Advertisement

Anabolic Doping Agents

  • Daniel A. von DeutschEmail author
  • Imad K. Abukhalaf
  • Rigobert Lapu-Bula
Chapter

Abstract

This chapter discusses the different types of doping agents that have been used since the pre-Christian era, such as hallucinogenic mushrooms and alcohol, up to those currently used by athletes today. Today, articles 2.1 through 2.8 of the World Anti-Doping Code, define doping as the violation of one or more of these articles through the use of prohibited substances or methods. In the present discussion on anabolic doping agents, the classes of banned substances covered include stimulants, anabolic agents, peptide hormones, and β2-adrenoceptor agonists, as well as masking and antiestrogenic agents. The pharmacokinetics, pharmacodynamics, and toxicology of these substances will be discussed along with some potential historical consequences of the use of certain doping agents by both axis and allied forces during World War II, and the terrible consequences that might be attributed to their use.

Keywords

Doping Anabolic Performance enhancement Athletics 

Notes

Acknowledgments

This publication was made possible by Grant Number 5P20RR11104 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH).

References

  1. 1.
    Lippi G, Franchini M, Guidi GC (2008) Doping in competition or doping in sport? Br Med Bull. 86:95–107.PubMedGoogle Scholar
  2. 2.
    Hallakarva Gunnora “Berserkergang” (1996). Stefan’s Florilegium Berserkergang-art. http://www.florilegium.org. Accessed 12 June 2010.
  3. 3.
    Lombardo JA (1990) Anabolic-Androgenic Steroids. In: Anabolic Steroid Abuse, Lin GC and Erinoff L. Eds. NIDA Research Monograph 102:60–73.Google Scholar
  4. 4.
    Times Record News; Wichita Falls, Texas; Mon, June 18, 2001. Speed’s long history Amphetamine drugs have caused trouble for decades. Jeff Hall, Times Record News www.trnonline.com/archives/2001archives/06182001/local_news/25530.shtml. Jeff Hall may be contacted at (940)-763-7596 or by e-mail at hallj@wtr.com. Accessed 12 June 2010.
  5. 5.
    Goodman LS and Gilman A (1941) Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 1st ed. McGraw-Hill, New York, 1207–1226.Google Scholar
  6. 6.
    Snyder LL (2005) Hitler’s henchmen: The Nazis who shaped the Third Reich. Newton Abbot: David & Charles. 2nd Edition. ISBN: 0715320335 9780715320334.Google Scholar
  7. 7.
    Gibbels E (1989) [Hitler’s neurologic disease--differential diagnosis of Parkinson syndrome]. Fortschr Neurol Psychiatr. 57:505–517. [German].PubMedGoogle Scholar
  8. 8.
    http://amphetamines.com/amphetam.html (2010) Amphetamine usage and World War II; Adolf Hitler and amphetamines http://amphetamines.com/adolf-hitler.html. Accessed 10 June 2010.
  9. 9.
    Wanjek B, Rosendahl J, Strauss B, Gabriel HH (2007) Doping, drugs and drug abuse among adolescents in the State of Thuringia (Germany): prevalence, knowledge and attitudes. Int J Sports Med. 28:346–353.PubMedGoogle Scholar
  10. 10.
  11. 11.
    World Anti-Doping Agency (2009). The World Anti-Doping Code. The 2009 Prohibited List. http://www.wada-ama.org/rtecontent/document/2009_Prohibited_List_ENG_Final_20_Sept_08.pdf. Accessed 10 June 2010.
  12. 12.
    Kochakian CD (1990) History of Anabolic-Androgenic Steroids. In: Anabolic Steroid Abuse, Lin GC and Erinoff L. Eds. NIDA Research Monograph 102:29–59.Google Scholar
  13. 13.
    Burtis CA and Ashwood ER (1994) In: Tietz’s Textbook of Clinical Chemistry, 2nd ed. W.B. Saunders Company, Philadelphia, PA.Google Scholar
  14. 14.
    Morrison RT and Boyd RN (1974) Organic Chemistry. Morrison and Boyd 3rd ed. Allyn and Bacon, Inc., Boston.Google Scholar
  15. 15.
    Budavari S, O’Neil MJ, Smith A, Heckelman PE and Kinneary JF (1996) The Merck Index, An encyclopedia of chemicals, drugs, and biologicals. 12th ed. Merck Research Laboratories Division of Merck & CO., Inc, Whitehouse Station, NY.Google Scholar
  16. 16.
    von Deutsch DA, Abukhalaf IK, Aboul-Enein HY, Wineski LE, Oster RA, Paulsen DF, and Potter DE (2000) β-agonist-induced alterations in organ weights and protein content: comparison of racemic clenbuterol and its enantiomers. Chirality. 12:137–148.Google Scholar
  17. 17.
    Mukherjee A, Kirkovsky L, Yao XT, Yates RC, Miller DD, Dalton JT (1996) Enantioselective binding of Casodex to the androgen receptor. Xenobiotica. 26:117–122.PubMedGoogle Scholar
  18. 18.
    Hardman JG and Limbird LE (2001) Goodman and Gilman’s: The Pharmacological Basis of Therapeuics, 10th ed. McGraw-Hill, New.Google Scholar
  19. 19.
    King DS, Sharp RL, Vukovich MD, Brown GA, Reifenrath TA, Uhl NL, Parsons KA (1999) Effect of oral androstenedione on serum testosterone and adaptations to resistance training in young men. JAMA. 281:2020–2028.PubMedGoogle Scholar
  20. 20.
    Meikle AW, Arver S, Dobs AS, Sanders SW, Rajaram L, Mazer NA (1996) Pharmacokinetics and metabolism of a permeation-enhanced testosterone transdermal system in hypogonadal men: influence of application site- a clinical research center study. J. Clin. Endocrinol Metab. 81:1832–1840.PubMedGoogle Scholar
  21. 21.
    Wang C, Berman N, Longstreth JA, Chuapoco B, Hull L, Steiner B, Faulkner S, Dudley RE, Swerdloff RS (2000) Pharmacokinetics of transdermal testosterone gel in hypogonadal men: application of gel at one site versus four sites: a General Clinical Research Center Study. J. Clin. Endocrinol. Metab. 85:964–969.PubMedGoogle Scholar
  22. 22.
    Zhang GY, Gu YQ, Wang XH, Cui YG, Bremner WJ (1998) A pharmacokinetic study of injectable testosterone undecanoate in hypogonadal men. J. Androl. 19:761–768.PubMedGoogle Scholar
