Advertisement

Intraoperative Electron Beam Irradiation: Physics and Techniques

  • Peter Biggs
  • Christopher G. Willett
  • Harm Rutten
  • Mario Ciocca
  • Leonard L. Gunderson
  • Felipe A. Calvo
Chapter
Part of the Current Clinical Oncology book series (CCO)

Abstract

Since IORT using electron beams first became popular in the late 1970s and early 1980s, enthusiasm for the technique using conventional accelerators waned. The reasons for this are manyfold. The main factor was that IORT required considerable effort on the part of physicians, physicists, and therapists, as well as the loss of time on the linear accelerator for treating external beam irradiation therapy (EBRT) patients. While a dedicated facility alleviates some of these problems, the cost of building a shielded room for a low use (∼3–5 cases per week) linear accelerator was hard to justify in the face of declining reimbursements. The problem with reimbursements was in part related to the fact that in the USA there is no specific CPT code for this procedure, so the utilization costs were harder to recover. Finally, in some institutions, the lack of definite improvements in survival in certain disease-sites of interest made it hard to justify the additional departmental resources to carry out the procedure.

Keywords

Physics of intraoperative electron irradiation (IOERT) IOERT techniques Mobile electron accelerators Mobetron Liac Novac-7 

References

  1. 1.
    Hogstrom KR, Boyer AL, Shiu AS, Ochran TG, Kirsner SM, Krispel F, et al. Design of metallic electron beam cones for an intraoperative therapy linear accelerator. Int J Radiat Oncol Biol Phys. 1990;18:1223–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Nyerick CE, Ochran TG, Boyer AL, Hogstrom KR. Dosimetry characteristics of metallic cones for intraoperative radiotherapy. Int J Radiat Oncol Biol Phys. 1991;21:501–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Mills MD, Almond PR, Boyer AL, Ochran TG, Madigan W, Rich TA, et al. Shielding considerations for an operating room based intraoperative electron radiotherapy unit. Int J Radiat Oncol Biol Phys. 1990;18:1215–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Jaradat AK, Biggs PJ. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16) and 18(20) MeV electron energies. Med Phys. 2008;35:1711–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Meurk ML, Schonberg RG, Haynes G, Vaeth JM. The development of a small, economic mobile unit for intraoperative electron beam therapy. Am J Clin Oncol. 1993;16:459–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Mills MD, Fajardo LC, Wilson DL, Daves JL, Spanos WJ. Commissioning of a mobile electron accelerator for intraoperative radiotherapy. J Appl Clin Med Phys. 2001;2:121–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Daves JL, Mills MD. Shielding assessment of a mobile electron accelerator for intraoperative radiotherapy. J Appl Clin Med Phys. 2001;2:165–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Loi G, Dominietto M, Canillo B, Ciocca M, Krengli M, Mones E, et al. Neutron production from a mobile linear accelerator in electron mode for intraoperative radiation therapy. Phys Med Biol. 2006;51:695–702.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosi A, Viti V. Guidelines for quality assurance in intra-operative radiation therapy. Rapporti Istisan 03/1 EN. Roma: Istituto Superiore di Sanità; 2003.Google Scholar
  10. 10.
    Di Martino F, Giannelli M, Traino AC, Lazzeri M. Ion recombination correction for very high dose-per-pulse high-energy electron beams. Med Phys. 2005;32:2204–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Karaj E, Righi S, Di Martino F. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams. Med Phys. 2007;34:952–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Laitano RF, Guerra AS, Pimpinella M, Caporali C, Petrucci A. Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse. Phys Med Biol. 2006;51:6419–36.PubMedCrossRefGoogle Scholar
