Renal Cell Carcinoma pp 167-194

Part of the Current Clinical Urology book series (CCU)

Active Surveillance of the Small Renal Mass

  • Marc C. Smaldone
  • Daniel Canter
  • Alexander Kutikov
  • Robert G. Uzzo
Chapter

Abstract

Increased abdominal imaging has led to the significant incidental detection of clinically localized renal tumors. While the gold standard remains surgical excision, no demonstrable improvement in cancer-specific mortality has been observed, implying that a proportion of small renal masses (SRMs) may be indolent tumors that do not require surgical intervention. As a result, active surveillance (AS) has emerged as an alternative management strategy in select elderly or comorbid patients with significant competing risks. Although the contemporary literature characterizing the natural history of untreated renal tumors is limited, recent data demonstrate that the majority of SRMs demonstrate slow growth kinetics with low rates of metastatic progression while under observation. Prospective trials are necessary to define entry and intervention criteria for contemporary AS protocols.

References

  1. 1.
    Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Chow WH, Devesa SS, Warren JL, et al. Rising incidence of renal cell cancer in the United States. JAMA. 1999;281(17):1628–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Hollingsworth JM, Miller DC, Daignault S, et al. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst. 2006;98(18):1331–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooperberg MR, Mallin K, Ritchey J, et al. Decreasing size at diagnosis of stage 1 renal cell carcinoma: analysis from the National Cancer Data Base, 1993 to 2004. J Urol. 2008;179(6):2131–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Kane CJ, Mallin K, Ritchey J, et al. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer. 2008;113(1):78–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Jayson M, Sanders H. Increased incidence of serendipitously discovered renal cell carcinoma. Urology. 1998;51(2):203–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Kutikov A, Fossett LK, Ramchandani P, et al. Incidence of benign pathologic findings at partial nephrectomy for solitary renal mass presumed to be renal cell carcinoma on preoperative imaging. Urology. 2006;68(4):737–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Crispen PL, Boorjian SA, Lohse CM, et al. Outcomes following partial nephrectomy by tumor size. J Urol. 2008;180(5):1912–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Remzi M, Ozsoy M, Klingler HC, et al. Are small renal tumors harmless? Analysis of histopathological features according to tumors 4 cm or less in diameter. J Urol. 2006;176(3):896–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Hollenbeck BK, Taub DA, Miller DC, et al. National utilization trends of partial nephrectomy for renal cell carcinoma: a case of underutilization? Urology. 2006;67(2):254–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang WC, Levey AS, Serio AM, et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol. 2006;7(9):735–40.PubMedCrossRefGoogle Scholar
  13. 13.
    McKiernan J, Simmons R, Katz J, et al. Natural history of chronic renal insufficiency after partial and radical nephrectomy. Urology. 2002;59(6):816–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13): 1296–305.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang WC, Elkin EB, Levey AS, et al. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors – is there a difference in mortality and cardiovascular outcomes? J Urol. 2009;181(1): 55–61 [discussion 2].PubMedCrossRefGoogle Scholar
  16. 16.
    Thompson RH, Boorjian SA, Lohse CM, et al. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J Urol. 2008;179(2):468–71 [discussion 72–3].PubMedCrossRefGoogle Scholar
  17. 17.
    Gill IS, Kavoussi LR, Lane BR, et al. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol. 2007;178(1):41–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Lane BR, Gill IS. 7-Year oncological outcomes after laparoscopic and open partial nephrectomy. J Urol. 2010;183(2):473–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Scoll BJ, Uzzo RG, Chen DY, et al. Robot-assisted partial nephrectomy: a large single-institutional experience. Urology. 2010;75(6):1328–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Campbell SC, Novick AC, Belldegrun A, et al. Guideline for management of the clinical T1 renal mass. J Urol. 2009;182(4):1271–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Kutikov A, Kunkle DA, Uzzo RG. Focal therapy for kidney cancer: a systematic review. Curr Opin Urol. 2009;19(2):148–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Kunkle DA, Egleston BL, Uzzo RG. Excise, ablate or observe: the small renal mass dilemma – a meta-analysis and review. J Urol. 2008;179(4):1227–33 [discussion 33–4].PubMedCrossRefGoogle Scholar
  23. 23.
