Advertisement

Novel Delivery of Molecular Therapeutics to the Heart Using Non-biologic Constructs (PPMO/Morpholino) in Muscular Dystrophy

  • Alastair Crisp
  • Aurélie Goyenvalle
  • Kay Elizabeth DaviesEmail author
Chapter
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by the absence of the cytoskeletal protein dystrophin. There is no effective treatment and affected individuals die from respiratory failure and cardiomyopathy by age 30. One recent approach to treating DMD is antisense-mediated exon skipping to restore dystrophin protein. Most mutations causing DMD disrupt the open reading frame, leading to aberrant translation and the lack of dystrophin protein. The related allelic disorder Becker muscular dystrophy (BMD) is caused by mutations that create shortened, but in-frame transcripts, producing a partially functional dystrophin, leading to a milder phenotype. Antisense-induced exon-skipping strategies aim to remove the mutated or additional exon(s) to restore the reading frame and, consequently, induce the expression of these “BMD-like” shortened forms of the dystrophin protein, retaining crucial functions. Various types of antisense oligonucleotides (AOs) exist and have been shown to cause exon skipping in vivo and improve skeletal muscle function in animal models and, in two independent phase I clinical trials, to cause exon skipping in humans. More recently, phosphorodiamidate morpholino oligomers (PMOs) have been directly conjugated to cell-penetrating peptides (CPPs), to form PPMOs, thereby improving their efficacy and allowing for a more systemic delivery. This conjugation allows PPMOs to reach the heart, restoring full cardiac function in animal models, at non-toxic doses. These PPMOs show great potential for improving function of both skeletal and cardiac muscle in DMD patients, though a number of hurdles remain to be overcome.

Keywords

Right Ventricle Duchenne Muscular Dystrophy Duchenne Muscular Dystrophy Patient Dystrophin Gene Serum Creatine Kinase Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the UK Medical Research Center, the Muscular Dystrophy Campaign, the Muscular Dystrophy Association USA, the Association Monegasque contre les myopathies and the Duchenne Parent Project France.

References

  1. 1.
    Eagle M, Bourke J, Bullock R, et al. Managing Duchenne muscular dystrophy – the additive effect of spinal surgery and home nocturnal ventilation in improving survival. Neuromuscul Disord. 2007;17:470–5.PubMedGoogle Scholar
  2. 2.
    Ringel SP, Carroll JE, Schold SC. The spectrum of mild X-linked recessive muscular dystrophy. Arch Neurol. 1977;34:408–16.PubMedGoogle Scholar
  3. 3.
    Hsu DT. Cardiac manifestations of neuromuscular disorders in children. Paediatr Respir Rev. 2010;11:35–8.PubMedGoogle Scholar
  4. 4.
    Kirchmann C, Kececioglu D, Korinthenberg R, Dittrich S. Echocardiographic and electrocardiographic findings of cardiomyopathy in Duchenne and Becker-Kiener muscular dystrophies. Pediatr Cardiol. 2005;26:66–72.PubMedGoogle Scholar
  5. 5.
    Melacini P, Fanin M, Danieli GA, et al. Myocardial involvement is very frequent among patients affected with subclinical Becker’s muscular dystrophy. Circulation. 1996;94:3168–75.PubMedGoogle Scholar
  6. 6.
    Nigro G, Comi LI, Politano L, et al. Evaluation of the cardiomyopathy in Becker muscular dystrophy. Muscle Nerve. 1995;18:283–91.PubMedGoogle Scholar
  7. 7.
    Perloff JK, de Leon Jr AC, O’Doherty D. The cardiomyopathy of progressive muscular dystrophy. Circulation. 1966;33:625–48.PubMedGoogle Scholar
  8. 8.
    Rubin IL. The heart in progressive muscular dystrophy. Am Heart J. 1952;43:161–9.PubMedGoogle Scholar
  9. 9.
    Manning GW, Cropp GJ. The electrocardiogram in progressive muscular dystrophy. Br Heart J. 1958;20:416–20.PubMedGoogle Scholar
  10. 10.
