K, Wright JD, Kennedy-Stephenson J, McDowell M, Johnson CL. Dietary intake of macronutrients, micronutrients and other dietary constituents: United States 1988–94. National Center for Health Statistics. Vital Health Stat. 2002;11(245):1–158.Google Scholar
  7. 7.
    Dietrich M, Brown CJ, Block G. The effect of folate fortification of cereal-grain products on blood folate status, dietary folate intake, and dietary folate sources among adult non-supplement users in the United States. J Am Coll Nutr. 2005;24(4):266–74.PubMedGoogle Scholar
  8. 8.
    Lewis CJ, et al. Estimated folate intakes: data updated to reflect food fortification, increased bioavailability, and dietary supplement use. Am J Clin Nutr. 1999;70(2):198–207.PubMedGoogle Scholar
  9. 9.
    Bailey LB, et al. Folacin and iron status and hematological findings in black and Spanish-American adolescents from urban low-income households. Am J Clin Nutr. 1982;35(5):1023–32.PubMedGoogle Scholar
  10. 10.
    Assantachai P, Lekhakula S. Epidemiological survey of vitamin deficiencies in older Thai adults: implications for national policy planning. Public Health Nutr. 2007;10(1):65–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Chandler CJ, Wang TT, Halsted CH. Pteroylpolyglutamate hydrolase from human jejunal brush borders. Purification and characterization. J Biol Chem. 1986;261(2):928–33.PubMedGoogle Scholar
  12. 12.
    Wang TT, Chandler CJ, Halsted CH. Intracellular pteroylpolyglutamate hydrolase from human jejunal mucosa. Isolation and characterization. J Biol Chem. 1986;261(29):13551–5.PubMedGoogle Scholar
  13. 13.
    Chandler CJ, et al. Functional specificity of jejunal brush-border pteroylpolyglutamate hydrolase in pig. Am J Physiol. 1991;260(6 Pt 1):G865–72.PubMedGoogle Scholar
  14. 14.
    Said HM, et al. Adaptive regulation of intestinal folate uptake: effect of dietary folate deficiency. Am J Physiol Cell Physiol. 2000;279(6):C1889–95.PubMedGoogle Scholar
  15. 15.
    Collins TD, et al. Effects of ethanol on tissue folate incorporation and recovery from folate deficiency in rats. Alcohol Clin Exp Res. 1992;16(4):757–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakai Y, et al. Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter. J Pharmacol Exp Ther. 2007;322(2):469–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Balamurugan K, Said HM. Role of reduced folate carrier in intestinal folate uptake. Am J Physiol Cell Physiol. 2006;291(1):C189–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Said HM, Redha R. A carrier-mediated transport for folate in basolateral membrane vesicles of rat small intestine. Biochem J. 1987;247(1):141–6.PubMedGoogle Scholar
  19. 19.
    Kalmbach RD, et al. Circulating folic acid in plasma: relation to folic acid fortification. Am J Clin Nutr. 2008;88(3):763–8.PubMedGoogle Scholar
  20. 20.
    Lucock MD, Hartley R, Smithells RW. A rapid and specific HPLC-electrochemical method for the determination of endogenous 5-methyltetrahydrofolic acid in plasma using solid phase sample preparation with internal standardization. Biomed Chromatogr. 1989;3(2):58–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Brzezinska A, Winska P, Balinska M. Cellular aspects of folate and antifolate membrane transport. Acta Biochim Pol. 2000;47(3):735–49.PubMedGoogle Scholar
  22. 22.
    Weitman SD, et al. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res. 1992;52(23):6708–11.PubMedGoogle Scholar
  23. 23.
    Henderson GB. Folate-binding proteins. Annu Rev Nutr. 1990;10:319–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Bosson G. Reduced folate carrier: biochemistry and molecular biology of the normal and methotrexate-resistant cell. Br J Biomed Sci. 2003;60(2):117–29.PubMedGoogle Scholar
  25. 25.
    Shane B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm. 1989;45:263–335.PubMedCrossRefGoogle Scholar
  26. 26.
    Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1–2):121–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Zeng H, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001;61(19):7225–32.PubMedGoogle Scholar
  28. 28.
    Matherly LH, Goldman DI. Membrane transport of folates. Vitam Horm. 2003;66:403–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Ifergan I, Jansen G, Assaraf YG. The reduced folate carrier (RFC) is cytotoxic to cells under conditions of severe folate deprivation. RFC as a double edged sword in folate homeostasis. J Biol Chem. 2008;283(30):20687–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Kompis IM, Islam K, Then RL. DNA and RNA synthesis: antifolates. Chem Rev. 2005;105(2):593–620.PubMedCrossRefGoogle Scholar
  31. 31.
