Composition of Cacao Beans

  • Antonella Bertazzo
  • Stefano Comai
  • Francesca Mangiarini
  • Su Chen
Part of the Nutrition and Health book series (NH, volume 7)

Key Points

  • The physics and chemistry of cocoa beans are very complex and change throughout the life of the bean, mainly depending on the processing it receives and on geographical origin.

  • The main component of cocoa beans is lipid fraction, approximately 50%, mainly constituted by neutral lipids, with a predominant fraction of triglyceride molecules.

  • Protein fraction constitutes 10–15% of the dry weight of cocoa seeds, and it is composed of 52% and 43% of albumin and globulin fractions, respectively. Other proteins, such as glutelins and prolamins, are present in lower concentrations.

  • Cocoa beans contain stimulant substances, such as theobromine, caffeine, and theophylline, named purinic alkaloids, which affect the central nervous system.

  • Various bioactive compounds with vasoactive effects have also been reported in cocoa beans.


Theobroma cacao Cocoa beans Nutrient composition Geographic influence Purinic alkaloids 


  1. 1.
    Belitz HD, Grosch W, Schieberle P. Food chemistry. 4th ed. Berlin/Heidelberg: Springer; 2009.Google Scholar
  2. 2.
    Maillard LC. Action of amino acids on sugars. Formation of melanoidins in a methodical way. Compt Rendus Acad Sci. 1912;154:66–8.Google Scholar
  3. 3.
    Zak DL, Keeney PG. Extraction and fractionation of cocoa proteins as applied to several varieties of cocoa beans. J Agric Food Chem. 1976;24:479–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Voigt J, Biehl B, Kamaruddin S. The major seed proteins of Theobroma cacao L. Food Chem. 1993;47:145–51.CrossRefGoogle Scholar
  5. 5.
    Kochhar S, Gartenmann K, Juillerat MA. Primary structure of the abundant seed albumin of Theobroma cacao by mass spectrometry. J Agric Food Chem. 2000;48:5593–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Spencer ME, Hodge R. Cloning and sequencing of a cDNA encoding the major storage proteins of Theobroma cacao. Planta. 1992;186:567–76.CrossRefGoogle Scholar
  7. 7.
    Abecia-Soria L, Pezoa-Garcia NH, Amaya-Farfan J. Soluble albumin and biological value of protein in cocoa (Theobroma cacao L.) beans as a function of roasting time. J Food Sci. 2005;70:S294–8.CrossRefGoogle Scholar
  8. 8.
    Amin I, Jinap S, Jamilah B. Vicilin-class globulins and their degradation during cocoa fermentation. Food Chem. 1997;59:1–5.CrossRefGoogle Scholar
  9. 9.
    Voigt J, Biehl B, Heinrichs H, Kamaruddin S, Marsoner GG, Hugi A. In-vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated from cocoa-seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase. Food Chem. 1994;49:173–80.CrossRefGoogle Scholar
  10. 10.
    Hashim P, Selamat J, Syed Muhammad SK, Ali A. Changes in free amino-acid, peptide-N, sugar and pyrazine concentration during cocoa fermentation. J Sci Food Agric. 1998;78:535–42.CrossRefGoogle Scholar
  11. 11.
    Rohsius C, Matissek R, Lieberei R. Free amino acid amounts in raw cocoas from different origins. Eur Food Res Technol. 2006;222:432–8.CrossRefGoogle Scholar
  12. 12.
    Bertazzo A, Comai S, Brunato I, Zancato M, Costa CVL. The content of protein and non-protein (free and protein-bound) tryptophan in Theobroma cacao beans. Food Chem. 2011;124:93–6.CrossRefGoogle Scholar
  13. 13.
    Adeyeye EI, Akinyeye RO, Ogunlade I, Olaofe O, Boluwade JO. Effect of farm and industrial processing on the amino acid profile of cocoa beans. Food Chem. 2010;118:357–63.CrossRefGoogle Scholar
  14. 14.