    Goldberg SJ, Stern LZ, Feldman L, Allen HD, Sahn DJ, Valdes-Cruz LM. Serial two-­dimensional echocardiography in Duchenne muscular dystrophy. Neurology. 1982;32:1101–5.PubMedGoogle Scholar
  11. 11.
    Frankel KA, Rosser RJ. The pathology of the heart in progressive muscular dystrophy: epimyocardial fibrosis. Hum Pathol. 1976;7:375–86.PubMedGoogle Scholar
  12. 12.
    Nishimura T, Yanagisawa A, Sakata H, et al. Thallium-201 single photon emission computed tomography (SPECT) in patients with Duchenne’s progressive muscular dystrophy: a histopathologic correlation study. Jpn Circ J. 2001;65:99–105.PubMedGoogle Scholar
  13. 13.
    Sanyal SK, Johnson WW, Thapar MK, Pitner SE. An ultrastructural basis for electrocardiographic alterations associated with Duchenne’s progressive muscular dystrophy. Circulation. 1978;57:1122–9.PubMedGoogle Scholar
  14. 14.
    Wakai S, Minami R, Kameda K, et al. Electron microscopic study of the biopsied cardiac muscle in Duchenne muscular dystrophy. J Neurol Sci. 1988;84:167–75.PubMedGoogle Scholar
  15. 15.
    Bosser G, Lucron H, Lethor JP, et al. Evidence of early impairments in both right and left ventricular inotropic reserves in children with Duchenne’s muscular dystrophy. Am J Cardiol. 2004;93:724–7.PubMedGoogle Scholar
  16. 16.
    Yotsukura M, Miyagawa M, Tsuya T, Ishihara T, Ishikawa K. Pulmonary hypertension in progressive muscular dystrophy of the Duchenne type. Jpn Circ J. 1988;52:321–6.PubMedGoogle Scholar
  17. 17.
    Melacini P, Vianello A, Villanova C, et al. Cardiac and respiratory involvement in advanced stage Duchenne muscular dystrophy. Neuromuscul Disord. 1996;6:367–76.PubMedGoogle Scholar
  18. 18.
    Bulfield G, Siller WG, Wight PA, Moore KJ. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA. 1984;81:1189–92.PubMedGoogle Scholar
  19. 19.
    Dangain J, Vrbova G. Muscle development in mdx mutant mice. Muscle Nerve. 1984;7:700–4.PubMedGoogle Scholar
  20. 20.
    Coulton GR, Curtin NA, Morgan JE, Partridge TA. The mdx mouse skeletal muscle myopathy: II. contractile properties. Neuropathol Appl Neurobiol. 1988;14:299–314.PubMedGoogle Scholar
  21. 21.
    Anderson JE, Bressler BH, Ovalle WK. Functional regeneration in the hindlimb skeletal muscle of the mdx mouse. J Muscle Res Cell Motil. 1988;9:499–515.PubMedGoogle Scholar
  22. 22.
    DiMario J, Buffinger N, Yamada S, Strohman RC. Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science. 1989;244:688–90.PubMedGoogle Scholar
  23. 23.
    Stedman HH, Sweeney HL, Shrager JB, et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature. 1991;352:536–9.PubMedGoogle Scholar
  24. 24.
    Bia BL, Cassidy PJ, Young ME, et al. Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of Duchenne muscular dystrophy. J Mol Cell Cardiol. 1999;31:1857–62.PubMedGoogle Scholar
  25. 25.
    Quinlan JG, Hahn HS, Wong BL, Lorenz JN, Wenisch AS, Levin LS. Evolution of the mdx mouse cardiomyopathy: physiological and morphological findings. Neuromuscul Disord. 2004;14:491–6.PubMedGoogle Scholar
  26. 26.
    Zhang W, ten Hove M, Schneider JE, et al. Abnormal cardiac morphology, function and energy metabolism in the dystrophic mdx mouse: an MRI and MRS study. J Mol Cell Cardiol. 2008;45:754–60.PubMedGoogle Scholar
  27. 27.
    Van Erp C, Loch D, Laws N, Trebbin A, Hoey AJ. Timeline of cardiac dystrophy in 3–18-month-old MDX mice. Muscle Nerve. 2010;42(4):504–13.PubMedGoogle Scholar
  28. 28.