    Green JM, Ballou DP, Matthews RG. Examination of the role of methylenetetrahydrofolate reductase in incorporation of methyltetrahydrofolate into cellular metabolism. FASEB J. 1988;2(1):42–7.PubMedGoogle Scholar
  32. 32.
    Stokstad EL, Koch J. Folic acid metabolism. Physiol Rev. 1967;47(1):83–116.PubMedGoogle Scholar
  33. 33.
    Matthews RG, Baugh CM. Interactions of pig liver methylenetetrahydrofolate reductase with methylenetetrahydropteroylpolyglutamate substrates and with dihydropteroylpolyglutamate inhibitors. Biochemistry. 1980;19(10):2040–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Wagner C, Briggs WT, Cook RJ. Inhibition of glycine N-methyltransferase activity by folate derivatives: implications for regulation of methyl group metabolism. Biochem Biophys Res Commun. 1985;127(3):746–52.PubMedCrossRefGoogle Scholar
  35. 35.
    Milunsky A, et al. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA. 1989;262(20):2847–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Honein MA, et al. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA. 2001;285(23):2981–6.PubMedCrossRefGoogle Scholar
  37. 37.
    De Wals P, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med. 2007;357(2):135–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Goh YI, Koren G. Folic acid in pregnancy and fetal outcomes. J Obstet Gynaecol. 2008;28(1):3–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Mudd SH, et al. Homocystinuria: an enzymatic defect. Science. 1964;143:1443–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998;338(15):1042–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Lonn E, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354(15):1567–77.PubMedCrossRefGoogle Scholar
  42. 42.
    Clarke R, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998;55(11):1449–55.PubMedCrossRefGoogle Scholar
  43. 43.
    Godfrey PS, et al. Enhancement of recovery from psychiatric illness by methylfolate. Lancet. 1990;336(8712):392–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Slattery ML, et al. Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 1999;8(6):513–8.PubMedGoogle Scholar
  45. 45.
    Zhang S, et al. A prospective study of folate intake and the risk of breast cancer. JAMA. 1999;281(17):1632–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Stolzenberg-Solomon RZ, et al. Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers. Am J Epidemiol. 2001;153(7):680–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Fang JY, et al. Relationship of plasma folic acid and status of DNA methylation in human gastric cancer. J Gastroenterol. 1997;32(2):171–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Butterworth Jr CE. Folate status, women’s health, pregnancy outcome, and cancer. J Am Coll Nutr. 1993;12(4):438–41.PubMedGoogle Scholar
  49. 49.
    Kamei T, et al. Experimental study of the therapeutic effects of folate, vitamin A, and vitamin B12 on squamous metaplasia of the bronchial epithelium. Cancer. 1993;71(8):2477–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Skibola CF, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A. 1999;96(22):12810–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Han J, Colditz GA, Hunter DJ. Polymorphisms in the MTHFR and VDR genes and skin cancer risk. Carcinogenesis. 2007;28(2):390–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Goldsmith LA. Physiology, biochemistry, and molecular biology of the skin, vol. 1. 2nd ed. New York: Oxford University Press; 1991.Google Scholar
  53. 53.
    Jonak C, Klosner G, Trautinger F. Significance of heat shock proteins in the skin upon UV exposure. Front Biosci. 2009;14:4758–68.PubMedCrossRefGoogle Scholar
  54. 54.
    Antoniou C, et al. Photoaging: prevention and topical treatments. Am J Clin Dermatol. 2010;11(2):95–102.PubMedCrossRefGoogle Scholar
  55. 55.
    Williams JD, Jacobson MK. Photobiological implications of folate depletion and repletion in cultured human keratinocytes. J Photochem Photobiol B. 2010;99(1):49–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Bjorkegren K, Svardsudd K. Reported symptoms and clinical findings in relation to serum cobalamin, folate, methylmalonic acid and total homocysteine among elderly Swedes: a population-based study. J Intern Med. 2003;254(4):343–52.PubMedCrossRefGoogle Scholar
  57. 57.
    Meiss F, Marsch WC, Fischer M. Livedoid vasculopathy. The role of hyperhomocysteinemia and its simple therapeutic consequences. Eur J Dermatol. 2006;16(2):159–62.PubMedGoogle Scholar
  58. 58.