  23. 23.
    Segura J, Ventura R, Jurado C (1998) Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. matogr. B. Biomed. Sci. Appl. 713:61–90.Google Scholar
  24. 24.
    Simionescu L, Neacsu E, Zimel A, Caragheorgheopol A (1990) The development of a radioimmunoassay system for testosterone (T) and dihydrotestosterone (DHT). Part 2. The preparation of antisera to T. Endocrinologie. 28:107–125.PubMedGoogle Scholar
  25. 25.
    Peng SH, Segura J, Farre M, Gonzalez JC, de la Torre X (2000) Plasma and urinary markers of oral testosterone undecanoate misuse. Steroids. 67:39–50.Google Scholar
  26. 26.
    SmartBodyz Nutrition; http://www.smartbodyz.com; Fort Worth, Texas 76102; Toll Free: 187; SmartBodyz (1-877-627-8263); Telephone: 817-335-1982; Email: webmaster@smartbodyz.com. Accessed 10 June 2010.
  27. 27.
    Broeder CE, Quindry J, Brittingham K, Panton L, Thomson J, Appakondu S, Breuel K, Byrd R, Douglas J, Earnest C, Mitchell C, Olson M, Roy T, Yarlagadda C (2000) Physiological and hormonal influences of androstenedione supplementation in men 35 to 65years old participating in a high-intensity resistance training program. Arch. Intern. Med. 160:3093–3104.PubMedGoogle Scholar
  28. 28.
    Gold Standard Clinical Pharmacology http://www.goldstandard.com/index.html. 2000–2010. Accessed 10 June 2010.
  29. 29.
    Wang C, Swerdloff RS (2002) Should the nonaromatizable androgen dihydrotestosterone be considered as an alternative to testosterone in the treatment of the andropause? J. Clin. Endocrinol. Metab. 87:1462–1466. ReviewPubMedGoogle Scholar
  30. 30.
    Rittmaster RS, Thompson DL, Listwak S, Loriaux DL (1988) Androstanediol glucuronide isomers in normal men and women and in men infused with labeled dihydrotestosterone. J. Clin. Endocrinol. Metab. 66:212–216.PubMedGoogle Scholar
  31. 31.
    Wang C, Iranmanesh A, Berman N, McDonald V, Steiner B, Ziel F, Faulkner SM, Dudley RE, Veldhuis JD, Swerdloff RS (1998) Comparative pharmacokinetics of three doses of percutaneous dihydrotestosterone gel in healthy elderly men - a clinical research center study. J. Clin. Endocrinol. Metab. 83:2749–2757.PubMedGoogle Scholar
  32. 32.
    Kammerer RC, Merdink JL, Jagels M, Catlin DH, Hui KK (1990) Testing for fluoxymesterone (Halotestin) administration to man: identification of urinary metabolites by gas chromatography-mass spectrometry. J. Steroid Biochem. 36:659–666.PubMedGoogle Scholar
  33. 33.
    Capponi VJ, Cox SR, Harrington EL, Wright CE, Antal EJ, Albert KS (1985) Liquid chromatographic assay for fluoxymesterone in human serum with application to a preliminary bioavailability study. J. Pharm. Sci. 74:308–311.PubMedGoogle Scholar
  34. 34.
    Fenichel G, Pestronk A, Florence J, Robison V, Hemelt V (1997) A beneficial effect of oxandrolone in the treatment of Duchenne muscular dystrophy: a pilot study. Neurology. 48:1225–1226.PubMedGoogle Scholar
  35. 35.
    Fenichel GM, Griggs RC, Kissel J, Kramer TI, Mendell JR, Moxley RT, Pestronk A, Sheng K, Florence J, King WM, Pandya S, Robison VD, Wang H (2001) A randomized efficacy and safety trial of oxandrolone in the treatment of Duchenne dystrophy. Neurology. 56:1075–1107.PubMedGoogle Scholar
  36. 36.
    Fox-Wheeler S, Heller L, Salata CM, Kaufman F, Loro ML, Gilsanz V, Haight M, Umman GC, Barton N, Church JA (1999) Evaluation of the effects of oxandrolone on malnourished HIV-positive pediatric patients. Pediatrics. 104:e73.PubMedGoogle Scholar
  37. 37.
    Nilsson KO, Albertsson-Wikland K, Alm J, Aronson S, Gustafsson J, Hagenas L, Hager A, Ivarsson SA, Karlberg J, Kristrom B, Marcus C, Moell C, Ritzen M, Tuvemo T, Wattsgard C, Westgren U, Westphal O, Aman J (1996) Improved final height in girls with Turner’s syndrome treated with growth hormone and oxandrolone. J. Clin. Endocrinol Metab. 81:635–640 (1996).PubMedGoogle Scholar
  38. 38.
    Berger JR, Pall L, Hall CD, Simpson DM, Berry PS, Dudley R (1996) Oxandrolone in AIDS-wasting myopathy. AIDS. 10:657–662.Google Scholar
  39. 39.
    Guarneri MP, Abusrewil SA, Bernasconi S, Bona G, Cavallo L, Cicognani A, DiBattista E, Salvatoni A (2001) Turner’s syndrome. J. Pediatr. Endocrinol. Metab. 14:959–965.PubMedGoogle Scholar
  40. 40.
    Partsch CJ, Weinbauer GF, Fang R, Nieschlag E (1995) Injectable testosterone undecanoate has more favourable pharmacokinetics and pharmacodynamics than testosterone enanthate. Eur J Endocrinol. 132:514–519.PubMedGoogle Scholar
  41. 41.
    Malan PG and Gould RP (1982) Essentials of Endocrinology. Blackwell Scientific Publications, O’Riordan JLH. Ed.Google Scholar
  42. 42.
    Winters SJ (1990). Androgens: Endocrine physiology and pharmacology. In Anabolic Steroid Abuse, Lin GC and Erinoff L. Eds. NIDA Research Monograph 102:113–130.Google Scholar
  43. 43.
    Time Report, Dope into Gold, Jan 19,1998, vol 151, No. 3.Google Scholar
  44. 44.
    East Germany Doping Scandal: Wonder Girls and Steroids by Sarah Naimzadeh. http://serendip.brynmawr.edu/biology/b103/f00/web2/naimzadeh2.html. Accessed 10 June 2010.
  45. 45.
    Dunn JF, Nisula BC, Rodbard D (1981) Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J. Clin. Endocrinol. Metab. 53:58–68.PubMedGoogle Scholar
  46. 46.
    NIDA research reports Anabolic steroids (2010) Director’s reports 1995 to 2005. Accessed 10 June 2010.Google Scholar
  47. 47.
    Berendonk B (1991) Doping Dokumente: Von der Forschung zum Betrug [Doping documents: From research to fraud]. Springer-Verlag. Berlin Heidelberg.Google Scholar