    Wu B, Moulton HM, Iversen PL, et al. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA. 2008;105:14814–9.PubMedGoogle Scholar
  29. 29.
    Bostick B, Yue Y, Long C, et al. Cardiac expression of a mini-dystrophin that normalizes skeletal muscle force only partially restores heart function in aged mdx mice. Mol Ther. 2009;17:253–61.PubMedGoogle Scholar
  30. 30.
    Kamogawa Y, Biro S, Maeda M, et al. Dystrophin-deficient myocardium is vulnerable to pressure overload in vivo. Cardiovasc Res. 2001;50:509–15.PubMedGoogle Scholar
  31. 31.
    Townsend D, Yasuda S, Li S, Chamberlain JS, Metzger JM. Emergent dilated cardiomyopathy caused by targeted repair of dystrophic skeletal muscle. Mol Ther. 2008;16:832–5.PubMedGoogle Scholar
  32. 32.
    Danialou G, Comtois AS, Dudley R, et al. Dystrophin-deficient cardiomyocytes are abnormally vulnerable to mechanical stress-induced contractile failure and injury. FASEB J. 2001;15:1655–7.PubMedGoogle Scholar
  33. 33.
    Deconinck AE, Rafael JA, Skinner JA, et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell. 1997;90:717–27.PubMedGoogle Scholar
  34. 34.
    Grady RM, Merlie JP, Sanes JR. Subtle neuromuscular defects in utrophin-deficient mice. J Cell Biol. 1997;136:871–82.PubMedGoogle Scholar
  35. 35.
    Janssen PM, Hiranandani N, Mays TA, Rafael-Fortney JA. Utrophin deficiency worsens cardiac contractile dysfunction present in dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol. 2005;289:H2373–8.PubMedGoogle Scholar
  36. 36.
    Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990;345:315–9.PubMedGoogle Scholar
  37. 37.
    Ohlendieck K, Campbell KP. Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J Cell Biol. 1991;115:1685–94.PubMedGoogle Scholar
  38. 38.
    Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992;355:696–702.PubMedGoogle Scholar
  39. 39.
    Ohlendieck K, Matsumura K, Ionasescu VV, et al. Duchenne muscular dystrophy: deficiency of dystrophin-associated proteins in the sarcolemma. Neurology. 1993;43:795–800.PubMedGoogle Scholar
  40. 40.
    Mokri B, Engel AG. Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology. 1975;25:1111–20.PubMedGoogle Scholar
  41. 41.
    Rowland LP. Biochemistry of muscle membranes in Duchenne muscular dystrophy. Muscle Nerve. 1980;3:3–20.PubMedGoogle Scholar
  42. 42.
    Menke A, Jockusch H. Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. Nature. 1991;349:69–71.PubMedGoogle Scholar
  43. 43.
    Bodensteiner JB, Engel AG. Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. Neurology. 1978;28:439–46.PubMedGoogle Scholar
  44. 44.
    Bertorini TE, Bhattacharya SK, Palmieri GM, Chesney CM, Pifer D, Baker B. Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology. 1982;32:1088–92.PubMedGoogle Scholar
  45. 45.
    Bertorini TE, Cornelio F, Bhattacharya SK, et al. Calcium and magnesium content in fetuses at risk and prenecrotic Duchenne muscular dystrophy. Neurology. 1984;34:1436–40.PubMedGoogle Scholar
  46. 46.
    Morandi L, Mora M, Gussoni E, Tedeschi S, Cornelio F. Dystrophin analysis in Duchenne and Becker muscular dystrophy carriers: Correlation with intracellular calcium and albumin. Ann Neurol. 1990;28:674–9.PubMedGoogle Scholar
  47. 47.
    Jackson MJ, Brooke MH, Kaiser K, Edwards RH. Creatine kinase and prostaglandin E2 release from isolated Duchenne muscle. Neurology. 1991;41:101–4.PubMedGoogle Scholar
  48. 48.
    Jung C, Martins AS, Niggli E, Shirokova N. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Cardiovasc Res. 2008;77:766–73.PubMedGoogle Scholar
  49. 49.