    Gisondi P, et al. Folic acid in general medicine and dermatology. J Dermatolog Treat. 2007;18(3):138–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Montes LF, et al. Folic acid and vitamin B12 in vitiligo: a nutritional approach. Cutis. 1992;50(1):39–42.PubMedGoogle Scholar
  60. 60.
    Fry L, et al. The mechanism of folate deficiency in psoriasis. Br J Dermatol. 1971;84(6):539–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Hild DH. Folate losses from the skin in exfoliative dermatitis. Arch Intern Med. 1969;123(1):51–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Vanizor Kural B, et al. Plasma homocysteine and its relationships with atherothrombotic markers in psoriatic patients. Clin Chim Acta. 2003;332(1–2):23–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Malerba M, et al. Plasma homocysteine and folate levels in patients with chronic plaque psoriasis. Br J Dermatol. 2006;155(6):1165–9.PubMedCrossRefGoogle Scholar
  64. 64.
    AAD. Psoriasis triggers. Psoriasis Net; 2008.http://www.skincarephysicians.com/psoriasisnet/triggers.html.
  65. 65.
    Solini A, Santini E, Ferrannini E. Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects. Int J Obes (Lond). 2006;30(8):1197–202.CrossRefGoogle Scholar
  66. 66.
    Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Leuchtenberger R, et al. The Influence of “folic acid” on spontaneous breast cancers in mice. Science. 1945;101(2611):46.PubMedCrossRefGoogle Scholar
  68. 68.
    Farber S, et al. The action of pteroylglutamic conjugates on man. Science. 1947;106(2764):619–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238(23):787–93.PubMedCrossRefGoogle Scholar
  70. 70.
    Ulrey CL, et al. The impact of metabolism on DNA methylation. Hum Mol Genet. 2005;14(Spec No 1):R139–47.PubMedCrossRefGoogle Scholar
  71. 71.
    Duthie SJ, et al. Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr Cancer. 2000;37(2):245–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Duthie SJ, et al. Impact of folate deficiency on DNA stability. J Nutr. 2002;132(8 Suppl):2444S–9.PubMedGoogle Scholar
  73. 73.
    Sanjoaquin MA, et al. Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005;113(5):825–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Kim YI. Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res. 2007;51(3):267–92.PubMedCrossRefGoogle Scholar
  75. 75.
    Jaszewski R, et al. Folic acid supplementation inhibits recurrence of colorectal adenomas: a randomized chemoprevention trial. World J Gastroenterol. 2008;14(28):4492–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Logan RF, et al. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology. 2008;134(1):29–38.PubMedCrossRefGoogle Scholar
  77. 77.
    Cole BF, et al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA. 2007;297(21):2351–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim YI. Folic acid supplementation and cancer risk: point. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2220–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Weinstock MA. The struggle for primary prevention of skin cancer. Am J Prev Med. 2008;34(2):171–2.PubMedCrossRefGoogle Scholar
  80. 80.
    NCI. Skin cancer facts and figures 2008.www.nci.nih.gov/cancertopics/types/skin. 2008.
  81. 81.
    Robien K, Ulrich CM. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol. 2003;157(7):571–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Rozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost. 1997;78(1):523–6.PubMedGoogle Scholar
  83. 83.
    Mandola MV, et al. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics. 2004;14(5):319–27.PubMedCrossRefGoogle Scholar
  84. 84.
    Ulrich CM, et al. Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol Biomarkers Prev. 2000;9(12):1381–5.PubMedGoogle Scholar
  85. 85.
    Kang SY, et al. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and thymidylate synthase in squamous cell carcinoma and basal cell carcinoma of the skin. Mol Med Report. 2010;3(5):741–7.Google Scholar
  86. 86.
    Laing ME, et al. Association of methylenetetrahydrofolate reductase polymorphism and the risk of squamous cell carcinoma in renal transplant patients. Transplantation. 2007;84(1):113–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Peters GJ, Kohne CH. Fluoropyrimidines as antifolate drugs. In: Jackson AL, editor. Antifolate drugs in cancer therapy. Totowa, NJ: Humana Press; 1999.Google Scholar
  88. 88.
    Hagner N, Joerger M. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2010;2:293–301.PubMedGoogle Scholar
  89. 89.