    Kutikov A, Egleston BL, Wong YN, et al. Evaluating overall survival and competing risks of death in patients with localized renal cell carcinoma using a comprehensive nomogram. J Clin Oncol. 2010;28(2): 311–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst. 2010;102(9):605–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Dall’Era MA, Cooperberg MR, Chan JM, et al. Active surveillance for early-stage prostate cancer: review of the current literature. Cancer. 2008;112(8):1650–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Klotz L, Zhang L, Lam A, et al. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol. 2010;28(1):126–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Frank I, Blute ML, Cheville JC, et al. Solid renal tumors: an analysis of pathological features related to tumor size. J Urol. 2003;170(6 Pt 1):2217–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Thompson RH, Kurta JM, Kaag M, et al. Tumor size is associated with malignant potential in renal cell carcinoma cases. J Urol. 2009;181(5):2033–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Rothman J, Egleston B, Wong YN, et al. Histopathological characteristics of localized renal cell carcinoma correlate with tumor size: a SEER analysis. J Urol. 2009;181(1):29–33 [discussion 4].PubMedCrossRefGoogle Scholar
  30. 30.
    Kunkle DA, Crispen PL, Li T, et al. Tumor size predicts synchronous metastatic renal cell carcinoma: implications for surveillance of small renal masses. J Urol. 2007;177(5):1692–6 [discussion 7].PubMedCrossRefGoogle Scholar
  31. 31.
    Nguyen MM, Gill IS. Effect of renal cancer size on the prevalence of metastasis at diagnosis and mortality. J Urol. 2009;181(3):1020–7 [discussion 7].PubMedCrossRefGoogle Scholar
  32. 32.
    Thompson RH, Hill JR, Babayev Y, et al. Metastatic renal cell carcinoma risk according to tumor size. J Urol. 2009;182(1):41–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Duffey BG, Choyke PL, Glenn G, et al. The relationship between renal tumor size and metastases in patients with von Hippel–Lindau disease. J Urol. 2004;172(1):63–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Frank I, Blute ML, Cheville JC, et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol. 2002;168(6):2395–400.PubMedCrossRefGoogle Scholar
  35. 35.
    Karakiewicz PI, Briganti A, Chun FK, et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol. 2007;25(11): 1316–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Kattan MW, Reuter V, Motzer RJ, et al. A postoperative prognostic nomogram for renal cell carcinoma. J Urol. 2001;166(1):63–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim HL, Seligson D, Liu X, et al. Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. J Urol. 2005;173(5):1496–501.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim HL, Seligson D, Liu X, et al. Using protein expressions to predict survival in clear cell renal ­carcinoma. Clin Cancer Res. 2004;10(16):5464–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Patard JJ, Leray E, Rioux-Leclercq N, et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol. 2005;23(12):2763–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Thompson RH, Leibovich BC, Lohse CM, et al. Dynamic outcome prediction in patients with clear cell renal cell carcinoma treated with radical nephrectomy: the D-SSIGN score. J Urol. 2007;177(2):477–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Zisman A, Pantuck AJ, Dorey F, et al. Mathematical model to predict individual survival for patients with renal cell carcinoma. J Clin Oncol. 2002;20(5):1368–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Zisman A, Pantuck AJ, Dorey F, et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol. 2001;19(6):1649–57.PubMedGoogle Scholar
  43. 43.
    Zisman A, Pantuck AJ, Wieder J, et al. Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J Clin Oncol. 2002;20(23):4559–66.PubMedCrossRefGoogle Scholar
  44. 44.
    Cindolo L, Patard JJ, Chiodini P, et al. Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study. Cancer. 2005;104(7):1362–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Cindolo L, de la Taille A, Messina G, et al. A preoperative clinical prognostic model for non-metastatic renal cell carcinoma. BJU Int. 2003;92(9):901–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Raj GV, Thompson RH, Leibovich BC, et al. Preoperative nomogram predicting 12-year probability of metastatic renal cancer. J Urol. 2008;179(6):2146–51 [discussion 51].PubMedCrossRefGoogle Scholar
  47. 47.