    Williams IA, Allen DG. The role of reactive oxygen species in the hearts of dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol. 2007;293:H1969–77.PubMedGoogle Scholar
  50. 50.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287:C817–33.PubMedGoogle Scholar
  51. 51.
    Huser J, Blatter LA. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J. 1999;343(Pt 2):311–7.PubMedGoogle Scholar
  52. 52.
    Kumar A, Boriek AM. Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J. 2003;17:386–96.PubMedGoogle Scholar
  53. 53.
    Tang Y, Reay DP, Salay MN, et al. Inhibition of the IKK/NF-kappaB pathway by AAV gene transfer improves muscle regeneration in older mdx mice. Gene Ther. 2010;17(12):1476–83. Epub 2010 Aug 19.PubMedGoogle Scholar
  54. 54.
    Grounds MD, Torrisi J. Anti-TNFalpha (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J. 2004;18:676–82.PubMedGoogle Scholar
  55. 55.
    Zaidi SI, Narahara HT. Degradation of skeletal muscle plasma membrane proteins by calpain. J Membr Biol. 1989;110:209–16.PubMedGoogle Scholar
  56. 56.
    Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83:731–801.PubMedGoogle Scholar
  57. 57.
    Yoshikawa Y, Hagihara H, Ohga Y, et al. Calpain inhibitor-1 protects the rat heart from ischemia-reperfusion injury: Analysis by mechanical work and energetics. Am J Physiol Heart Circ Physiol. 2005;288:H1690–8.PubMedGoogle Scholar
  58. 58.
    Jearawiriyapaisarn N, Moulton HM, Sazani P, Kole R, Willis MS. Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers. Cardiovasc Res. 2010;85:444–53.PubMedGoogle Scholar
  59. 59.
    Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.PubMedGoogle Scholar
  60. 60.
    Pastoret C, Sebille A. Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse. Muscle Nerve. 1995;18:1147–54.PubMedGoogle Scholar
  61. 61.
    Morrison J, Lu QL, Pastoret C, Partridge T, Bou-Gharios G. T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Invest. 2000;80:881–91.PubMedGoogle Scholar
  62. 62.
    Alexakis C, Partridge T, Bou-Gharios G. Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol. 2007;293:C661–9.PubMedGoogle Scholar
  63. 63.
    Sapp JL, Bobet J, Howlett SE. Contractile properties of myocardium are altered in dystrophin-deficient mdx mice. J Neurol Sci. 1996;142:17–24.PubMedGoogle Scholar
  64. 64.
    Kovick RB, Fogelman AM, Abbasi AD, Peter JB, Pearce ML. Echocardiographic evaluation of posterior left ventricular wall motion in muscular dystrophy. Circulation. 1975;52:447–54.PubMedGoogle Scholar
  65. 65.
    Goldberg SJ, Feldman L, Reinecke C, Stern LZ, Sahn DJ, Allen HD. Echocardiographic determination of contraction and relaxation measurements of the left ventricular wall in normal subjects and patients with muscular dystrophy. Circulation. 1980;62:1061–9.PubMedGoogle Scholar
  66. 66.
    Bers DM. Ca regulation in cardiac muscle. Med Sci Sports Exerc. 1991;23:1157–62.PubMedGoogle Scholar
  67. 67.
    Morine K, Sleeper MM, Barton ER, Sweeney L. Overexpression of SERCA1a in the mdx diaphragm reduces susceptibility to contraction induced damage. Hum Gene Ther. 2010;21(12):1735–9. doi: 10.1089/hum.2010.077.PubMedGoogle Scholar
  68. 68.
    Turner PR, Westwood T, Regen CM, Steinhardt RA. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature. 1988;335:735–8.PubMedGoogle Scholar
  69. 69.
    Samaha FJ, Gergely J. Biochemical abnormalities of the sarcoplasmic reticulum in muscular dystrophy. N Engl J Med. 1969;280:184–8.PubMedGoogle Scholar
  70. 70.
    Takagi A, Schotland DL, Rowland LP. Sarcoplasmic reticulum in Duchenne muscular dystrophy. Arch Neurol. 1973;28:380–4.PubMedGoogle Scholar
  71. 71.