  48. 48.
    East Germany Doping Scandal: Forgotten victims of East German doping take their battle to court. Athletes who were given drugs to compete in the name of communism seek £8m compensation. Luke Harding in Berlin; The Guardian, 11/1/2005. http://www.guardian.co.uk/sport/2005/nov/01/athletics.gdnsport3. Accessed 10 June 2010.
  49. 49.
    Palusinski R, Barud W (2000) Effects of androstenedione in young men (Letter to the Editor). JAMA. 283:741.PubMedGoogle Scholar
  50. 50.
    Leder BZ, Longcope C, Catlin DH, Ahrens B, Schoenfeld DA, Finkelstein JS (2000) Oral androstenedione administration and serum testosterone concentrations in young men. JAMA. 283:779–782.PubMedGoogle Scholar
  51. 51.
    Geyer H, Mareck-Engelke U, Reinhart U, Thevis M, Schänzer W (2000) Positive doping cases with norandrosterone after application of contaminated nutritional supplements [Positive Dopingfälle mit Norandrosteron durch verunreinigte Nahrungsergänzungsmittel]. Deutsche zeitschrift für sportmedizin. 51:378–382.Google Scholar
  52. 52.
    Green GA, Catlin DH, Starcevic B (2001) Analysis of over-the-counter dietary supplements. Clin. J. Sport Med. 11:254–259.PubMedGoogle Scholar
  53. 53.
    Tarter RE, Ammerman RT, Ott Peggy J (1998) Handbook of Substance Abuse: Neurobehavioral Pharmacology. Plenum Press, New York and London.Google Scholar
  54. 54.
    Preedy VR, Patel VB, Reilly ME, Richardson PJ, Falkous G, Mantle D (1999) Oxidants, antioxidants and alcohol: implications for skeletal and cardiac muscle. Front. Biosci. 4:e58–66.PubMedGoogle Scholar
  55. 55.
    DeRamundo BM, Volpe A (1990) Effect of steroid hormones and antihormones on hypothalamic beta-endorphin concentrations in intact and castrated female rats. J. Endocrinol. Invest. 13:91–96.PubMedGoogle Scholar
  56. 56.
    Cepero M, Cubria JC, Reguera R, Balana-Fouce R, Ordonez C, Ordonez D (1998) Plasma and muscle polyamine levels in aerobically exercised rats treated with salbutamol. Pharm. Pharmacol. 50:1059–1064.Google Scholar
  57. 57.
    Long SF, Wilson MC, Sufka KJ, Davis WM (1996) The effects of cocaine and nandrolone co-administration on aggression in male rats. Prog Neuropsychopharmacol Biol Psychiatry. 20:839–856.PubMedGoogle Scholar
  58. 58.
    Le Grevès P, Zhou Q, Huang W, Nyberg F (2002) Effect of combined treatment with nandrolone and cocaine on the NMDA receptor gene expression in the rat nucleus accumbens and periaqueductal gray. Acta Psychiatr Scand Suppl. 412:129–132.PubMedGoogle Scholar
  59. 59.
    Murray RL, Chermack ST, Walton MA, Winters J, Booth BM, Blow FC (2008) Psychological aggression, physical aggression, and injury in non-partner relationships among men and women in treatment for substance-use disorders. J Stud Alcohol Drugs. 69:896–905.PubMedGoogle Scholar
  60. 60.
    Wines JD Jr, Gruber AJ, Pope HG Jr, Lukas SE (1999) Nalbuphine hydrochloride dependence in anabolic steroid users. Am. J. Addict. 8:161–164.PubMedGoogle Scholar
  61. 61.
    Stenman UH, Hotakainen K, Alfthan H (2008) Gonadotropins in doping: pharmacological basis and detection of illicit use. Br J Pharmacol. 154:569–583.PubMedGoogle Scholar
  62. 62.
    von Deutsch DA, Abukhalaf IK, Wineski LE, Aboul-Enein HY, Potter DE, and Paulsen DF (2002) Distribution and muscle-sparing effects of clenbuterol in hindlimb suspended rats. Pharmacol. 65:38–48.Google Scholar
  63. 63.
    von Deutsch DA, Abukhalaf IK, Wineski LE, Silvestrov NA, and Potter DE (2003) Changes in muscle proteins and spermidine content in response to unloading and clenbuterol treatment. Can. J. Physio. Pharm. 81:28–39.Google Scholar
  64. 64.
    Wineski LE, von Deutsch DA, Abukhalaf IK, Pitts SA, Potter DE, and Paulsen DF (2002) Muscle-Specific Effects of Hindlimb Suspension and Clenbuterol in Mature, Male Rats. Cells Tissues Organs. 171:188–198.PubMedGoogle Scholar
  65. 65.
    Katzung BG (2007) Basic & Clinical Pharmacology, 10th ed. McGraw-Hill, New York.Google Scholar
  66. 66.
    Schmekel B, Rydberg I, Norlander B, Sjosward KN, Ahlner J, Andersson RG (1999). Stereoselective pharmacokinetics of S-salbutamol after administration of the racemate in healthy volunteers. Eur. Respir. J. 13:1230–1235.PubMedGoogle Scholar
  67. 67.
    von Berg A, Berdel D (1993) [A new beta-2 sympathomimetic drug with longer effectiveness. Comparison with current beta-2 sympathomimetic drugs in therapy of bronchial asthma in childhood]. Monatsschr. Kinderheilkd. 141:53–58.Google Scholar
  68. 68.
    Eudra, (European Agency for the Evaluation of Medical Products: Veterinary Medicines and Information Technology Unit); Clenbuterol. EMEA/MRL/723/99-FINAL Feb 2000. www.ema.europa.eu/pdfs/vet/mrls/072399en.pdf. Westferry Circus, 7 Canary Wharf, E14 4HB LONDON, (Tel: +44 207 418–8569 Fax: +44 207 418–8416)/E-mail: mail@emea.eudra.org. Accessed 10 June 2010.Google Scholar
  69. 69.
    Morales-Olivas FJ, Brugger AJ, Bedate H, Garcia-Diez JM, Morcillo E, Esplugues J (1980) [Clenbuterol: a new partial antagonist of the beta adrenergic receptors (author’s transl)]. Arch. Farmacol. Toxicol. 6:131–138.PubMedGoogle Scholar
  70. 70.
    Perez R, Garcia M, Arias P, Gallardo M, Valenzuela S, Rudolph MI (1997) Inhibition of xylazine induced uterine contractility by clenbuterol and nifedipine. Res. Vet. Sci. 63:73–76.PubMedGoogle Scholar
  71. 71.
    Stegmann GF, Bester L (2001) Some cardiopulmonary effects of midazolam premedication in clenbuterol-treated bitches during surgical endoscopic examination of the uterus and ovariohysterectomy. J. S. Afr. Vet. Assoc. 72:33–76.PubMedGoogle Scholar