    Matz H. Phototherapy for psoriasis: what to choose and how to use: facts and controversies. Clin Dermatol. 2010;28(1):73–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Branda RF, Eaton JW. Skin color and nutrient photolysis: an evolutionary hypothesis. Science. 1978;201(4356):625–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Jablonski NG, Chaplin G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci U S A. 2010;107 Suppl 2:8962–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Cohn BA. The vital role of the skin in human natural history. Int J Dermatol. 1998;37(11):821–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Chaplin G. Geographic distribution of environmental factors influencing human skin coloration. Am J Phys Anthropol. 2004;125(3):292–302.PubMedCrossRefGoogle Scholar
  94. 94.
    Blum HF. Does the melanin pigment of human skin have adaptive value? An essay in human skin have adaptive value? An essay in human ecology and the evolution of race. Q Rev Biol. 1961;36:50–63.PubMedCrossRefGoogle Scholar
  95. 95.
    Loomis WF. Skin-pigment regulation of vitamin-D biosynthesis in man. Science. 1967;157(788):501–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Holick MF. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol. 1981;77(1):51–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Holick MF, MacLaughlin JA, Doppelt SH. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science. 1981;211(4482):590–3.PubMedCrossRefGoogle Scholar
  98. 98.
    Post PW, Daniels Jr F, Binford Jr RT. Cold injury and the evolution of “white” skin. Hum Biol. 1975;47(1):65–80.PubMedGoogle Scholar
  99. 99.
    Yuen AW, Jablonski NG. Vitamin D: in the evolution of human skin colour. Med Hypotheses. 2010;74(1):39–44.PubMedCrossRefGoogle Scholar
  100. 100.
    MacKie RM, Hauschild A, Eggermont AM. Epidemiology of invasive cutaneous melanoma. Ann Oncol. 2009;20 Suppl 6:61–7.CrossRefGoogle Scholar
  101. 101.
    Stratton SP, Dorr RT, Alberts DS. The state-of-the-art in chemoprevention of skin cancer. Eur J Cancer. 2000;36(10):1292–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Lober BA, Lober CW, Accola J. Actinic keratosis is squamous cell carcinoma. J Am Acad Dermatol. 2000;43(5 Pt 1):881–2.PubMedCrossRefGoogle Scholar
  103. 103.
    Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res. 2001;475(1–2):7–20.PubMedGoogle Scholar
  104. 104.
    Ullrich SE. Photoimmune suppression and photocarcinogenesis. Front Biosci. 2002;7:d684–703.PubMedCrossRefGoogle Scholar
  105. 105.
    Wondrak GT, et al. Identification of alpha-dicarbonyl scavengers for cellular protection against carbonyl stress. Biochem Pharmacol. 2002;63(3):361–73.PubMedCrossRefGoogle Scholar
  106. 106.
    Wondrak GT, et al. Proteins of the extracellular matrix are sensitizers of photo-oxidative stress in human skin cells. J Invest Dermatol. 2003;121(3):578–86.PubMedCrossRefGoogle Scholar
  107. 107.
    Wondrak GT, et al. Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins. J Invest Dermatol. 2002;119(2):489–98.PubMedCrossRefGoogle Scholar
  108. 108.
    Wondrak GT, Jacobson MK, Jacobson EL. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci. 2006;5(2):215–37.PubMedCrossRefGoogle Scholar
  109. 109.
    Jeffes III EW, Tang EH. Actinic keratosis. Current treatment options. Am J Clin Dermatol. 2000;1(3):167–79.PubMedCrossRefGoogle Scholar
  110. 110.
    Guenthner ST, et al. Cutaneous squamous cell carcinomas consistently show histologic evidence of in situ changes: a clinicopathologic correlation. J Am Acad Dermatol. 1999;41(3 Pt 1):443–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Hurwitz RM, Monger LE. Solar keratosis: an evolving squamous cell carcinoma. Benign or malignant? Dermatol Surg. 1995;21(2):184.PubMedGoogle Scholar
  112. 112.
    de Gruijl FR. UV-induced immunosuppression in the balance. Photochem Photobiol. 2008;84(1):2–9.PubMedGoogle Scholar
  113. 113.
    Harris RB, Griffith K, Moon TE. Trends in the incidence of nonmelanoma skin cancers in southeastern Arizona, 1985–1996. J Am Acad Dermatol. 2001;45(4):528–36.PubMedCrossRefGoogle Scholar
  114. 114.
    Marcil I, Stern RS. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: a critical review of the literature and meta-analysis. Arch Dermatol. 2000;136(12):1524–30.PubMedCrossRefGoogle Scholar
  115. 115.