    Yaycioglu O, Roberts WW, Chan T, et al. Prognostic assessment of nonmetastatic renal cell carcinoma: a clinically based model. Urology. 2001;58(2):141–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Poppel H, Da Pozzo L, Albrecht W, et al. A Prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol. 2011;59:543–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Lane BR, Abouassaly R, Gao T, et al. Active treatment of localized renal tumors may not impact overall survival in patients aged 75 years or older. Cancer. 2010;116(13):3119–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Santos Arrontes D, Fernandez Acenero MJ, Garcia Gonzalez JI, et al. Survival analysis of clear cell renal carcinoma according to the Charlson comorbidity index. J Urol. 2008;179(3):857–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Hollingsworth JM, Miller DC, Daignault S, et al. Five-year survival after surgical treatment for kidney cancer: a population-based competing risk analysis. Cancer. 2007;109(9):1763–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Lughezzani G, Sun M, Budaus L, et al. Population-based external validation of a competing-risks nomogram for patients with localized renal cell carcinoma. J Clin Oncol. 2010;28(18):e299–300 [author reply e1].PubMedCrossRefGoogle Scholar
  53. 53.
    Kutikov A, Egleston BL, Smaldone MC, et al. Quantification of competing risks of death with localized renal cell carcinoma (RCC): a comprehensive nomogram incorporating co-morbidities. In: Podium presentation; American Urologic Association meeting, Washington; 2011.Google Scholar
  54. 54.
    Uzzo RG. Renal masses – to treat or not to treat? If that is the question are contemporary biomarkers the answer? J Urol. 2008;180(2):433–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Jeldres C, Sun M, Liberman D, et al. Can renal mass biopsy assessment of tumor grade be safely substituted for by a predictive model? J Urol. 2009;182(6):2585–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Lane BR, Babineau D, Kattan MW, et al. A preoperative prognostic nomogram for solid enhancing renal tumors 7 cm or less amenable to partial nephrectomy. J Urol. 2007;178(2):429–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Crispen PL, Blute ML. Do percutaneous renal tumor biopsies at initial presentation affect treatment strategies? Eur Urol. 2009;55(2):307–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Lane BR, Samplaski MK, Herts BR, et al. Renal mass biopsy – a renaissance? J Urol. 2008;179(1):20–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang R, Wolf Jr JS, Wood Jr DP, et al. Accuracy of percutaneous core biopsy in management of small renal masses. Urology. 2009;73(3):586–90 [discussion 90–1].PubMedCrossRefGoogle Scholar
  60. 60.
    Neuzillet Y, Lechevallier E, Andre M, et al. Accuracy and clinical role of fine needle percutaneous biopsy with computerized tomography guidance of small (less than 4.0 cm) renal masses. J Urol. 2004;171(5): 1802–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Lechevallier E, Andre M, Barriol D, et al. Fine-needle percutaneous biopsy of renal masses with helical CT guidance. Radiology. 2000;216(2):506–10.PubMedGoogle Scholar
  62. 62.
    Tsui KH, Shvarts O, Smith RB, et al. Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. J Urol. 2000;163(4):1090–5 [quiz 295].PubMedCrossRefGoogle Scholar
  63. 63.
    Leveridge M, Shiff D, Chung H, et al. Small renal mass needle core biopsy: outcomes of non-diagnostic percutaneous biopsy and role of repeat biopsy (abstract 821). J Urol. 2010;183(4):e321.CrossRefGoogle Scholar
  64. 64.
    Blumenfeld AJ, Guru K, Fuchs GJ, et al. Percutaneous biopsy of renal cell carcinoma underestimates nuclear grade. Urology. 2010;76(3):610–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Khan AA, Shergill IS, Quereshi S, et al. Percutaneous needle biopsy for indeterminate renal masses: a national survey of UK consultant urologists. BMC Urol. 2007;7:10.PubMedCrossRefGoogle Scholar
  66. 66.
    Wood BJ, Khan MA, McGovern F, et al. Imaging guided biopsy of renal masses: indications, accuracy and impact on clinical management. J Urol. 1999;161(5):1470–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Maturen KE, Nghiem HV, Caoili EM, et al. Renal mass core biopsy: accuracy and impact on clinical management. AJR Am J Roentgenol. 2007;188(2): 563–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Jewett MA, Zuniga A. Renal tumor natural history: the rationale and role for active surveillance. Urol Clin North Am. 2008;35(4):627–34. vii.PubMedCrossRefGoogle Scholar
  69. 69.