  72. 72.
    Maltin CA, Delday MI, Hay SM, Innes GM, Williams PE (1990) Effects of bovine pituitary growth hormone alone or in combination with the beta-agonist clenbuterol on muscle growth and composition in veal calves. Br. J. Nutr. 63:535–545.PubMedGoogle Scholar
  73. 73.
    Smith DJ (1998) The pharmacokinetics, metabolism, and tissue residues of beta-adrenergic agonists in livestock. J. Anim. Sci. 76:173–194.PubMedGoogle Scholar
  74. 74.
    Maltin CA, Delday MI, Watson JS, Heys SD, Nevison IM, Ritchie IK, and Gibson PH (1993) Clenbuterol, a β-adrenoreceptor agonist, increases relative muscle strength in orthopedic patients. Clin. Sci. 84:651–654.PubMedGoogle Scholar
  75. 75.
    Bates PC, Pell JM (1991) Action and interaction of growth hormone and the beta-agonist, clenbuterol, on growth, body composition and protein turnover in dwarf mice. Br. J. Nutr. 65:115–129.PubMedGoogle Scholar
  76. 76.
    Reeds PJ, Hay SM, Dorwood PM, and Palmer RM (1986) Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. Br. J. Nutr. 56:249–258.PubMedGoogle Scholar
  77. 77.
    Reichel K, Rehfeldt C, Weikard R, Schadereit R, Krawielitzki K (1993) [Effect of a beta-agonist and a beta-agonist/beta-antagonist combination on muscle growth, body composition and protein metabolism in rats]. Arch. Tierernahr. 45:211–225.PubMedGoogle Scholar
  78. 78.
    Abukhalaf IK, von Deutsch DA, Wineski LE, Silvestrov NA, Abera SA, Sahlu SW, and Potter DE (2002) Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle. Pharmacol. 65:145–154.Google Scholar
  79. 79.
    Apseloff G, Girten B, Walker M, Shepard DR, Krecic ME, Stern LS, and Gerber N (1993) Aminohydroxybutane bisphosphonate and clenbuterol prevent bone changes and retard muscle atrophy respectively in tail-suspended rats. J. Pharmacol. Exp. Therap. 264:1071–1078.Google Scholar
  80. 80.
    Girten B, Oloff C, Plato P, Eveland E, Merola AJ, Kazarian L (1989) Skeletal muscle antioxidant enzyme levels in rats after simulated weightlessness, exercise and dobutamine. Physiologist. 32 (1 Suppl): S59–S60.PubMedGoogle Scholar
  81. 81.
    Bloomfield SA, Girten BE, Weisbrode SE (1997) Effects of vigorous exercise training and beta-agonist administration on bone response to hindlimb suspension. J. Appl. Physiol. 83:172–178.PubMedGoogle Scholar
  82. 82.
    Desplanches D, Favier R, Sempore B, Hoppeler H (1991) Whole body and muscle respiratory capacity with dobutamine and hindlimb suspension. J. Appl. Physiol. 71:2419–2424.PubMedGoogle Scholar
  83. 83.
    Tryniszewski C (2001) Nurse’s Drug Looseleaf. Blanchard & Loeb Publishers, LLC. Blue Bell, PA.Google Scholar
  84. 84.
    Takeo S, Elmoselhi AB, Goel R, Sentex E, Wang J, Dhalla NS (2000) Attenuation of changes in sarcoplasmic reticular gene expression in cardiac hypertrophy by propranolol and verapamil. Mol. Cell Biochem. 213:111–118.PubMedGoogle Scholar
  85. 85.
    Katz I, Lloyd T, Kaufman S (1976) Studies on phenylalanine and tyrosine hydroxylation by rat brain tyrosine hydroxylase. Biochim Biophys Acta 445:567–578.PubMedGoogle Scholar
  86. 86.
    Fitzpatrick PF (2000) The aromatic amino acid hydroxylases. Adv Enzymol Relat Areas Mol Biol. 74:235–294.PubMedGoogle Scholar
  87. 87.
    Siegel GJ, Albers RW, Alganoff BW, Katzman R (1981) Basic Neurochemistry, 3rd Ed. Little, Brown and Company Boston.Google Scholar
  88. 88.
    Hardin AO and Lima JJ (1999) Beta 2-Adrenoceptor agonist-induced down-regulation after short-term exposure. J. Recept. Signal Transduct. Res. 19:835–852.PubMedGoogle Scholar
  89. 89.
    Genazzani AR, Petraglia F, Mercuri N, Brilli G, Genazzani AD, Bergamaschi M, DeRamundo BM, Volpe A (1990) Effect of steroid hormones and antihormones on hypothalamic beta-endorphin concentrations in intact and castrated female rats. J. Endocrinol. Invest. 13:91–96.PubMedGoogle Scholar
  90. 90.
    Cepero M, Perez-Pertejo Y, Cubria JC, Reguera R, Balana-Fouce R, Ordonez C, Ordonez D, and Escudero D (2000) Muscle and serum changes with salbutamol administration in aerobically exercised rats. Comp. Biochem.. Physiol. C. Toxicol. Pharmacol. 126:45–51.PubMedGoogle Scholar
  91. 91.
    Cubria JC, Ordonez C, Reguera RM, Tekwani BL, Balana-Fouce R, and Ordonez D (1999) Early alterations of polyamine metabolism induced after acute administration of clenbuterol in mouse heart. Life. Sci. 64:1739–1752.PubMedGoogle Scholar
  92. 92.
    Turchanowa L, Rogozkin VA, Milovic V, Feldkoren BI, Caspary WF, and Stein J (2000) Influence of physical exercise on polyamine synthesis in the rat skeletal muscle. Eur. J. Clin. Invest. 30:72–78.PubMedGoogle Scholar
  93. 93.
    Westerhof FJ, Zuidhof AB, Kok L, Meurs H, Zaagsma J (2005) Effects of salbutamol and enantiomers on allergen-induced asthmatic reactions and airway hyperreactivity. Eur Respir J. 25:864–872.PubMedGoogle Scholar
  94. 94.
    O’Riordan TG, Mao W, Palmer LB, Chen JJ (2006) Assessing the effects of racemic and single-enantiomer albuterol on airway secretions in long-term intubated patients. Chest. 129:124–132.PubMedGoogle Scholar
  95. 95.
    Hoffman RJ, Hoffman RS, Freyberg CL, Poppenga RH, Nelson LS (2001). Clenbuterol ingestion causing prolonged tachycardia, hypokalemia, and hypophosphatemia with confirmation by quantitative levels. J. Toxicol. Clin. Toxicol. 39:339–344.PubMedGoogle Scholar
  96. 96.
    Avila AH, Morgan CA, Bayer BM (2003) Stress-induced suppression of the immune system after withdrawal from chronic cocaine. J. Pharmacol. Exp. Ther. 305:290–297.PubMedGoogle Scholar
  97. 97.