  13. 13.
    International Atomic Energy Agency. IAEA Technical Reports Series No. 398. Absorbed dose determination in external beam radiotherapy: an International Code of Practice for dosimetry based on standards of absorbed dose to water. Vienna: IAEA; 2000.Google Scholar
  14. 14.
    Palta JR, Suntharalingam N. A non-docking intraoperative electron beam applicator system. Int J Radiat Biol Phys. 1989;17:411–7.CrossRefGoogle Scholar
  15. 15.
    Jones D, Taylor E, Travaglini J, Vermeulen S. A non-contacting intraoperative electron cone apparatus. Int J Radiat Biol Phys. 1989;16:1643–7.CrossRefGoogle Scholar
  16. 16.
    Bjork P, Knoos T, Nilsson P, Larsson K. Design and dosimetry characteristicsof a soft-docking system for intraoperative radiation therapy. Int J Radiat Biol Phys. 2000;47:527–33.CrossRefGoogle Scholar
  17. 17.
    Beddar AS, Biggs PJ, Chang S, Ezzell GA, Faddegon BA, Hensley FW, et al. Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM Radiation Therapy Task Group No. 72. Med Phys. 2006;33:1476–89.PubMedCrossRefGoogle Scholar
  18. 18.
    Ciocca M, Pedroli G, Orecchia R, Guido A, Cattani F, Cambria R, et al. Radiation survey around a LIAC mobile electron linear accelerator for intraoperative radiation therapy. J Appl Clin Med Phys. 2009;10:131–8.CrossRefGoogle Scholar
  19. 19.
    Strigari L, Soriani A, Landoni V, Teodili S, Bruzzaniti V, Benassi M. Radiation exposure of personnel during intra-operative radiotherapy (IORT): radiation protection aspects. J Exp Clin Cancer Res. 2004;23:489–94.PubMedGoogle Scholar
  20. 20.
    Chen CC, Sheu RJ, Yeh CY, Lin UT, Jiang SH. A detailed study on the neutron contamination for a 10 MeV medical electron accelerator. Nucl Instrum Methods Phys Res A. 2006;562:1033–7.CrossRefGoogle Scholar
  21. 21.
    Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high energy photon and electron beams. Med Phys. 1999;26:1848–70.CrossRefGoogle Scholar
  22. 22.
    Bjork P, Nilsson P, Knoos T. Dosimetry characteristics of degraded electron beams investigated by Monte Carlo calculations in a setup for intraoperative radiation therapy. Phys Med Biol. 2002;47:239–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Pimpinella M, Mihailescu D, Guerra AS, Laitano RF. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT. Phys Med Biol. 2007;52:6197–214.PubMedCrossRefGoogle Scholar
  24. 24.
    Palta JR, Biggs PJ, Hazle JD, Huq MS, Dahl RA, Ochran TG, et al. Intraoperative electron beam radiation therapy: technique, dosimetry and dose specification: report of task force 48 of the radiation Therapy Committee. American Association of Physicists in Medicine. Int J Radiat Biol Phys. 1995;33:725–46.CrossRefGoogle Scholar
  25. 25.
    Davis MG, Nyerick CE, Horton JL, Hogsrom KR. Use of routine quality assurance to detect loss of a linear accelerator primary scattering foil. Med Phys. 1996;23:521–2.PubMedCrossRefGoogle Scholar
  26. 26.
    Orecchia R, Jereczek-Fossa BA, Ciocca M, Vavassori A, Cambria F, Cattani F, et al. Intraoperative radiotherapy for locally advanced prostate cancer: treatment technique and ultrasound-based analysis of dose distribution. Anticancer Res. 2007;27:3471–6.PubMedGoogle Scholar
  27. 27.