    Rothman J, Crispen PL, Wong YN, et al. Pathologic concordance of sporadic synchronous bilateral renal masses. Urology. 2008;72(1):138–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Visapaa H, Bui M, Huang Y, et al. Correlation of Ki-67 and gelsolin expression to clinical outcome in renal clear cell carcinoma. Urology. 2003;61(4):845–50.PubMedCrossRefGoogle Scholar
  71. 71.
    Delahunt B, Bethwaite PB, Thornton A, et al. Proliferation of renal cell carcinoma assessed by fixation-resistant polyclonal Ki-67 antibody labeling. Correlation with clinical outcome. Cancer. 1995;75(11):2714–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Shiina H, Igawa M, Urakami S, et al. Clinical significance of immunohistochemically detectable p53 protein in renal cell carcinoma. Eur Urol. 1997;31(1):73–80.PubMedGoogle Scholar
  73. 73.
    Shvarts O, Seligson D, Lam J, et al. p53 is an independent predictor of tumor recurrence and progression after nephrectomy in patients with localized renal cell carcinoma. J Urol. 2005;173(3):725–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang X, Takenaka I. Cell proliferation and apoptosis with BCL-2 expression in renal cell carcinoma. Urology. 2000;56(3):510–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Tomisawa M, Tokunaga T, Oshika Y, et al. Expression pattern of vascular endothelial growth factor isoform is closely correlated with tumour stage and vascularisation in renal cell carcinoma. Eur J Cancer. 1999;35(1):133–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Bilim V, Yuuki K, Itoi T, et al. Double inhibition of XIAP and Bcl-2 axis is beneficial for retrieving sensitivity of renal cell cancer to apoptosis. Br J Cancer. 2008;98(5):941–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Hedberg Y, Davoodi E, Roos G, et al. Cyclin-D1 expression in human renal-cell carcinoma. Int J Cancer. 1999;84(3):268–72.PubMedCrossRefGoogle Scholar
  78. 78.
    Sabo E, Miselevich I, Bejar J, et al. The role of vimentin expression in predicting the long-term outcome of patients with localized renal cell carcinoma. Br J Urol. 1997;80(6):864–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Tatokoro M, Saito K, Iimura Y, et al. Prognostic impact of postoperative C-reactive protein level in patients with metastatic renal cell carcinoma undergoing cytoreductive nephrectomy. J Urol. 2008;180(2): 515–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Bui MH, Seligson D, Han KR, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res. 2003;9(2):802–11.PubMedGoogle Scholar
  81. 81.
    Crispen PL, Boorjian SA, Lohse CM, et al. Predicting disease progression after nephrectomy for localized renal cell carcinoma: the utility of prognostic models and molecular biomarkers. Cancer. 2008;113(3): 450–60.PubMedCrossRefGoogle Scholar
  82. 82.
    Fujimoto N, Sugita A, Terasawa Y, et al. Observations on the growth rate of renal cell carcinoma. Int J Urol. 1995;2(2):71–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Kato M, Suzuki T, Suzuki Y, et al. Natural history of small renal cell carcinoma: evaluation of growth rate, histological grade, cell proliferation and apoptosis. J Urol. 2004;172(3):863–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Oda T, Miyao N, Takahashi A, et al. Growth rates of primary and metastatic lesions of renal cell carcinoma. Int J Urol. 2001;8(9):473–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Oda T, Takahashi A, Miyao N, et al. Cell proliferation, apoptosis, angiogenesis and growth rate of incidentally found renal cell carcinoma. Int J Urol. 2003;10(1):13–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Hicks RJ, Ware RE, Lau EW. PET/CT: will it change the way that we use CT in cancer imaging? Cancer Imaging. 2006;6:S52–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Lawrentschuk N, Davis ID, Bolton DM, et al. Functional imaging of renal cell carcinoma. Nat Rev Urol. 2010;7(5):258–66.PubMedCrossRefGoogle Scholar
  88. 88.