    Yasuda S, Townsend D, Michele DE, Favre EG, Day SM, Metzger JM. Dystrophic heart failure blocked by membrane sealant poloxamer. Nature. 2005;436:1025–9.PubMedGoogle Scholar
  72. 72.
    Townsend D, Blankinship MJ, Allen JM, Gregorevic P, Chamberlain JS, Metzger JM. Systemic administration of micro-dystrophin restores cardiac geometry and prevents dobutamine-induced cardiac pump failure. Mol Ther. 2007;15:1086–92.PubMedGoogle Scholar
  73. 73.
    Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science. 1989;244:1578–80.PubMedGoogle Scholar
  74. 74.
    Hoffman EP, Morgan JE, Watkins SC, Partridge TA. Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci. 1990;99:9–25.PubMedGoogle Scholar
  75. 75.
    Lu QL, Morris GE, Wilton SD, et al. Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J Cell Biol. 2000;148:985–96.PubMedGoogle Scholar
  76. 76.
    Takeshima Y, Nishio H, Sakamoto H, Nakamura H, Matsuo M. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clin Invest. 1995;95:515–20.PubMedGoogle Scholar
  77. 77.
    Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3:285–98.PubMedGoogle Scholar
  78. 78.
    Aartsma-Rus A, van Vliet L, Hirschi M, et al. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther. 2009;17:548–53.PubMedGoogle Scholar
  79. 79.
    Stein CA. The experimental use of antisense oligonucleotides: a guide for the perplexed. J Clin Invest. 2001;108:641–4.PubMedGoogle Scholar
  80. 80.
    Arechavala-Gomeza V, Graham IR, Popplewell LJ, et al. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther. 2007;18:798–810.PubMedGoogle Scholar
  81. 81.
    Beroud C, Tuffery-Giraud S, Matsuo M, et al. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat. 2007;28:196–202.PubMedGoogle Scholar
  82. 82.
    Aartsma-Rus A, Janson AA, Kaman WE, et al. Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet. 2004;74:83–92.PubMedGoogle Scholar
  83. 83.
    England SB, Nicholson LV, Johnson MA, et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature. 1990;343:180–2.PubMedGoogle Scholar
  84. 84.
    van Vliet L, de Winter CL, van Deutekom JC, van Ommen GJ, Aartsma-Rus A. Assessment of the feasibility of exon 45–55 multiexon skipping for Duchenne muscular dystrophy. BMC Med Genet. 2008;9:105.PubMedGoogle Scholar
  85. 85.
    Yokota T, Lu QL, Partridge T, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol. 2009;65:667–76.PubMedGoogle Scholar
  86. 86.
    Goyenvalle A, Vulin A, Fougerousse F, et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science. 2004;306:1796–9.PubMedGoogle Scholar
  87. 87.
    Denti MA, Rosa A, D’Antona G, et al. Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci USA. 2006;103:3758–63.PubMedGoogle Scholar
  88. 88.
    Goyenvalle A, Babbs A, Garcia L, Davies K. AAV-U7snRNA mediated multi exon-skipping for Duchenne muscular dystrophy. Neuromuscul Disord United States. 2010;20:641.Google Scholar
  89. 89.
    Lu QL, Rabinowitz A, Chen YC, et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA. 2005;102:198–203.PubMedGoogle Scholar
  90. 90.
    Heemskerk HA, de Winter CL, de Kimpe SJ, et al. In vivo comparison of 2′-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med. 2009;11:257–66.PubMedGoogle Scholar
  91. 91.
    van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357:2677–86.PubMedGoogle Scholar
  92. 92.
    Goemans NM, Buyse G, Tulinius M, Verschuuren JJ, de Kimpe S, van Deutekom JC. A phase I/IIa study on antisense compound PRO051 in patients with Duchenne muscular dystrophy. Neuromuscul Disord. 2009:659–660.Google Scholar
  93. 93.
    Schmajuk G, Sierakowska H, Kole R. Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J Biol Chem. 1999;274:21783–9.PubMedGoogle Scholar
  94. 94.