    Soriani A, Landoni V, Marzi S, Iaccarino G, Saracino B, Arcangeli G, et al. Setup verification and in vivo dosimetry during intraoperative radiation therapy (IORT) for prostate cancer. Med Phys. 2007;34:3205–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Ciocca M, Orecchia R, Garibaldi C, Rondi E, Luini A, Gatti G, et al. In vivo dosimetry using radiochromic films during intraoperative electron beam radiation therapy in early-stage breast cancer. Radiother Oncol. 2003;69:285–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Ciocca M, Piazzi V, Lazzari R, Vavassori A, Luini A, Veronesi P, et al. Real-time in vivo dosimetry using micro-MOSFET detectors during intraoperative electron beam radiation therapy in early-stage breast cancer. Radiother Oncol. 2006;78:213–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Consorti R, Petrucci A, Fortunato F, Soriani A, Marzi S, Iaccarino G, et al. In vivo dosimetry with MOSFETs: dosimetric characterization and first clinical results in intraoperative radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:952–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Skandarajah AR, Lynch AC, MacKay JR, Ngan S, Heriot AG. The role of intraoperative radiotherapy in solid tumors. Ann Surg Oncol. 2009;16:735–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Sindelar WF, Kinsella TJ. Normal tissue tolerance to intraoperative radiotherapy. Surg Oncol Clin N Am. 2003;12:925–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Hu KS, Harrison LB. Results and complications of surgery combined with intra-operative radiation therapy for the treatment of locally advanced or recurrent cancers in the pelvis. Semin Surg Oncol. 2000;18:269–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Azinovic I, Calvo FA, Puebla F, Aristu J, Martinez-Monge R. Long-term normal tissue effects of intraoperative electron radiation therapy (IOERT): late sequelae, tumor recurrence, and second malignancies. Int J Radiat Biol Phys. 2001;49:597–604.CrossRefGoogle Scholar
  35. 35.
    Willett CG, Czito BG, Tyler DS. Intraoperative radiation therapy. J Clin Oncol. 2007;25:971–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Paz JM, Mark LJ, Herzer KR, Michelson JD, Grogan KL, Herman J, et al. A novel process for introducing a new intraoperative program: a multidisciplinary paradigm for mitigating hazards and improving patient safety. Anesth Analg. 2009;108:202–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Maracic L, Van Nostrand J. AANA Journal Course: update for nurse anesthetists – Part 2 – Anesthetic implications for cancer chemotherapy. AANA J. 2007;75:219–26.PubMedGoogle Scholar
  38. 38.
    Mannaerts GHH, Van Zundert AAJ, Meeusen VCH, Martijn H, Rutten HJT. Anaesthesia for advanced rectal cancer patients treated with combined major resections and intraoperative radiotherapy. Eur J Anaesthesiol. 2002;19:742–8.PubMedGoogle Scholar
  39. 39.
    Martignano A, Menegotti L, Valentini A. Monte Carlo investigation of breast intraoperative radiation therapy with metal attenuator plates. Med Phys. 2007;34:4578–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Oshima T, Aoyama Y, Shimozato T, Sawaki M, Imai T, Ito Y, et al. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer. Phys Med Biol. 2009;54:3491–500.PubMedCrossRefGoogle Scholar
  41. 41.
    Ivaldi GB, Leonardi MC, Orecchia R, Zerini D, Morra A, Galimberti V, et al. Preliminary results of electron intraoperative therapy boost and hypofractionated external beam radiotherapy after breast conserving surgery in premenopausal women. ISIORT 2008 Proceedings. Rev Cancer. 2008;22:15.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peter Biggs
    • 1
  • Christopher G. Willett
    • 2
  • Harm Rutten
    • 3
  • Mario Ciocca
    • 4
  • Leonard L. Gunderson
    • 5
  • Felipe A. Calvo
    • 6
  1. 1.Department of PhysicsMassachusetts General HospitalBostonUSA
  2. 2.Department of Radiation OncologyDuke University Medical CenterDurhamUSA
  3. 3.Department of SurgeryCatharina HospitalEindhovenThe Netherlands
  4. 4.Division of Medical PhysicsEuropean Institute of OncologyMilanItaly
  5. 5.Department of Radiation OncologyMayo Clinic College of Medicine and Mayo Clinic ArizonaScottsdaleUSA
  6. 6.Department of OncologyUniversity Hospital Gregorio MarañónMadridSpain

Personalised recommendations