    Lawrentschuk N, Poon AM, Foo SS, et al. Assessing regional hypoxia in human renal tumours using 18 F-fluoromisonidazole positron emission tomography. BJU Int. 2005;96(4):540–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Lawrentschuk N, Poon AM, Scott AM. Fluorine-18 fluorothymidine: a new positron emission radioisotope for renal tumors. Clin Nucl Med. 2006;31(12): 788–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Oyama N, Okazawa H, Kusukawa N, et al. 11 C-Acetate PET imaging for renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2009;36(3):422–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Divgi CR, Pandit-Taskar N, Jungbluth AA, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8(4):304–10.PubMedCrossRefGoogle Scholar
  92. 92.
    Uzzo RG, Russo P, Chen D, et al. The multicenter phase III redect trial: a comparative study of 124 I-girentuximab-PET/CT versus diagnostic CT for the pre-operative diagnosis of clear cell renal cell carcinoma (ccRCC) (late breaking abstract; AUA, San Francisco); 2010.Google Scholar
  93. 93.
    Schachter LR, Bach AM, Snyder ME, et al. The impact of tumour location on the histological subtype of renal cortical tumours. BJU Int. 2006;98(1):63–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Venkatesh R, Weld K, Ames CD, et al. Laparoscopic partial nephrectomy for renal masses: effect of tumor location. Urology. 2006;67(6):1169–74 [discussion 74].PubMedCrossRefGoogle Scholar
  95. 95.
    Weizer AZ, Gilbert SM, Roberts WW, et al. Tailoring technique of laparoscopic partial nephrectomy to tumor characteristics. J Urol. 2008;180(4):1273–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844–53.PubMedCrossRefGoogle Scholar
  97. 97.
    Ficarra V, Novara G, Secco S, et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol. 2009;56(5):786–93.PubMedCrossRefGoogle Scholar
  98. 98.
    Simmons MN, Ching CB, Samplaski MK, et al. Kidney tumor location measurement using the C index method. J Urol. 2010;183(5):1708–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Kutikov A, Manley BJ, Canter DJ, et al. Anatomical features of enhancing renal masses predict histology and grade – an analysis using nephrometry (AUA abstract no. 1238). J Urol. 2010;183(4):e479.CrossRefGoogle Scholar
  100. 100.
    Crispen PL, Viterbo R, Boorjian SA, et al. Natural history, growth kinetics, and outcomes of untreated clinically localized renal tumors under active surveillance. Cancer. 2009;115(13):2844–52.PubMedCrossRefGoogle Scholar
  101. 101.
    Smaldone MC, Kutikov A, Canter DJ, et al. A critical analysis of active surveillance with delayed curative intent for the treatment of small renal masses. Podium presentation (#11); presented at the Society of Urologic Oncology; 2010.Google Scholar
  102. 102.
    Letourneau I, Ouimet D, Dumont M, et al. Renal replacement in end-stage renal disease patients over 75 years old. Am J Nephrol. 2003;23(2):71–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Bosniak MA, Birnbaum BA, Krinsky GA, et al. Small renal parenchymal neoplasms: further observations on growth. Radiology. 1995;197(3):589–97.PubMedGoogle Scholar
  104. 104.
    Abou Youssif T, Kassouf W, Steinberg J, et al. Active surveillance for selected patients with renal masses: updated results with long-term follow-up. Cancer. 2007;110(5):1010–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Abouassaly R, Lane BR, Novick AC. Active surveillance of renal masses in elderly patients. J Urol. 2008;180(2):505–8 [discussion 8–9].PubMedCrossRefGoogle Scholar
  106. 106.
    Beisland C, Hjelle KM, Reisaeter LA, et al. Observation should be considered as an alternative in management of renal masses in older and comorbid patients. Eur Urol. 2009;55(6):1419–27.PubMedCrossRefGoogle Scholar
  107. 107.
    Fernando HS, Duvuru S, Hawkyard SJ. Conservative management of renal masses in the elderly: our experience. Int Urol Nephrol. 2007;39(1):203–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Kouba E, Smith A, McRackan D, et al. Watchful waiting for solid renal masses: insight into the natural history and results of delayed intervention. J Urol. 2007;177(2):466–70 [discussion 70].PubMedCrossRefGoogle Scholar
  109. 109.
    Lamb GW, Bromwich EJ, Vasey P, et al. Management of renal masses in patients medically unsuitable for nephrectomy – natural history, complications, and outcome. Urology. 2004;64(5):909–13.PubMedCrossRefGoogle Scholar
  110. 110.