    Fletcher S, Honeyman K, Fall AM, Harding PL, Johnsen RD, Wilton SD. Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med. 2006;8:207–16.PubMedGoogle Scholar
  95. 95.
    Alter J, Lou F, Rabinowitz A, et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med. 2006;12:175–7.PubMedGoogle Scholar
  96. 96.
    Wu B, Xiao B, Cloer C, et al. One-year treatment of morpholino antisense oligomer improves skeletal and cardiac muscle functions in dystrophic mdx mice. Mol Ther. 2011;19(3):576–83. Epub 2010 Dec 21.PubMedGoogle Scholar
  97. 97.
    Kinali M, Arechavala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8:918–28.PubMedGoogle Scholar
  98. 98.
    Bostick B, Yue Y, Long C, Duan D. Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ Res. 2008;102:121–30.PubMedGoogle Scholar
  99. 99.
    Richard JP, Melikov K, Vives E, et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2003;278:585–90.PubMedGoogle Scholar
  100. 100.
    Abes S, Williams D, Prevot P, Thierry A, Gait MJ, Lebleu B. Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates. J Control Release. 2006;110:595–604.PubMedGoogle Scholar
  101. 101.
    Fletcher S, Honeyman K, Fall AM, et al. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol Ther. 2007; 15:1587–92.PubMedGoogle Scholar
  102. 102.
    Yin H, Moulton HM, Seow Y, et al. Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet. 2008;17:3909–18.PubMedGoogle Scholar
  103. 103.
    Goyenvalle A, Babbs A, Powell D, et al. Prevention of dystrophic pathology in severely affected Dystrophin/Utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol Ther. 2010;18:198–205.PubMedGoogle Scholar
  104. 104.
    Crisp A, Yin H, Goyenvalle A, et al. Diaphragm rescue alone prevents heart dysfunction in dystrophic mice. Hum Mol Genet. 2011;20:413–21.PubMedGoogle Scholar
  105. 105.
    Wu RP, Youngblood DS, Hassinger JN, et al. Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity. Nucleic Acids Res. 2007;35:5182–91.PubMedGoogle Scholar
  106. 106.
    Jearawiriyapaisarn N, Moulton HM, Buckley B, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther. 2008;16:1624–9.PubMedGoogle Scholar
  107. 107.
    Yin H, Moulton HM, Betts C, et al. A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet. 2009;18:4405–14.PubMedGoogle Scholar
  108. 108.
    Amantana A, Moulton HM, Cate ML, et al. Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjug Chem. 2007;18:1325–31.PubMedGoogle Scholar
  109. 109.
    Moulton HM, Moulton JD. Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta. 2010;1798: 2296–303.PubMedGoogle Scholar
  110. 110.
    Futaki S, Nakase I, Suzuki T, Youjun Z, Sugiura Y. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Biochemistry. 2002;41:7925–30.PubMedGoogle Scholar
  111. 111.
    Morcos PA, Li Y, Jiang S. Vivo-morpholinos: a non-peptide transporter delivers morpholinos into a wide array of mouse tissues. BioTechniques. 2008;45:613–4. 616, 618 passim.PubMedGoogle Scholar
  112. 112.
    Wu B, Li Y, Morcos PA, Doran TJ, Lu P, Lu QL. Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther. 2009;17:864–71.PubMedGoogle Scholar
  113. 113.
    Simmons D, Linde L, Miller J, O’Reilly R. Relation between lung volume and pulmonary vascular resistance. Circ Res. 1961;9:465–71.Google Scholar
  114. 114.
    Ito K, Kimura S, Ozasa S, et al. Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice. Hum Mol Genet. 2006;15:2266–75.PubMedGoogle Scholar
  115. 115.
    Aartsma-Rus A, Fokkema I, Verschuuren J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 2009;30: 293–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alastair Crisp
    • 1
  • Aurélie Goyenvalle
    • 1
  • Kay Elizabeth Davies
    • 2
    Email author
  1. 1.Department of Physiology, Anatomy, & Genetics, MRC Functional Genomics UnitUniversity of OxfordOxfordUK
  2. 2.Department of Physiology, Anatomy, & GeneticsUniversity of OxfordOxfordUK

Personalised recommendations