    Parsons JG, Keeney PG, Patton S. Identification and quantitative analysis of phospholipids in cocoa beans. J Food Sci. 1969;34:497–9.CrossRefGoogle Scholar
  15. 15.
    Hernandez B, Castellote AI, Permanyer JJ. Triglyceride analysis of cocoa beans from different geographical origins. Food Chem. 1991;41:269–76.CrossRefGoogle Scholar
  16. 16.
    Pittenauer E, Allmaier G. The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J Am Soc Mass Spectrom. 2009;20:1037–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Lehrian DW, Keeney PG, Butler DR. Triglyceride characterizatics of cocoa butter from cocoa fruit matured in a microclimate of elevated temperature. J Am Oil Chem Soc. 1980;57:66–9.CrossRefGoogle Scholar
  18. 18.
    Chin AHG, Zainuddin N. Characteristics of Malaysian cocoa butter. In: Proceedings of the 1984 international conference on cocoa and coconuts. Kuala Lumpur; 1994. p. 1.Google Scholar
  19. 19.
    Chalseri S, Dimick PS. Cocoa butter: its composition and properties. Manuf Confect. 1987;68:115–22.Google Scholar
  20. 20.
    Redgwell RJ, Trovato V, Merinat S, Curti D, Hediger S, Manez A. Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chem. 2003;81:103–12.CrossRefGoogle Scholar
  21. 21.
    Redgwell RJ, Trovato V, Curti D. Cocoa bean carbohydrates: roasting-induced changes and polymer interactions. Food Chem. 2003;80:511–6.CrossRefGoogle Scholar
  22. 22.
    Reineccius GA, Andersen DA, Kavanagh ET, Keeney PG. Identification and quantification of the free sugars in cocoa beans. J Agric Food Chem. 1972;20:199–202.CrossRefGoogle Scholar
  23. 23.
    Porter LJ, Ma Z, Chan BG. Cacao procyanidins: major flavonoids and identification of some minor metabolites. Phytochemistry. 1991;30:1657–63.CrossRefGoogle Scholar
  24. 24.
    Miller KB, Stuart DA, Smith NL, Lee CY, McHale NL, Flanagan JA, et al. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J Agric Food Chem. 2006;54:4062–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Holm CS, Aston JW, Douglas K. The effects of the organic acids in cocoa on the flavour of chocolate. J Sci Food Agric. 1993;61:65–71.CrossRefGoogle Scholar
  26. 26.
    Smit HJ. Theobromine and the pharmacology of cocoa. Handb Exp Pharmacol. 2011;200:201–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Bruinsma K, Taren DL. Chocolate: food or drug? J Am Diet Assoc. 1999;99:1249–56.PubMedCrossRefGoogle Scholar
  28. 28.
    di Tomaso E, Beltramo M, Piomelli D. Brain cannabinoids in chocolate. Nature. 1996;382:677–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Granvogl M, Bugan S, Schieberle P. Formation of amines and aldehydes from parent amino acids during thermal processing of cocoa and model systems: new insights into pathways of the strecker reaction. J Agric Food Chem. 2006;54:1730–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Herraiz T. Tetrahydro-beta-carbolines, potential neuroactive alkaloids, in chocolate and cocoa. J Agric Food Chem. 2000;48:4900–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Arlorio M. Alimenti nervini: cacao, caffè, tè. In: Cabras P, Martelli A, editors. Chimica degli Alimenti. Padova: Piccin; 2004. p. 291–354.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Antonella Bertazzo
    • 1
  • Stefano Comai
    • 2
  • Francesca Mangiarini
    • 3
  • Su Chen
    • 4
  1. 1.Department of Pharmaceutical SciencesUniversity of PadovaPadovaItaly
  2. 2.Department of Pharmaceutical SciencesUniversity of PadovaPadovaItaly
  3. 3.Department of Chemistry and BiochemistryConcordia UniversityW.MontrealCanada
  4. 4.Research and DevelopmentChainon Neurotrophin Biotechnology IncSan AntonioUSA

Personalised recommendations