    Matsuzaki M, Kawano Y, Morikawa H, et al. Conservative management of small renal tumors. Hinyokika Kiyo. 2007;53(4):207–11.PubMedGoogle Scholar
  111. 111.
    Rosales JC, Haramis G, Moreno J, et al. Active surveillance for renal cortical neoplasms. J Urol. 2010;183(5):1698–702.PubMedCrossRefGoogle Scholar
  112. 112.
    Sowery RD, Siemens DR. Growth characteristics of renal cortical tumors in patients managed by watchful waiting. Can J Urol. 2004;11(5):2407–10.PubMedGoogle Scholar
  113. 113.
    Volpe A, Panzarella T, Rendon RA, et al. The natural history of incidentally detected small renal masses. Cancer. 2004;100(4):738–45.PubMedCrossRefGoogle Scholar
  114. 114.
    Wehle MJ, Thiel DD, Petrou SP, et al. Conservative management of incidental contrast-enhancing renal masses as safe alternative to invasive therapy. Urology. 2004;64(1):49–52.PubMedCrossRefGoogle Scholar
  115. 115.
    Wong JA, Rendon RA. Progression to metastatic disease from a small renal cell carcinoma prospectively followed with an active surveillance protocol. Can Urol Assoc J. 2007;1(2):120–2.PubMedGoogle Scholar
  116. 116.
    Mues AC, Landman J. Small renal masses: current concepts regarding the natural history and reflections on the American Urological Association guidelines. Curr Opin Urol. 2010;20(2):105–10.PubMedCrossRefGoogle Scholar
  117. 117.
    Ozono S, Miyao N, Igarashi T, et al. Tumor doubling time of renal cell carcinoma measured by CT: collaboration of Japanese Society of Renal Cancer. Jpn J Clin Oncol. 2004;34(2):82–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Chawla SN, Crispen PL, Hanlon AL, et al. The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. J Urol. 2006;175(2):425–31.PubMedCrossRefGoogle Scholar
  119. 119.
    Siu W, Hafez KS, Johnston 3rd WK, et al. Growth rates of renal cell carcinoma and oncocytoma under surveillance are similar. Urol Oncol. 2007;25(2):115–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Crispen PL, Wong YN, Greenberg RE, et al. Predicting growth of solid renal masses under active surveillance. Urol Oncol. 2008;26(5):555–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Norton L. A Gompertzian model of human breast cancer growth. Cancer Res. 1988;48(24 Pt 1):7067–71.PubMedGoogle Scholar
  122. 122.
    Mues AC, Haramis G, Badani K, et al. Active surveillance for larger (cT1bN0M0 and cT2N0M0) renal cortical neoplasms. Urology. 2010;76(3):620–3.PubMedCrossRefGoogle Scholar
  123. 123.
    Neuzillet Y, Lechevallier E, Andre M, et al. Follow-up of renal oncocytoma diagnosed by percutaneous tumor biopsy. Urology. 2005;66(6):1181–5.PubMedCrossRefGoogle Scholar
  124. 124.
    Crispen PL, Viterbo R, Fox EB, et al. Delayed intervention of sporadic renal masses undergoing active surveillance. Cancer. 2008;112(5):1051–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Kunkle DA, Crispen PL, Chen DY, et al. Enhancing renal masses with zero net growth during active surveillance. J Urol. 2007;177(3):849–53 [discussion 53–4].PubMedCrossRefGoogle Scholar
  126. 126.
    Jewett MA, Finelli A, Morash C, et al. Active surveillance of small renal masses: a prospective multi-center Canadian uro-oncology group trial: abstract no. 896. J Urol. 2009;181(4 supplement):320.CrossRefGoogle Scholar
  127. 127.
    Crispen PL, Uzzo RG. The natural history of untreated renal masses. BJU Int. 2007;99(5 Pt B):1203–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marc C. Smaldone
    • 1
    • 2
  • Daniel Canter
    • 2
  • Alexander Kutikov
    • 2
  • Robert G. Uzzo
    • 2
  1. 1.Merion StationUSA
  2. 2.Division of Urologic Oncology, Department of Surgical OncologyFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations