Advertisement

Pathology of Renal Cell Carcinoma

  • Ming Zhou
  • Huiying He
Chapter
Part of the Current Clinical Urology book series (CCU)

Abstract

Many different types of benign and malignant tumors have been reported in the kidney. Renal cell neoplasms, derived from the renal tubular epithelial cells, are the most common renal tumors. They have distinct clinical, pathologic, and genetic characteristics as well as diverse prognosis and therapeutic responses. The 2004 World Health Organization classification of renal tumors represents the most updated classification system based primarily on morphological features. Genetic characteristics have been increasingly incorporated into the clinically meaningful classification systems. Pathological examination of the renal neoplasm specimens not only renders an accurate diagnosis and classification but also provides information important for prognosis and therapeutic decisions.

Keywords

Renal Cell Carcinoma Renal Tumor Fumarate Hydratase Chromophobe Renal Cell Carcinoma Fuhrman Grade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Eble JN, Sauter G, Epstein JI, Sesterhenn IA. Pathology and genetics, tumors of the urinary system and male genital organs, vols 9–88. Lyon: IAPC Press; 2004.Google Scholar
  2. 2.
    Murphy WM, Grignon DG, Perlman EJ. Tumors of the kidney, bladder, and related urinary structures. Washington: American Registry of Pathology; 2004.Google Scholar
  3. 3.
    Cheng L, Zhang S, MacLennan GT, Lopez-Beltran A, Montironi R. Molecular and cytogenetic insights into the pathogenesis, classification, differential diagnosis, and prognosis of renal epithelial neoplasms. Hum Pathol. 2009;40:10–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Srigley JR, Delahunt B. Uncommon and recently described renal carcinomas. Mod Pathol. 2009;22 Suppl 2:S2–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol. 2003;27:612–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen D, Zhou M. Molecular genetics of familial renal cell carcinoma syndromes. Clin Lab Med. 2005;25:259–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Rosner I, Bratslavsky G, Pinto PA, Linehan WM. The clinical implications of the genetics of renal cell carcinoma. Urol Oncol. 2009;27:131–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Strefford JC, Stasevich I, Lane TM, Lu YJ, Oliver T, Young BD. A combination of molecular cytogenetic analyses reveals complex genetic alterations in conventional renal cell carcinoma. Cancer Genet Cytogenet. 2005;159:1–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoglund M, Gisselsson D, Soller M, Hansen GB, Elfving P, Mitelman F. Dissecting karyotypic patterns in renal cell carcinoma: an analysis of the accumulated cytogenetic data. Cancer Genet Cytogenet. 2004;153:1–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Banks RE, Tirukonda P, Taylor C, et al. Genetic and epigenetic analysis of von Hippel–Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res. 2006;66:2000–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Gimenez-Bachs JM, Salinas-Sanchez AS, Sanchez-Sanchez F, et al. Determination of vhl gene mutations in sporadic renal cell carcinoma. Eur Urol. 2006;49:1051–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Gossage L, Eisen T. Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nat Rev Clin Oncol. 2010;7:277–88.PubMedCrossRefGoogle Scholar
  13. 13.
    Kaelin Jr WG. The von Hippel–Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13:680s–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Lane BR, Rini BI, Novick AC, Campbell SC. Targeted molecular therapy for renal cell carcinoma. Urology. 2007;69:3–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Linehan WM, Bratslavsky G, Pinto PA, et al. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Zbar B, Tory K, Merino M, et al. Hereditary papillary renal cell carcinoma. J Urol. 1994;151:561–6.PubMedGoogle Scholar
  17. 17.
    Launonen V, Vierimaa O, Kiuru M, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A. 2001;98:3387–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Delahunt B, Eble JN, McCredie MR, Bethwaite PB, Stewart JH, Bilous AM. Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum Pathol. 2001;32:590–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Brunelli M, Eble JN, Zhang S, Martignoni G, Cheng L. Gains of chromosomes 7, 17, 12, 16, and 20 and loss of Y occur early in the evolution of papillary renal cell neoplasia: a fluorescent in situ hybridization study. Mod Pathol. 2003;16:1053–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Jiang F, Richter J, Schraml P, et al. Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am J Pathol. 1998;153:1467–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Schraml P, Muller D, Bednar R, et al. Allelic loss at the D9S171 locus on chromosome 9p13 is associated with progression of papillary renal cell carcinoma. J Pathol. 2000;190:457–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Storkel S, Steart PV, Drenckhahn D, Thoenes W. The human chromophobe cell renal carcinoma: its probable relation to intercalated cells of the collecting duct. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;56:237–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Zbar B, Alvord WG, Glenn G, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt–Hogg–Dube syndrome. Cancer Epidemiol Biomarkers Prev. 2002;11:393–400.PubMedGoogle Scholar
  24. 24.
    Adley BP, Smith ND, Nayar R, Yang XJ. Birt–Hogg–Dube syndrome: clinicopathologic findings and genetic alterations. Arch Pathol Lab Med. 2006;130:1865–70.PubMedGoogle Scholar
  25. 25.
    Thoenes W, Storkel S, Rumpelt HJ, Moll R, Baum HP, Werner S. Chromophobe cell renal carcinoma and its variants – a report on 32 cases. J Pathol. 1988;155: 277–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Brunelli M, Eble JN, Zhang S, Martignoni G, Delahunt B, Cheng L. Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma. Mod Pathol. 2005;18:161–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Vira M, Linehan WM. Expanding the morphological and molecular genetic phenotype of kidney cancer. J Urol. 2007;177:10–1.PubMedCrossRefGoogle Scholar
  28. 28.
    Al-Saleem T, Cairns P, Dulaimi EA, Feder M, Testa JR, Uzzo RG. The genetics of renal oncocytosis: a possible model for neoplastic progression. Cancer Genet Cytogenet. 2004;152:23–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Suzigan S, Lopez-Beltran A, Montironi R, et al. Multilocular cystic renal cell carcinoma: a report of 45 cases of a kidney tumor of low malignant potential. Am J Clin Pathol. 2006;125:217–22.PubMedGoogle Scholar
  30. 30.
    Halat S, Eble JN, Grignon DJ, et al. Multilocular cystic renal cell carcinoma is a subtype of clear cell renal cell carcinoma. Mod Pathol. 2010;23:931–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Antonelli A, Portesi E, Cozzoli A, et al. The collecting duct carcinoma of the kidney: a cytogenetical study. Eur Urol. 2003;43:680–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Karakiewicz PI, Trinh QD, Rioux-Leclercq N, et al. Collecting duct renal cell carcinoma: a matched analysis of 41 cases. Eur Urol. 2007;52:1140–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Tokuda N, Naito S, Matsuzaki O, et al. Collecting duct (bellini duct) renal cell carcinoma: a nationwide survey in Japan. J Urol. 2006;176:40–3 [discussion 43].PubMedCrossRefGoogle Scholar
  34. 34.
    Selli C, Amorosi A, Vona G, et al. Retrospective ­evaluation of c-erbB-2 oncogene amplification using competitive PCR in collecting duct carcinoma of the kidney. J Urol. 1997;158:245–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Leitao VA, da Silva Jr W, Ferreira U, Denardi F, Billis A, Rodrigues Netto Jr N. Renal medullary carcinoma. case report and review of the literature. Urol Int. 2006;77:184–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Watanabe IC, Billis A, Guimaraes MS, et al. Renal medullary carcinoma: report of seven cases from brazil. Mod Pathol. 2007;20:914–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Argani P, Ladanyi M. Renal carcinomas associated with Xp11.2 translocations/TFE3 gene fusions. In: Eble J, Sauter G, Epstein J, et al., editors. World Health Organization classification of tumours: pathology and genetics of tumors of the urinary system & male genital organs. Lyon: IARC; 2004. p. 37–8.Google Scholar
  38. 38.
    Argani P, Olgac S, Tickoo SK, et al. Xp11 translocation renal cell carcinoma in adults: expanded clinical, pathologic, and genetic spectrum. Am J Surg Pathol. 2007;31:1149–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Armah HB, Parwani AV. Xp11.2 translocation renal cell carcinoma. Arch Pathol Lab Med. 2010;134:124–9.PubMedGoogle Scholar
  40. 40.
    Argani P, Lal P, Hutchinson B, Lui MY, Reuter VE, Ladanyi M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27:750–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Ross H, Argani P. Xp11 translocation renal cell carcinoma. Pathology. 2010;42:369–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Argani P, Antonescu CR, Illei PB, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 2001;159:179–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Argani P, Antonescu CR, Couturier J, et al. PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am J Surg Pathol. 2002;26:1553–66.PubMedCrossRefGoogle Scholar
  44. 44.
    Fine SW, Argani P, DeMarzo AM, et al. Expanding the histologic spectrum of mucinous tubular and spindle cell carcinoma of the kidney. Am J Surg Pathol. 2006;30:1554–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Yang G, Breyer BN, Weiss DA, MacLennan GT. Mucinous tubular and spindle cell carcinoma of the kidney. J Urol. 2010;183:738–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Cossu-Rocca P, Eble JN, Delahunt B, et al. Renal mucinous tubular and spindle carcinoma lacks the gains of chromosomes 7 and 17 and losses of chromosome Y that are prevalent in papillary renal cell carcinoma. Mod Pathol. 2006;19:488–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Brandal P, Lie AK, Bassarova A, et al. Genomic aberrations in mucinous tubular and spindle cell renal cell carcinomas. Mod Pathol. 2006;19:186–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Eble JN. Mucinous tubular and spindle cell carcinoma and post-neuroblastoma carcinoma: newly recognised entities in the renal cell carcinoma family. Pathology. 2003;35:499–504.PubMedCrossRefGoogle Scholar
  49. 49.
    Argani P. The evolving story of renal translocation carcinomas. Am J Clin Pathol. 2006;126:332–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou M, Yang XJ, Lopez JI, et al. Renal tubulocystic carcinoma is closely related to papillary renal cell carcinoma: implications for pathologic classification. Am J Surg Pathol. 2009;33:1840–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Amin MB, MacLennan GT, Gupta R, et al. Tubulocystic carcinoma of the kidney: clinicopathologic analysis of 31 cases of a distinctive rare subtype of renal cell carcinoma. Am J Surg Pathol. 2009;33:384–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Osunkoya AO, Young AN, Wang W, Netto GJ, Epstein JI. Comparison of gene expression profiles in tubulocystic carcinoma and collecting duct carcinoma of the kidney. Am J Surg Pathol. 2009;33:1103–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Aydin H, Chen L, Cheng L, et al. Clear cell tubulopapillary renal cell carcinoma: a study of 36 distinctive low-grade epithelial tumors of the kidney. Am J Surg Pathol. 2010;34:1608–21.PubMedGoogle Scholar
  54. 54.
    Amin MB, Gupta R, Ondrej H, et al. Primary thyroid-like follicular carcinoma of the kidney: report of 6 cases of a histologically distinctive adult renal epithelial neoplasm. Am J Surg Pathol. 2009;33:393–400.PubMedCrossRefGoogle Scholar
  55. 55.
    Pan CC, Chen YJ, Chang LC, Chang YH, Ho DM. Immunohistochemical and molecular genetic profiling of acquired cystic disease-associated renal cell carcinoma. Histopathology. 2009;55:145–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Coleman JA, Russo P. Hereditary and familial kidney cancer. Curr Opin Urol. 2009;19:478–85.PubMedCrossRefGoogle Scholar
  57. 57.
    Lubensky IA, Schmidt L, Zhuang Z, et al. Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol. 1999;155:517–26.PubMedCrossRefGoogle Scholar
  58. 58.
    Giubellino A, Linehan WM, Bottaro DP. Targeting the met signaling pathway in renal cancer. Expert Rev Anticancer Ther. 2009;9:785–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Sudarshan S, Pinto PA, Neckers L, Linehan WM. Mechanisms of disease: hereditary leiomyomatosis and renal cell cancer – a distinct form of hereditary kidney cancer. Nat Clin Pract Urol. 2007;4:104–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Murakami T, Sano F, Huang Y, et al. Identification and characterization of Birt–Hogg–Dube associated renal carcinoma. J Pathol. 2007;211:524–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Grignon DJ, Eble JN. Papillary and metanephric adenomas of the kidney. Semin Diagn Pathol. 1998;15:41–53.PubMedGoogle Scholar
  62. 62.
    Wang KL, Weinrach DM, Luan C, et al. Renal papillary adenoma – a putative precursor of papillary renal cell carcinoma. Hum Pathol. 2007;38:239–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Brown JA, Takahashi S, Alcaraz A, et al. Fluorescence in situ hybridization analysis of renal oncocytoma reveals frequent loss of chromosomes Y and 1. J Urol. 1996;156:31–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Yusenko MV. Molecular pathology of renal oncocytoma: a review. Int J Urol. 2010;17:602–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Cochand-Priollet B, Molinie V, Bougaran J, et al. Renal chromophobe cell carcinoma and oncocytoma. A comparative morphologic, histochemical, and immunohistochemical study of 124 cases. Arch Pathol Lab Med. 1997;121:1081–6.PubMedGoogle Scholar
  66. 66.
    Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 2009;9:152.PubMedCrossRefGoogle Scholar
  67. 67.
    Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 1982;6:655–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Novara G, Martignoni G, Artibani W, Ficarra V. Grading systems in renal cell carcinoma. J Urol. 2007;177:430–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Rioux-Leclercq N, Karakiewicz PI, Trinh QD, et al. Prognostic ability of simplified nuclear grading of renal cell carcinoma. Cancer. 2007;109:868–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Hong SK, Jeong CW, Park JH, et al. Application of simplified Fuhrman grading system in clear-cell renal cell carcinoma. BJU Int. 2010;107:409–15.PubMedCrossRefGoogle Scholar
  71. 71.
    Sika-Paotonu D, Bethwaite PB, McCredie MR, William Jordan T, Delahunt B. Nucleolar grade but not Fuhrman grade is applicable to papillary renal cell carcinoma. Am J Surg Pathol. 2006;30:1091–6.PubMedGoogle Scholar
  72. 72.
    Klatte T, Anterasian C, Said JW, et al. Fuhrman grade provides higher prognostic accuracy than nucleolar grade for papillary renal cell carcinoma. J Urol. 2010;183:2143–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Delahunt B, Sika-Paotonu D, Bethwaite PB, et al. Fuhrman grading is not appropriate for chromophobe renal cell carcinoma. Am J Surg Pathol. 2007;31:957–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Paner GP, Amin MB, Alvarado-Cabrero I, et al. A novel tumor grading scheme for chromophobe renal cell carcinoma: prognostic utility and comparison with fuhrman nuclear grade. Am J Surg Pathol. 2010;34:1233–40.PubMedCrossRefGoogle Scholar
  75. 75.
    de Peralta-Venturina M, Moch H, Amin M, et al. Sarcomatoid differentiation in renal cell carcinoma: a study of 101 cases. Am J Surg Pathol. 2001;25:275–84.PubMedCrossRefGoogle Scholar
  76. 76.
    Cheville JC, Lohse CM, Zincke H, et al. Sarcomatoid renal cell carcinoma: an examination of underlying histologic subtype and an analysis of associations with patient outcome. Am J Surg Pathol. 2004;28:435–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Gokden N, Nappi O, Swanson PE, et al. Renal cell carcinoma with rhabdoid features. Am J Surg Pathol. 2000;24:1329–38.PubMedCrossRefGoogle Scholar
  78. 78.
    Isbarn H, Patard JJ, Lughezzani G, et al. Limited prognostic value of tumor necrosis in patients with renal cell carcinoma. Urology. 2010;75:1378–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Frank I, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol. 2002;168:2395–400.PubMedCrossRefGoogle Scholar
  80. 80.
    Sorbellini M, Kattan MW, Snyder ME, et al. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol. 2005;173:48–51.PubMedCrossRefGoogle Scholar
  81. 81.
    Klatte T, Said JW, de Martino M, et al. Presence of tumor necrosis is not a significant predictor of survival in clear cell renal cell carcinoma: higher prognostic accuracy of extent based rather than presence/absence classification. J Urol. 2009;181:1558–64 [discussion 1563–4].PubMedCrossRefGoogle Scholar
  82. 82.
    Katz MD, Serrano MF, Grubb 3rd RL, et al. Percent microscopic tumor necrosis and survival after curative surgery for renal cell carcinoma. J Urol. 2010;183: 909–14.PubMedCrossRefGoogle Scholar
  83. 83.
    Antunes AA, Srougi M, Dall’Oglio MF, et al. Microvascular invasion is an independent prognostic factor in patients with prostate cancer treated with radical prostatectomy. Int Braz J Urol. 2006;32:668–75 [discussion 675–7].PubMedCrossRefGoogle Scholar
  84. 84.
    Madbouly K, Al-Qahtani SM, Ghazwani Y, Al-Shaibani S, Mansi MK. Microvascular tumor invasion: prognostic significance in low-stage renal cell carcinoma. Urology. 2007;69:670–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PathologyNew York University Langone Medical CenterNew YorkUSA
  2. 2.Department of Pathology, Health Science CenterPeking UniversityBeijingChina

Personalised recommendations