    Chen J, et al. Nonmelanoma skin cancer and risk for subsequent malignancy. J Natl Cancer Inst. 2008;100(17):1215–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Marks R. An overview of skin cancers. Incidence and causation. Cancer. 1995;75(2 Suppl):607–12.PubMedCrossRefGoogle Scholar
  117. 117.
    Holick MF. Vitamin D: a millenium perspective. J Cell Biochem. 2003;88(2):296–307.PubMedCrossRefGoogle Scholar
  118. 118.
    Lucock M. Folic acid: beyond metabolism. J Evid Based Complementary Altern Med. 2011;16(2):102–13.CrossRefGoogle Scholar
  119. 119.
    Off MK, et al. Ultraviolet photodegradation of folic acid. J Photochem Photobiol B. 2005;80(1):47–55.PubMedCrossRefGoogle Scholar
  120. 120.
    Steindal AH, et al. Photodegradation of 5-methyltetrahydrofolate: biophysical aspects. Photochem Photobiol. 2006;82(6):1651–5.PubMedGoogle Scholar
  121. 121.
    Steindal AH, et al. 5-Methyltetrahydrofolate is photosensitive in the presence of riboflavin. Photochem Photobiol Sci. 2008;7(7):814–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Suh JR, Herbig AK, Stover PJ. New perspectives on folate catabolism. Annu Rev Nutr. 2001;21:255–82.PubMedCrossRefGoogle Scholar
  123. 123.
    McNulty H, et al. Folate catabolism is related to growth rate in weanling rats. J Nutr. 1995;125(1):99–103.PubMedGoogle Scholar
  124. 124.
    Thody AJ, et al. Pheomelanin as well as eumelanin is present in human epidermis. J Invest Dermatol. 1991;97(2):340–4.PubMedCrossRefGoogle Scholar
  125. 125.
    Schallreuter KU, et al. Regulation of melanogenesis—controversies and new concepts. Exp Dermatol. 2008;17(5):395–404.PubMedCrossRefGoogle Scholar
  126. 126.
    Schallreuter KU. Advances in melanocyte basic science research. Dermatol Clin. 2007;25(3):283–91. vii.PubMedCrossRefGoogle Scholar
  127. 127.
    Shaheen MA, Fattah NS, El-Borhamy MI. Analysis of serum folate levels after narrow band UVB exposure. EDOJ. 2006;2(1):1–7.Google Scholar
  128. 128.
    Fukuwatari T, Fujita M, Shibata K. Effects of UVA irradiation on the concentration of folate in human blood. Biosci Biotechnol Biochem. 2009;73(2):322–7.PubMedCrossRefGoogle Scholar
  129. 129.
    El-Saie LT, et al. Effect of narrowband ultraviolet B phototherapy on serum folic acid levels in patients with psoriasis. Lasers Med Sci. 2011;26(4):481–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Gambichler T, et al. Serum folate levels after UVA exposure: a two-group parallel randomised controlled trial. BMC Dermatol. 2001;1:8.PubMedCrossRefGoogle Scholar
  131. 131.
    Juzeniene A, et al. Pilot study of folate status in healthy volunteers and in patients with psoriasis before and after UV exposure. J Photochem Photobiol B. 2010;101(2):111–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Rose RF, et al. Narrowband ultraviolet B phototherapy does not influence serum and red cell folate levels in patients with psoriasis. J Am Acad Dermatol. 2009;61(2):259–62.PubMedCrossRefGoogle Scholar
  133. 133.
    Cicarma E, et al. Influence of narrowband UVB phototherapy on vitamin D and folate status. Exp Dermatol. 2010;19(8):e67–72.PubMedCrossRefGoogle Scholar
  134. 134.
    Dainichi T, et al. By the grace of peeling: the brace function of the stratum corneum in the protection from photo-induced keratinocyte carcinogenesis. Arch Dermatol Res. 2008;300 Suppl 1:S31–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Hirakawa K, et al. Sequence-specific DNA damage induced by ultraviolet A-irradiated folic acid via its photolysis product. Arch Biochem Biophys. 2003;410(2):261–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yira Bermudez
    • 1
  • Katharine Cordova
    • 2
  • Joshua D. Williams
    • 1
  1. 1.Department of Cancer Prevention and ControlThe University of Arizona Cancer CenterTucsonUSA
  2. 2.Dermatology Professionals IncorporatedEast GreenwichUSA

Personalised recommendations