Extending the Use of Adoptive T Cell Immunotherapy for Infections and Cancer

  • Ulrike GerdemannEmail author
  • Malcolm K. Brenner


Adoptive transfer of antigen-specific T cells has proven to be an effective and powerful therapeutic tool in the prevention and treatment of viral infections (e.g., cytomegalovirus [CMV], Epstein-Barr virus [EBV], and adenovirus) and virus-associated diseases, such as EBV-associated lymphoproliferative disease (LPD), that arise in the immunocompromised host. This therapeutic approach has also been extended to the treatment of cancer and has shown some success in patients with melanoma and EBV-associated malignancies such as Hodgkin’s lymphoma and nasopharyngeal carcinoma. However, this strategy has been less successful in other malignancies. To improve the efficacy of adoptively transferred tumor-reactive T cells, a number of groups have sought to identify better immunotherapeutic target antigens and to design protocols for the optimal in vitro propagation of tumor-reactive T cells, which are often otherwise anergized or tolerized. Another approach that has recently come to fore involves the genetic modification of T cells using genes that confer properties such as new antigen specificity, improved homing to tumor sites, or increased resistance to tumor immune evasion. This chapter evaluates recent advances in tumor immunotherapy, including T cell engineering, and speculates on the future potential of adoptive T cell transfer in the field of cancer therapy.


Cancer immunotherapy Adoptive T cell transfer Tumor immunology Gene therapy T cells 


  1. 1.
    Leen AM, Heslop HE (2008) Cytotoxic T lymphocytes as immune-therapy in haematolog ical practice. Br J Haematol 143:169–179PubMedCrossRefGoogle Scholar
  2. 2.
    Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044PubMedCrossRefGoogle Scholar
  3. 3.
    Einsele H, Roosnek E, Rufer N et al (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99:3916–3922PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen JI, Bollard CM, Khanna R et al (2008) Current understanding of the role of Epstein-Barr virus in lymphomagenesis and therapeutic approaches to EBV-associated lymphomas. Leuk Lymphoma 49 Suppl 1:27–34PubMedCrossRefGoogle Scholar
  5. 5.
    Rooney CM, Smith CA, Ng C et al (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr virus-related lymphoproliferation. Lancet 345:9–13PubMedCrossRefGoogle Scholar
  6. 6.
    Heslop HE, Ng CYC, Li C et al (1996) Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 2:551–555PubMedCrossRefGoogle Scholar
  7. 7.
    Leen AM, Myers GD, Sili U et al (2006) Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12:1160–1166PubMedCrossRefGoogle Scholar
  8. 8.
    Peggs KS, Verfuerth S, Pizzey A et al (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1375–1377PubMedCrossRefGoogle Scholar
  9. 9.
    Cobbold M, Khan N, Pourgheysari B et al (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386PubMedCrossRefGoogle Scholar
  10. 10.
    Micklethwaite K, Hansen A, Foster A et al (2007) ex vivo expansion and prophylactic infusion of CMV-pp65 peptide-specific cytotoxic T-lymphocytes following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 13:707–714PubMedCrossRefGoogle Scholar
  11. 11.
    Micklethwaite KP, Clancy L, Sandher U et al (2008) Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood 112:3974–3981PubMedCrossRefGoogle Scholar
  12. 12.
    Gottschalk S, Ng CY, Perez M et al (2001) An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 97:835–843PubMedCrossRefGoogle Scholar
  13. 13.
    Rooney CM, Smith CA, Ng CY et al (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555PubMedGoogle Scholar
  14. 14.
    Comoli P, Basso S, Zecca M et al (2007) Preemptive therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am J Transplant 7:1648–1655PubMedCrossRefGoogle Scholar
  15. 15.
    Gustafsson A, Levitsky V, Zou JZ et al (2000) Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 95:807–814PubMedGoogle Scholar
  16. 16.
    Haque T, Wilkie GM, Taylor C et al (2002) Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360:436–442PubMedCrossRefGoogle Scholar
  17. 17.