    www.cyberflex.co.uk/steroidcyclofenil.htm. Accessed 10 June 2010.Google Scholar
  98. 98.
    Lewis MI, LoRusso TJ, and Fournier M (1997) Anabolic influences of insulin-like growth factor I and/or growth hormone on the diaphragm of young rats. J. Appl. Physiol. 82:1972–1978.PubMedGoogle Scholar
  99. 99.
    Wong JM, Forrest KA, Snabes SZ, Zhao SZ, Gersh GE, Kennedy SH (2001) Efficacy of nafarelin in assisted reproductive technology: a meta-analysis. Hum Reprod Update, 7:92–101.PubMedGoogle Scholar
  100. 100.
    www.achilleshealthmart.com. Accessed 10 June 2010.Google Scholar
  101. 101.
    Ishii I, Kitada M (1997) [Multidrug-resistance by induction of inactivation for anti-cancer drugs]. Nippon Rinsho 55:1044–1049.PubMedGoogle Scholar
  102. 102.
    Waddle JR, Fine RL, Case BC, Trogdon ML, Tyczkowska K, Frazier D, Page RL (1999) Phase I and pharmacokinetic analysis of high-dose tamoxifen and chemotherapy in normal and tumor-bearing dogs. Cancer Chemother. Pharmacol. 44:74–80.PubMedGoogle Scholar
  103. 103.
    Lidstrom P, Bonasera TA, Kirilovas D, Lindblom B, Lu L, Bergstrom E, Bergstrom M, Westlin JE, Langstrom B (1998) Synthesis, in vivo rhesus monkey biodistribution and in vitro evaluation of a 11C-labelled potent aromatase inhibitor: [N-methyl-11C] vorozole. Nucl. Med. Biol. 25:497–501.PubMedGoogle Scholar
  104. 104.
    Piotrovsky VK, Huang ML, Van Peer A, Langenaecken C (1998) Effects of demographic variables on vorozole pharmacokinetics in healthy volunteers and in breast cancer patients. Cancer Chemother. Pharmacol. 42:221–228.PubMedGoogle Scholar
  105. 105.
    Alshowaier IA, el-Yazigi A, Ezzat A, Abd el-Warith A, Nicholls PJ (1999). Pharmacokinetics of S- and R-enantiomers of aminoglutethimide following oral administration of racemic drug in breast cancer patients. J. Clin. Pharmacol. 39:1136–1142.PubMedGoogle Scholar
  106. 106.
    Goss PE (1998) Pre-clinical and clinical review of vorozole, a new third generation aromatase inhibitor. Breast Cancer Res. Treat. 49 Suppl 1:S59–65; discussion S73–77.PubMedGoogle Scholar
  107. 107.
    Elliott S (2008) Erythropoiesis-stimulating agents and other methods to enhance oxygen transport. Br J Pharmacol. 154:529–541.PubMedGoogle Scholar
  108. 108.
    Zhu Y, D’Andrea AD (1994) The molecular physiology of erythropoietin and the erythropoietin receptor. Curr Opin Hematol. 1:113–118.PubMedGoogle Scholar
  109. 109.
    F. Hoffmann-La Roche Ltd. http://www.roche.com/investors/ir_update/inv-update-2006-04-27.htm. Accessed 10 June 2010.
  110. 110.
    Sirén AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA. 98:4044–4049.PubMedGoogle Scholar
  111. 111.
    Haroon ZA, Amin K, Jiang X, Arcasoy MO (2003) A novel role for erythropoietin during fibrin-induced wound-healing response. Am J Pathol. 163:993–1000.PubMedGoogle Scholar
  112. 112.
    Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by human erythropoietin cDNA. J Biol Chem. 262:12059–12076.PubMedGoogle Scholar
  113. 113.
    Skibeli V, Nissen-Lie G, Torjesen P (2001) Sugar profiling proves that human serum erythropoietin differs from recombinant human erythropoietin. Blood. 98:3626–3634.PubMedGoogle Scholar
  114. 114.
    Beullens M, Delanghe JR, Bollen M (2006) False-positive detection of recombinant human erythropoietin in urine following strenuous physical exercise. Blood. 107:4711–4713.PubMedGoogle Scholar
  115. 115.
    Anti-Doping Research. http://www.antidopingresearch.org. “Anti-Doping Research (ADR): One of the world’s leading anti-doping research organizations.” Accessed on 10-June-2010.
  116. 116.
    Lasne F (2003) Double-blotting: a solution to the problem of non-specific binding of secondary antibodies in immunoblotting procedures. J Immunol Methods. 276:223–226.PubMedGoogle Scholar
  117. 117.
    Koudinov AR (2006) WADA, IOC testing for Erythropoietin is faked. The Doping Journal. 3: 1-5. Available at: http://dopingjournal.org/content/3/1/. Google Scholar
  118. 118.
    Hoffman La Roche – Mircera (C.E.R.A.). http://www.roche.com/med-cor-2006-07-17. Retrieved on 7/11/2009.
  119. 119.
    Canaud B, Mingardi G, Braun J, Aljama P, Kerr PG, Locatelli F, Villa G, Van Vlem B, McMahon AW, Kerloëguen C, Beyer U (2008) STRIATA Study Investigators. Intravenous C.E.R.A. maintains stable haemoglobin levels in patients on dialysis previously treated with darbepoetin alfa: results from STRIATA, a randomized phase III study. Nephrol Dial Transplant. 23:3654–3661.PubMedGoogle Scholar
  120. 120.
    Kunishige M, Mitsui T, Akaike M, Kawajiri M, Shono M, Kawai H, Matsumoto T (2003) Overexpressions of myoglobin and antioxidant enzymes in ragged-red fibers of skeletal muscle from patients with mitochondrial encephalomyopathy. Muscle Nerve. 28:484–492.PubMedGoogle Scholar
  121. 121.
    Macdougall IC (2005) CERA (Continuous Erythropoietin Receptor Activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep. 4:436–440.PubMedGoogle Scholar
  122. 122.
    Lundby C, Hellsten Y, Jensen MB, Munch AS, Pilegaard H (2008) Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle. J Appl Physiol. 104:1154–1160.PubMedGoogle Scholar
  123. 123.
    Juul SE, Yachnis AT, Christensen RD (1998) Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev. 52:235–249.PubMedGoogle Scholar
  124. 124.
    Odell WD, Griffin J (1987) Pulsatile secretion of human chorionic gonadotropin in normal adults. N Engl J Med. 317:1688–1691.PubMedGoogle Scholar
  125. 125.
    Milano M, Collomp R (2005) Erythropoietin and neuroprotection: a therapeutic perspective. J Oncol Pharm Pract. 11:145–149.PubMedGoogle Scholar
  126. 126.
    Abukhalaf IK, Mitchell CD, von Deutsch AW, Wineski LE, Silvestrov NA and von Deutsch DA (2007) Xanthine oxidase and myoglobin release in post-suspended rats. ASGSB Space Biol. Bull. 20:93–94.Google Scholar
  127. 127.
    Henke A, Gromoll J (2008) New insights into the evolution of chorionic gonadotrophin. Mol Cell Endocrinol. 291:11–19.PubMedGoogle Scholar
  128. 128.
    Weber MA, Kinscherf R, Krakowski-Roosen H, Aulmann M, Renk H, Künkele A, Edler L, Kauczor HU, Hildebrandt W (2007) Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting? J Mol Med. 85:887–896.PubMedGoogle Scholar
  129. 129.
    Takayanagi A, Kobayashi K, Hashimoto K, Kato R, Masumori N, Itoh N, Tsukamoto T (2008) Case of androgenic anabolic steroid abuse caused hypogonadotropic hypogonadism. Nippon Hinyokika Gakkai Zasshi. 99:729–732.PubMedGoogle Scholar
  130. 130.
    Karila T, Hovatta O, Seppälä T (2004) Concomitant abuse of anabolic androgenic steroids and human chorionic gonadotrophin impairs spermatogenesis in power athletes. Int J Sports Med. 25:257–263.PubMedGoogle Scholar
  131. 131.
    van de Kerkhof DH, de Boer D, Thijssen JH, Maes RA (2000) Evaluation of testosterone/epitestosterone ratio influential factors as determined in doping analysis. J. Anal. Toxicol. 24:102–115.PubMedGoogle Scholar
  132. 132.
    Kjeld JM, Puah CM, Joplin GF (1977) Rise of unconjugated sex hormones in human urine on storage. Clin. Chim. Acta. 80:285–291.PubMedGoogle Scholar
  133. 133.
    Kjeld JM, Puah CM, Joplin GF (1979) Labile testosterone conjugate in human urine: further evidence. Clin. Chim. Acta . 93:227–233.PubMedGoogle Scholar
  134. 134.
    Rantonen PJ, Penttilä I, Meurman JH, Savolainen K, Närvänen S, Helenius T (2000) Growth hormone and cortisol in serum and saliva. Acta Odontol Scand. 58:299–303.PubMedGoogle Scholar
  135. 135.
    Vapaatalo H, Karkainen S, Senius KE (1984). Comparison of saliva and urine samples in thin-layer chromatographic detection of central nervous stimulants. Int. J. Clin. Pharmacol. Res. 4:5–8.PubMedGoogle Scholar
  136. 136.
    Hofman LF (2001) Human saliva as a diagnostic specimen. J. Nutr. 131:1621S–1625S.PubMedGoogle Scholar
  137. 137.
    Gaillard Y, Vayssette F, Pepin G (2000). Compared interest between hair analysis and urinalysis in doping controls. Results for amphetamines, corticosteroids and anabolic steroids in racing cyclists. Forensic Sci. Int. 107:361–379.Google Scholar
  138. 138.
    Dumestre-Toulet V, Cirimele V, Ludes B, Gromb S, Kintz P (2002) Hair analysis of seven bodybuilders for anabolic steroids, ephedrine, and clenbuterol. J. Forensic. Sci. 47:211–214.PubMedGoogle Scholar
  139. 139.
    Kintz P, Cirimele V, Sachs H, Jeanneau T, Ludes B (1999) Testing for anabolic steroids in hair from two bodybuilders. Forensic. Sci. Int. 101:209–216.PubMedGoogle Scholar
  140. 140.
    Abukhalaf IK, von Deutsch DA, Parks BA, Wineski LE, Paulsen DF, Abul-Enein HY, and Potter DE (2000) Comparative analytical quantitation of clenbuterol in biological matrices using GC-MS and EIA. Biomed Chromatogr. 14:99–105.PubMedGoogle Scholar
  141. 141.
    Hammond GL, Ruokonen A, Kontturi M, Koskela E, Vihko R (1977) The simultaneous radioimmunoassay of seven steroids in human spermatic and peripheral venous blood. J. Clin. Endocrinol. Metab. 45:16–24.PubMedGoogle Scholar
  142. 142.
    Harper JM, Mackinson I, Buttery PJ (1990) The effects of beta agonists on muscle cells in culture. Domest. Anim. Endocrinol. 7:477–484.PubMedGoogle Scholar
  143. 143.
    Lepage N, Roberts KD, Langlais J (1993) Interference of lysophosphatidylcholine in hormone radioimmunoassays. Clin Chem. 39:865–869.PubMedGoogle Scholar
  144. 144.
    Konishi H, Minouchi T, Yamaji A (2001) Interference by danazol with the Porter–Silber method for determination of urinary 17-hydroxycorticosteroids. Ann. Clin. Biochem. 38:277–279.PubMedGoogle Scholar
  145. 145.
    Ahn YS (2000) Efficacy of danazol in hematologic disorders. Acta Haematol 84:122–129.Google Scholar
  146. 146.
    Fujisawa K, Tani P, Piro L, McMillan R (1993) The effect of therapy on platelet-associated autoantibody in chronic immune thrombocytopenic purpura. Blood. 81:2872–2877.PubMedGoogle Scholar
  147. 147.
    Otawa M, Kuriyama Y, Iwase O, Kawanishi Y, Miyazawa K, Aizawa S, Nehashi Y, Nakano M, Toyama K (1997) [Possible role of immunocompetent cells on periodic exacerbation of idiopathic thrombocytopenic purpura]. Rinsho Ketsueki 38:331–335.PubMedGoogle Scholar
  148. 148.
    Convertino VA, Polet JL, Engelke KA, Hoffler GW, Lane LD, Blomqvist CG (1995) Increased beta-adrenergic responsiveness induced by 14 days exposure to simulated microgravity. J. Gravit. Physiol. 2:P66–P67.PubMedGoogle Scholar
  149. 149.
    Kintz P, Cirimele V, Dumestre-Toulet V, Villain M, Ludes B (2002) Doping control for methenolone using hair analysis by gas chromatography-tandem mass spectrometry. J. Chromatogr. B. Analyt Technol. Biomed. Life Sci. 766:161–167.PubMedGoogle Scholar
  150. 150.
    Jarsch M, Brandt M, Lanzendörfer M, Haselbeck A (2008) Comparative erythropoietin receptor binding kinetics of C.E.R.A. and epoetin-beta determined by surface plasmon resonance and competition binding assay. Pharmacology. 81: 63–69.PubMedGoogle Scholar
  151. 151.
    Veng-Pedersen P, Freise KJ, Schmidt RL, Widness JA (2008) Pharmacokinetic differentiation of drug candidates using system analysis and physiological-based modeling. Comparison of C.E.R.A. and erythropoietin. J Pharm Pharmacol. 60:1321–1334.PubMedGoogle Scholar

Additional Reading

  1. Akahane K, Furukawa Y, Ogiwara Y, Haniuda M, Chiba S. Beta-adrenoceptor blocking effects of a selective beta 2-agonist, mabuterol, on the isolated, blood-perfused right atrium of the dog. Br. J. Pharmacol. 97:709–716 (1989).PubMedGoogle Scholar
  2. Amemiya K, Asano T, Arika T, Nakamura M, Kudoh M. Special toxicology-physical dependence potential, antigenicity and mutagenicity of mabuterol. Arzneimittelforschung. 34:1685–1686 (1984).PubMedGoogle Scholar
  3. Amemiya K, Kudoh M, Suzuki H, Saga K, Hosaka K. Toxicology of mabuterol. Arzneimittelforschung. 34:1680–1684 (1984).PubMedGoogle Scholar
  4. Baronti A, Lelli M, Manini G, Verdiani P. Procaterol metered aerosol in patients with chronic obstructive pulmonary disease. Int. J.Clin. Pharmacol. Res. 7:363–368 (1987).PubMedGoogle Scholar
  5. Baselt RC, Cravey RH. Disposition of Toxic Drugs and Chemical in Man, 4th ed. Chemical Toxicology Institute Foster City, CA, (1995).Google Scholar
  6. Beastall GH, Ratcliffe WA, Thomson M, Semple CG. Trilostane interference with steroid assays. Lancet. 1:727–728 (1981).PubMedGoogle Scholar
  7. Bowers LD. Analytical advances in detection of performance-enhancing compounds. Clin. Chem. 43:1299–1304 (1997).PubMedGoogle Scholar
  8. Brambilla G, Cenci T, Franconi F, Galarini R, Macri A, Rondoni F, Strozzi M, Loizzo A. Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol. Lett. 114:47–53 (2000).PubMedGoogle Scholar
  9. Brasch J, Flader S. Human androgenic steroids affect growth of dermatophytes in vitro. Mycoses. 39:387–392 (1996).PubMedGoogle Scholar
  10. Brown J, Clasper C, Smith T, Lomax MA. Effects of a beta 2-adrenergic agonist, cimaterol and corticosterone on growth and carcass composition of male rats. Comp. Biochem. Physiol. 102:217–220 (1992).Google Scholar
  11. Byrem TM, Beermann DH, Robinson TF. The beta-agonist cimaterol directly enhances chronic protein accretion in skeletal muscle. J. Anim. Sci. 76:988–998 (1998).PubMedGoogle Scholar
  12. Byrem TM, Robinson TF, Boisclair YR, Bell AW, Schwark WS, Beermann DH. Analysis and pharmacokinetics of cimaterol in growing Holstein steers. J. Anim. Sci. 70:3812–3819 (1992).PubMedGoogle Scholar
  13. Cardoso LA and Stock MJ. Effect of clenbuterol on growth and body composition during food restriction in rats. J. Anim. Sci. 74:2245–2252 (1996).PubMedGoogle Scholar
  14. Chance WT, Zhang X, Zuo L, Balasubramaniam A. Reduction of gut hypoplasia and cachexia in tumor-bearing rats maintained on total parenteral nutrition and treated with peptide YY and clenbuterol. Nutrition. 14:502–507 (1998).PubMedGoogle Scholar
  15. Chikhou F, Moloney AP, Austin FH, Roche JF, Enright WJ. Effects of cimaterol administration on plasma concentrations of various hormones and metabolites in Friesian steers. Domest. Anim. Endocrinol. 8:471–480 (1991).PubMedGoogle Scholar
  16. Doping notes: Kohl positive for CERA; details of Ricco’s doping; Asif’s doping appeal adjourned; Thomas gets home confinement. New York Times; Published: Monday, October 13, 2008. http://www.nytimes.com/2008/10/13/sports/13iht-doping13.16915406.html. Accessed 10 June 2010.
  17. Eisen EJ, Croom WJ Jr, Helton SW. Differential response to the beta-adrenergic agonist cimaterol in mice selected for rapid gain and unselected controls. Anim. Sci. 66:361–371 (1988)Google Scholar
  18. Fischer W, Lasek R, Muller M. Anticonvulsant effects of propranolol and their pharmacological modulation. Pol. J. Pharmacol. Pharm. 37:883–896 (1985).PubMedGoogle Scholar
  19. Galan Martin AM, Marino JI, Garcia de Tiedra MP, Marabe JJ, Caballero Loscos MJ, Marino MM. Determination of nandrolone and metabolites in urine samples from sedentary persons and sportsmen. J. Chromatogr. B. Biomed. Sci. Appl. 761:229–236 (2001)PubMedGoogle Scholar
  20. Germouty J, Aubert J, Clavier J, Paramelle B, Voisin C. [Long-term tolerability of formoterol in chronic obstructive bronchopathies]. Allerg. Immunol. (Paris). 24:342–347 (1992)Google Scholar
  21. Gleixner A, Sauerwein H, Meyer HH. Probenecid, sulfinpyrazone and pyrazinamide do not inhibit urinary excretion of the beta 2-adrenoceptor agonist clenbuterol in cattle. Food Addit. Contam. 13:603–608 (1996).PubMedGoogle Scholar
  22. Gleixner A. Probenecid markedly reduces urinary excretion of ethinylestradiol and trimethoprim slightly reduces urinary excretion of clenbuterol. Food Addit. Contam. 15:415–420 (1998).PubMedGoogle Scholar
  23. Grassi V, Daniotti S, Schiassi M, Dottorini M, Tantucci C. Oral beta 2-selective adrenergic bronchodilators. Int. J. Clin. Pharmacol. Res. 6:93–103 (1986).PubMedGoogle Scholar
  24. Gregorevic P, Williams DA, Lynch GS. Effects of leukemia inhibitory factor on rat skeletal muscles are modulated by clenbuterol. Muscle Nerve. 25:194–201 (2002).PubMedGoogle Scholar
  25. Groot MJ, Schilt R, Ossenkoppele JS, Berende PL, Haasnoot W. Combinations of growth promoters in veal calves: consequences for screening and confirmation methods. Zentralbl Veterinarmed. A. 45:425–440 (1998).PubMedGoogle Scholar
  26. Guentert TW, Buskin JN, Galeazzi RL. Single dose pharmacokinetics of mabuterol in man. Arzneimittelforschung. 34:1691–1696 (1984).PubMedGoogle Scholar
  27. Gupta MK, Singh M. Evidence based review on levosalbutamol. Indian J Pediatr. 74:161–167 (2007).PubMedGoogle Scholar
  28. Hamada K, Kihana T, Kataoka M, Yoshioka S, Nishio S, Matsuura S, Ito M. Urinary disturbance after therapy for cervical cancer: urodynamic evaluation and beta2-agonist medication. Int. Urogynecol. J. Pelvic Floor Dysfunct. 10:365–370 (1999).PubMedGoogle Scholar
  29. Harri M. Beta blockade and physical training in rats. Ann. Clin. Res. 14 Suppl 34:168–172 (1982).PubMedGoogle Scholar
  30. Hernandez-Carrasquilla M. External contamination of bovine hair with beta2-agonist compounds: evaluation of decontamination strategies. J. Chromatogr. B. Biomed. Sci. Appl. 767:235–243 (2002).Google Scholar
  31. Horiba M, Murai T, Nomura K, Yuge T, Sanai K, Osada E. Pharmacokinetic studies of mabuterol, a new selective beta 2-stimulant. II: Urinary metabolites of mabuterol in rats and their pharmacological effects. Arzneimittelforschung. 34:1668–1679 (1984).PubMedGoogle Scholar
  32. Huang H, Gazzola C, Pegg GG, Sillence MN. Differential effects of dexamethasone and clenbuterol on rat growth and on beta2-adrenoceptors in lung and skeletal muscle. J. Anim. Sci. 78:604–608 (2000).PubMedGoogle Scholar
  33. Hunt DG, Ding Z, Ivy JL. Clenbuterol prevents epinephrine from antagonizing insulin-stimulated muscle glucose uptake. J. Appl. Physiol. 92:1285–1292 (2002).PubMedGoogle Scholar
  34. Ishizaki O, Daidohji S, Kimura K, Shibuya K, Horiguchi T, Sekiwa M. Reproduction studies with mabuterol in rats. Arzneimittelforschung. 34:1687–1690 (1984).PubMedGoogle Scholar
  35. Kawakami Y. First clinical studies on mabuterol. A summarizing report. Arzneimittelforschung. 34:1699–1700 (1984).PubMedGoogle Scholar
  36. Kazlauskas R, Trout G. Drugs in sports: analytical trends. Ther. Drug Monit. 22:103–109 (2000).PubMedGoogle Scholar
  37. Kim J, Shigetomi S, Tanaka K, Yamada ZO, Hashimoto S, Fukuchi S. [The role of beta 2-adrenoceptor on the pathogenesis of insulin resistance in essential hypertension]. Nippon. Naibunpi. Gakkai. Zasshi. 70:521–528 (1994).PubMedGoogle Scholar
  38. Lacey RJ, Cable HC, James RF, London NJ, Scarpello JH, Morgan NG. Concentration-dependent effects of adrenaline on the profile of insulin secretion from isolated human islets of Langerhans. J. Endocrinol. 138:555–563 (1993).PubMedGoogle Scholar
  39. Lavoie JL, Calderone A, Beliveau L. A farnesyltransferase inhibitor attenuated beta-adrenergic receptor down regulation in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 282:R317–322 (2002).PubMedGoogle Scholar
  40. Le Bizec B, Bryand F, Gaudin I, Monteau F, Poulain F, Andre F. Endogenous nandrolone metabolites in human urine: preliminary results to discriminate between endogenous and exogenous origin. Steroids. 67:105–110 (2002).PubMedGoogle Scholar
  41. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin. Endocrinol Metab. 15:213–228 (1986).PubMedGoogle Scholar
  42. Lotharius J, Falsig J, van Beek J, Payne S, Dringen R, Brundin P, Leist M. Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci. 25:6329–6342 (2005).PubMedGoogle Scholar
  43. Matsumoto K, Ojima K, Ohta H, Watanabe H. Beta 2- but not beta 1-adrenoceptors are involved in desipramine enhancement of aggressive behavior in long-term isolated mice. Pharmacol. Biochem. Behav. 49:13–18 (1994).PubMedGoogle Scholar
  44. McEvoy JD, McCaughey WJ, Cooper J, Kennedy DG, McCartan BM. Nortestosterone is not a naturally occurring compound in male cattle. Vet. Q. 21:8–15 (1999).PubMedGoogle Scholar
  45. Merck Manual, www.merck.com/pubs/mmanual/section22/chapter305/305a.htmGoogle Scholar
  46. Miyata T, Kai H, Furusawa K, Nakamura H, Saito M, Okano Y, Takahama K. Secretomotor and mucolytic effects of mabuterol, a novel bronchodilator. Arch. Int. Pharmacodyn. Ther. 288:147–160 (1987).PubMedGoogle Scholar
  47. Mueller RK, Grosse J, Lang R, Thieme D. Chromatographic techniques--the basis of doping control. J. Chromatogr. B. Biomed. Appl. 674:1–11 (1995).PubMedGoogle Scholar
  48. Murakami K, Nakagawa T, Yamashiro G, Araki K, Akasofu K. Adrenal steroids in serum during danazol therapy, taking into account cross-reactions between danazol metabolites and serum androgens. Endocr. J. 40:659–664 (1993).PubMedGoogle Scholar
  49. Murtha PE, Zhu W, Zhang J, Zhang S, Young CY. Effects of Ca++ mobilization on expression of androgen-regulated genes: interference with androgen receptor-mediated transactivation by AP-I proteins. Prostate. 33:264–270 (1997).PubMedGoogle Scholar
  50. Nakamura M, Yamaya M, Fukushima T, Sekizawa K, Sasaki H, Takishima T. Effect of mabuterol on tracheal mucociliary clearance of magnetized iron particles in anesthetized dogs. Respiration. 58:33–36 (1991).PubMedGoogle Scholar
  51. Nielen MW, Vissers JP, Fuchs RE, van Velde JW, Lommen A. Screening for anabolic steroids and related compounds in illegal cocktails by liquid chromatography/time-of-flight mass spectrometry and liquid chromatography/quadrupole time-of-flight tandem mass spectrometry with accurate mass measurement. Rapid Commun. Mass Spectrom.15:1577–1585 (2001).PubMedGoogle Scholar
  52. O’Connor RM, Butler WR, Finnerty KD, Hogue DE, Beermann DH. Acute and chronic hormone and metabolite changes in lambs fed the beta-agonist, cimaterol. Domest. Anim. Endocrinol. 8:537–548 (1991).PubMedGoogle Scholar
  53. Puls I, Beck M, Giess R, Magnus T, Ochs G, Toyka KV. [Clenbuterol in amyotrophic lateral sclerosis. No indication for a positive effect]. Nervenarzt. 70:1112–1115 (1999)PubMedGoogle Scholar
  54. Ramos F, Castilho MC, Silveira MI. Occurrence of beta 2-adrenergic agonist residues in urine of animal meat producers in Portugal. J. AOAC Int. 81:544–548 (1998).PubMedGoogle Scholar
  55. Robert Dawson, Editorial, BMC News, 2000Google Scholar
  56. Sainz RD, Wolff JE. Effects of the beta-agonist, cimaterol, on growth, body composition and energy expenditure in rats. Br. J. Nutr. 60:85–90 (1988).PubMedGoogle Scholar
  57. Saugy M, Cardis C, Robinson N, Schweizer C. Test methods: anabolics. Baillieres Best Pract Res. Clin. Endocrinol. Metab. 14:111–133 (2000).PubMedGoogle Scholar
  58. Schmidt EW, Ulmer WT, Rominger KL. Pharmacokinetics and pharmacodynamics of beta 2-agonists (in the light of fenoterol). Respiration. 62:190–200 (1995).PubMedGoogle Scholar
  59. Shinohara Y, Baba S. Stable isotope methodology in the pharmacokinetic studies of androgenic steroids in humans. Steroids. 55:170–176 (1990).PubMedGoogle Scholar
  60. Simon M, Babich-Armstrong M. 17-Hydroxycorticosteroids in urine. Clin. Chim. Acta.103:101–108 (1980).PubMedGoogle Scholar
  61. Stallion A, Zhang FS, Chance WT, Foley-Nelson T, Fischer JE. Reversal of cancer cachexia in rats by cimaterol and supplemental nutrition. Surgery. 110:678–684 (1991).PubMedGoogle Scholar
  62. Taguchi S, Yoshida S, Tanaka Y, Hori S. [Simple and rapid analysis of trenbolone and zeranol residues in cattle muscle and liver by stack-cartridge solid-phase extraction and HPLC using on-line clean-up with EC and UV detection]. Shokuhin. Eiseigaku. Zasshi. 42:226–230 (2001).PubMedGoogle Scholar
  63. Thomas DP, McCormick KM, Jenkins RR. Effects of beta-adrenergic blockade on training-induced structural adaptations in rat left ventricle. Eur. J. Appl. Physiol. Occup. Physiol. 57:671–676 (1988).PubMedGoogle Scholar
  64. Touchstone JC., Steroids. In Handbook of Chromatography, G. Zweig and J. Sherma, Eds. CRC Press, Boca Raton, FL, (1986).Google Scholar
  65. Walker HC, Romsos DR. Effects of cimaterol, a beta-adrenergic agonist, on energy metabolism in ob/ob mice. Am. J. Physiol. 255:R952–960 (1988).PubMedGoogle Scholar
  66. Wiseman LR, Spencer CM. Vorozole. Drugs Aging 11:245–250; Discussion 251–252 (1997)PubMedGoogle Scholar
  67. Wu AH. Mechanism of interferences for gas chromatography/mass spectrometry analysis of urine for drugs of abuse. Ann. Clin. Lab. Sci. 25:319–329 (1995).PubMedGoogle Scholar
  68. Yen JT, Mersmann HJ, Nienaber JA, Hill DA, Pond WG. Responses to cimaterol in genetically obese and lean pigs. J. Anim. Sci. 68:2698–2706 (1990).PubMedGoogle Scholar
  69. Yoon JM, Lee KH. Gas chromatographic and mass spectrometric analysis of conjugated steroids in urine. J. Biosci. 26:627–634 (2001).PubMedGoogle Scholar
  70. Yoshimura T, Kurita C, Nagao T, Usami E, Nakao T, Watanabe S, Kobayashi J, Yamazaki F, Tanaka H, Inagaki N, Nagai H. Inhibition of tumor necrosis factor-alpha and interleukin-1-beta production by beta-adrenoceptor agonists from lipopolysaccharide-stimulated human peripheral blood mononuclear cells. Pharmacol. 54:144–152 (1997).Google Scholar

Websites

  1. www.musclesurf.com Accessed 10 June 2010.
  2. www.teenbodybuilding.com Accessed 10 June 2010.
  3. www.vermontnutrition.com Accessed 10 June 2010.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Daniel A. von Deutsch
    • 1
    • 2
    Email author
  • Imad K. Abukhalaf
    • 3
  • Rigobert Lapu-Bula
    • 4
  1. 1.Department of Pharmacology and Toxicology, Analytical Chemistry LaboratoryNASA Space Medicine and Life Sciences Research Center, Clinical Research Center, Morehouse School of MedicineAtlantaUSA
  2. 2.Department of Respiratory TherapyEverest InstituteDecaturUSA
  3. 3.King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  4. 4.Department of Medicine and the Clinical Research CenterMorehouse School of MedicineAtlantaUSA

Personalised recommendations