    Haque T, Wilkie GM, Jones MM et al (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110:1123–1131PubMedCrossRefGoogle Scholar
  18. 18.
    Feuchtinger T, Matthes-Martin S, Richard C et al (2006) Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 134:64–76PubMedCrossRefGoogle Scholar
  19. 19.
    Bollard CM, Aguilar L, Straathof KC et al (2004) Cytotoxic T lymphocyte therapy for Epstein-Barr virus + Hodgkin’s disease. J Exp Med 200:1623–1633PubMedCrossRefGoogle Scholar
  20. 20.
    Straathof KC, Bollard CM, Popat U et al (2005) Treatment of nasopharyngeal carcinoma with Epstein-Barr virus – specific T lymphocytes. Blood 105:1898–1904PubMedCrossRefGoogle Scholar
  21. 21.
    Bollard CM, Gottschalk S, Leen AM et al (2007) Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110:2838–2845PubMedCrossRefGoogle Scholar
  22. 22.
    Rosenberg SA, Packard BS, Aebersold PM et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680PubMedCrossRefGoogle Scholar
  23. 23.
    Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854PubMedCrossRefGoogle Scholar
  24. 24.
    Dudley ME, Wunderlich JR, Yang JC et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenberg SA, Yannelli JR, Yang JC et al (1994) Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 86:1159–1166PubMedCrossRefGoogle Scholar
  26. 26.
    Dudley ME, Yang JC, Sherry R et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239PubMedCrossRefGoogle Scholar
  27. 27.
    Dudley ME, Wunderlich J, Nishimura MI et al (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–373PubMedCrossRefGoogle Scholar
  28. 28.
    Brentjens RJ, Riviere I, Hollyman D et al (2009) Unexpected toxicity of cyclophosphamide followed by adoptively transferred CD19-targeted T cells in a patient with bulky CLL. Mol Ther 17:157–157Google Scholar
  29. 29.
    Rosenberg SA (2009) Gene Transfer Safety Assessment Board Report. National Institutes of Health (NIH) Recombinant DNA Advisory Committee (RAC) Meeting 1 December 2009. 12 January 2010
  30. 30.
    Coulie PG, Lehmann F, Lethe B et al (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92:7976–7980PubMedCrossRefGoogle Scholar
  31. 31.
    Sensi M, Anichini A (2006) Unique tumor antigens: evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin Cancer Res 12:5023–5032PubMedCrossRefGoogle Scholar
  32. 32.
    Kaka AS, Shaffer DR, Hartmeier R et al (2009) Genetic modification of T cells with IL-21 enhances antigen presentation and generation of central memory tumor-specific cytotoxic T-lymphocytes. J Immunother 32:726–736PubMedCrossRefGoogle Scholar
  33. 33.
    Foster AE, Leen AM, Lee T et al (2007) Autologous designer antigen-presenting cells by gene modification of T lymphocyte blasts with IL-7 and IL-12. J Immunother 30:506–516PubMedCrossRefGoogle Scholar
  34. 34.
    Mandelcorn-Monson RL, Shear NH, Yau E et al (2003) Cytotoxic T lymphocyte reactivity to gp100, MelanA/MART-1, and tyrosinase, in HLA-A2-positive vitiligo patients. J Invest Dermatol 121:550–556PubMedCrossRefGoogle Scholar
  35. 35.
    Simpson AJ, Caballero OL, Jungbluth A et al (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625PubMedCrossRefGoogle Scholar
  36. 36.
    Reker S, Becker JC, Svane IM et al (2004) HLA-B35-restricted immune responses against survivin in cancer patients. Int J Cancer 108:937–941PubMedCrossRefGoogle Scholar
  37. 37.
    Lamers CH, Sleijfer S, Vulto AG et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22PubMedCrossRefGoogle Scholar
  38. 38.
    Kessler JH, Melief CJ (2007) Identification of T-cell epitopes for cancer immunotherapy. Leukemia 21:1859–1874PubMedCrossRefGoogle Scholar
  39. 39.
    Viatte S, Alves PM, Romero P (2006) Reverse immunology approach for the identification of CD8+ T-cell-defined antigens: advantages and hurdles. Immunol Cell Biol 84:318–330PubMedCrossRefGoogle Scholar
  40. 40.
    Quintarelli C, Dotti G, De AB et al (2008) Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112:1876–1885PubMedCrossRefGoogle Scholar
  41. 41.
    Coughlin CM, Vance BA, Grupp SA et al (2004) RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 103:2046–2054PubMedCrossRefGoogle Scholar
  42. 42.
    Bonehill A, Tuyaerts S, Van Nuffel AM et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180PubMedCrossRefGoogle Scholar
  43. 43.
    Hodge JW, Rad AN, Grosenbach DW et al (2000) Enhanced activation of T cells by dendritic cells engineered to hyperexpress a triad of costimulatory molecules. J Natl Cancer Inst 92:1228–1239PubMedCrossRefGoogle Scholar
  44. 44.
    Palena C, Zhu M, Schlom J et al (2004) Human B cells that hyperexpress a triad of costimulatory molecules via avipox-vector infection: an alternative source of efficient antigen- presenting cells. Blood 104:192–199PubMedCrossRefGoogle Scholar
  45. 45.
    Sun S, Cai Z, Langlade-Demoyen P et al (1996) Dual function of Drosophila cells as APCs for naive CD8+ T cells: implications for tumor immunotherapy. Immunity 4:555–564PubMedCrossRefGoogle Scholar
  46. 46.
    Latouche JB, Sadelain M (2000) Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol 18:405–409PubMedCrossRefGoogle Scholar
  47. 47.
    Maus MV, Thomas AK, Leonard DG et al (2002) ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol 20:143–148PubMedCrossRefGoogle Scholar
  48. 48.
    Suhoski MM, Golovina TN, Aqui NA et al (2007) Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 15:981–988PubMedCrossRefGoogle Scholar
  49. 49.
    Kim JV, Latouche JB, Riviere I et al (2004) The ABCs of artificial antigen presentation. Nat Biotechnol 22:403–410PubMedCrossRefGoogle Scholar
  50. 50.
    Tham EL, Jensen PL, Mescher MF (2001) Activation of antigen-specific T cells by artificial cell constructs having immobilized multimeric peptide-class I complexes and recombinant B7-Fc proteins. J Immunol Methods 249:111–119PubMedCrossRefGoogle Scholar
  51. 51.
    Shalaby WS, Yeh H, Woo E et al (2004) Absorbable microparticulate cation exchanger for immunotherapeutic delivery. J Biomed Mater Res B Appl Biomater 69:173–182PubMedCrossRefGoogle Scholar
  52. 52.
    Prakken B, Wauben M, Genini D et al (2000) Artificial antigen-presenting cells as a tool to exploit the immune ‘synapse’. Nat Med 6:1406–1410PubMedCrossRefGoogle Scholar
  53. 53.
    Steenblock ER, Fahmy TM (2008) A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol Ther 16:765–772PubMedCrossRefGoogle Scholar
  54. 54.
    Teague RM, Sather BD, Sacks JA et al (2006) Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 12:335–341PubMedCrossRefGoogle Scholar
  55. 55.
    Kaneko S, Mastaglio S, Bondanza A et al (2009) IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes. Blood 113:1006–1015PubMedCrossRefGoogle Scholar
  56. 56.
    King JW, Thomas S, Corsi F et al (2009) IL15 can reverse the unresponsiveness of Wilms’ tumor antigen-specific CTL in patients with prostate cancer. Clin Cancer Res 15:1145–1154PubMedCrossRefGoogle Scholar
  57. 57.
    Korn T, Mitsdoerffer M, Croxford AL et al (2008) IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 105:18460–18465PubMedCrossRefGoogle Scholar
  58. 58.
    Korn T, Bettelli E, Oukka M et al (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517PubMedCrossRefGoogle Scholar
  59. 59.
    Martin-Orozco N, Muranski P, Chung Y et al (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798PubMedCrossRefGoogle Scholar
  60. 60.
    Muranski P, Boni A, Antony PA et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373PubMedCrossRefGoogle Scholar
  61. 61.
    Xue SA, Gao L, Hart D et al (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 106:3062–3067PubMedCrossRefGoogle Scholar
  62. 62.
    Abad JD, Wrzensinski C, Overwijk W et al (2008) T-cell receptor gene therapy of established tumors in a murine melanoma model. J Immunother 31:1–6PubMedCrossRefGoogle Scholar
  63. 63.
    Stauss HJ, Cesco-Gaspere M, Thomas S et al (2007) Monoclonal T-cell receptors: new reagents for cancer therapy. Mol Ther 15:1744–1750PubMedCrossRefGoogle Scholar
  64. 64.
    Cohen CJ, Li YF, El-Gamil M et al (2007) Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 67:3898–3903PubMedCrossRefGoogle Scholar
  65. 65.
    Hiasa A, Nishikawa H, Hirayama M et al (2009) Rapid alphabeta TCR-mediated responses in gammadelta T cells transduced with cancer-specific TCR genes. Gene Ther 16:620–628PubMedCrossRefGoogle Scholar
  66. 66.
    Lamers CH, Langeveld SC, Groot-van Ruijven CM et al (2007) Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo. Cancer Immunol Immunother 56:1875–1883PubMedCrossRefGoogle Scholar
  67. 67.
    Jensen MC, Popplewell L, Digiusto DL et al (2007) A firts-in-human clinical trial of adoptive therapy using CD19-specific chimeric antigen receptor re-directed T cells for recurrency/refractory follicular lymphoma. Mol Ther 15:142–142Google Scholar
  68. 68.
    Till BG, Jensen MC, Wang J et al (2008) Adoptive immunotherapy for indolent non- Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112:2261–2271PubMedCrossRefGoogle Scholar
  69. 69.
    Pule MA, Savoldo B, Myers GD et al (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14:1264–1270PubMedCrossRefGoogle Scholar
  70. 70.
    Gonzalez S, Naranjo A, Serrano LM et al (2004) Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma. J Gene Med 6:704–711PubMedCrossRefGoogle Scholar
  71. 71.
    Park JR, Digiusto DL, Slovak M et al (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15:825–833PubMedGoogle Scholar
  72. 72.
    Brentjens RJ, Hollyman D, Weiss M et al (2009) A phase I trial for the treatment of chemo- refractory chronic lymphocytic leukemia with CD19-targeted autologous T cells. Mol Ther 16:15Google Scholar
  73. 73.
    Loskog A, Giandomenico V, Rossig C et al (2006) Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia 20:1819–1828PubMedCrossRefGoogle Scholar
  74. 74.
    Rossig C, Pscherer S, Landmeier S et al (2005) Adoptive cellular immunotherapy with CD19-specific T cells. Klin Padiatr 217:351–356PubMedCrossRefGoogle Scholar
  75. 75.
    Bollard CM, Rossig C, Calonge MJ et al (2002) Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 99:3179–3187PubMedCrossRefGoogle Scholar
  76. 76.
    Ahmed N, Ratnayake M, Savoldo B et al (2007) Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res 67:5957–5964PubMedCrossRefGoogle Scholar
  77. 77.
    Ahmed N, Salsman VS, Yvon E et al (2009) Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther 17:1779–1787PubMedCrossRefGoogle Scholar
  78. 78.
    Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129PubMedCrossRefGoogle Scholar
  79. 79.
    Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546PubMedCrossRefGoogle Scholar
  80. 80.
    Haynes NM, Trapani JA, Teng MW et al (2002) Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 100:3155–3163PubMedCrossRefGoogle Scholar
  81. 81.
    Maher J, Brentjens RJ, Gunset G et al (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 20:70–75PubMedCrossRefGoogle Scholar
  82. 82.
    Pule MA, Straathof KC, Dotti G et al (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12:933–941PubMedCrossRefGoogle Scholar
  83. 83.
    Wang J, Jensen M, Lin Y et al (2007) Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 18:712–725PubMedCrossRefGoogle Scholar
  84. 84.
    Kershaw MH, Westwood JA, Parker LL et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12:6106–6115PubMedCrossRefGoogle Scholar
  85. 85.
    Hombach A, Schneider C, Sent D et al (2000) An entirely humanized CD3 zeta-chain signaling receptor that directs peripheral blood t cells to specific lysis of carcinoembryonic antigen-positive tumor cells. Int J Cancer 88:115–120PubMedCrossRefGoogle Scholar
  86. 86.
    Verhoeyen M, Milstein C, Winter G (1988) Reshaping human antibodies: grafting an antilysozyme activity. Science 239:1534–1536PubMedCrossRefGoogle Scholar
  87. 87.
    Cai X, Garen A (1995) Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc Natl Acad Sci USA 92:6537–6541PubMedCrossRefGoogle Scholar
  88. 88.
    Leen AM, Rooney CM, Foster AE (2007) Improving T cell therapy for cancer. Annu Rev Immunol 25:243–265PubMedCrossRefGoogle Scholar
  89. 89.
    Berger C, Jensen MC, Lansdorp PM et al (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118:294–305PubMedCrossRefGoogle Scholar
  90. 90.
    Klebanoff CA, Gattinoni L, Torabi-Parizi P et al (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576PubMedCrossRefGoogle Scholar
  91. 91.
    Powell DJ, Jr., Dudley ME, Robbins PF et al (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250PubMedCrossRefGoogle Scholar
  92. 92.
    Zhou J, Shen X, Huang J et al (2005) Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 175:7046–7052PubMedGoogle Scholar
  93. 93.
    Liu K, Rosenberg SA (2001) Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 167:6356–6365PubMedGoogle Scholar
  94. 94.
    Quintarelli C, Vera JF, Savoldo B et al (2007) Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110:2793–2802PubMedCrossRefGoogle Scholar
  95. 95.
    Vera JF, Hoyos V, Savoldo B et al (2009) Genetic manipulation of tumor-specific cytotoxic T lymphocytes to restore responsiveness to IL-7. Mol Ther 17:880–888PubMedCrossRefGoogle Scholar
  96. 96.
    Dagarag M, Evazyan T, Rao N et al (2004) Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J Immunol 173:6303–6311PubMedGoogle Scholar
  97. 97.
    Hooijberg E, Ruizendaal JJ, Snijders PJ et al (2000) Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J Immunol 165:4239–4245PubMedGoogle Scholar
  98. 98.
    Migliaccio M, Amacker M, Just T et al (2000) Ectopic human telomerase catalytic subunit expression maintains telomere length but is not sufficient for CD8+ T lymphocyte immortalization. J Immunol 165:4978–4984PubMedGoogle Scholar
  99. 99.
    Li MO, Wan YY, Sanjabi S et al (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146PubMedCrossRefGoogle Scholar
  100. 100.
    Peng Y, Laouar Y, Li MO et al (2004) TGF-b regulates in vivo expansion of Foxp3-expressing CD4 + CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA 101:4572–4577PubMedCrossRefGoogle Scholar
  101. 101.
    Zamanakou M, Germenis AE, Karanikas V (2007) Tumor immune escape mediated by indoleamine 2,3-dioxygenase. Immunol Lett 111:69–75PubMedCrossRefGoogle Scholar
  102. 102.
    Munn DH, Sharma MD, Baban B et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642PubMedCrossRefGoogle Scholar
  103. 103.
    Charo J, Finkelstein SE, Grewal N et al (2005) Bcl-2 overexpression enhances tumor- specific T-cell survival. Cancer Res 65:2001–2008PubMedCrossRefGoogle Scholar
  104. 104.
    Eaton D, Gilham DE, O’Neill A et al (2002) Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther 9:527–535PubMedCrossRefGoogle Scholar
  105. 105.
    Dotti G, Savoldo B, Pule M et al (2005) Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105:4677–4684PubMedCrossRefGoogle Scholar
  106. 106.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419PubMedCrossRefGoogle Scholar
  107. 107.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256PubMedCrossRefGoogle Scholar
  108. 108.
    Bonini C, Ferrari G, Verzeletti S et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science 276:1719–1724PubMedCrossRefGoogle Scholar
  109. 109.
    Bonini C, Bondanza A, Perna SK et al (2007) The suicide gene therapy challenge: how to improve a successful gene therapy approach. Mol Ther 15:1248–1252PubMedCrossRefGoogle Scholar
  110. 110.
    Ciceri F, Bonini C, Stanghellini MT et al (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 10:489–500PubMedCrossRefGoogle Scholar
  111. 111.
    Munshi NC, Govindarajan R, Drake R et al (1997) Thymidine kinase (TK) gene-transduced human lymphocytes can be highly purified, remain fully functional, and are killed efficiently with ganciclovir. Blood 89:1334–1340PubMedGoogle Scholar
  112. 112.
    Traversari C, Marktel S, Magnani Z et al (2007) The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 109:4708–4715PubMedCrossRefGoogle Scholar
  113. 113.
    Sato T, Neschadim A, Konrad M et al (2007) Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol Ther 15:962–970PubMedCrossRefGoogle Scholar
  114. 114.
    Introna M, Barbui AM, Bambacioni F et al (2000) Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 11:611–620PubMedCrossRefGoogle Scholar
  115. 115.
    Iuliucci JD, Oliver SD, Morley S et al (2001) Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol 41:870–879PubMedCrossRefGoogle Scholar
  116. 116.
    Thomis DC, Marktel S, Bonini C et al (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97:1249–1257PubMedCrossRefGoogle Scholar
  117. 117.
    Spencer DM, Belshaw PJ, Chen L et al (1996) Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol 6:839–847PubMedCrossRefGoogle Scholar
  118. 118.
    Straathof KC, Pule MA, Yotnda P et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105:4247–4254PubMedCrossRefGoogle Scholar
  119. 119.
    Carroll D (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther 15:1463–1468PubMedCrossRefGoogle Scholar
  120. 120.
    Provasi E, Genovese P, Magnani Z et al (2009) T cell receptor gene transfer into early differentiated lymphocytes by lentiviral vectors for safe and effective adoptive immune therapy of leukemia. Mol Ther 17:159–159Google Scholar
  121. 121.
    Schambach A, Baum C (2008) Clinical application of lentiviral vectors – concepts and practice. Curr Gene Ther 8:474–482PubMedCrossRefGoogle Scholar
  122. 122.
    Louis CU, Straathof K, Bollard CM et al (2009) Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood 113:2442–2450PubMedCrossRefGoogle Scholar
  123. 123.
    Attia P, Maker AV, Haworth LR et al (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28:582–592PubMedCrossRefGoogle Scholar
  124. 124.
    Ko K, Yamazaki S, Nakamura K et al (2005) Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3 + CD25 + CD4+ regulatory T cells. J Exp Med 202:885–891PubMedCrossRefGoogle Scholar
  125. 125.
    Phan GQ, Yang JC, Sherry RM et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377PubMedCrossRefGoogle Scholar
  126. 126.
    Ribas A, Camacho LH, Lopez-Berestein G et al (2005) Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 23:8968–8977PubMedCrossRefGoogle Scholar
  127. 127.
    Attia P, Phan GQ, Maker AV et al (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 23:6043–6053PubMedCrossRefGoogle Scholar
  128. 128.
    Robinson MR, Chan CC, Yang JC et al (2004) Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J Immunother 27:478–479PubMedCrossRefGoogle Scholar
  129. 129.
    Carswell KS, Papoutsakis ET (2000) Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: shear, proliferation, and the IL-2 receptor. Biotechnol Bioeng 68:328–338PubMedCrossRefGoogle Scholar
  130. 130.
    Foster AE, Forrester K, Gottlieb DJ et al (2004) Large-scale expansion of cytomegalovirus-specific cytotoxic T cells in suspension culture. Biotechnol Bioeng 85:138–146PubMedCrossRefGoogle Scholar
  131. 131.
    Malone CC, Schiltz PM, Mackintosh AD et al (2001) Characterization of human tumor-infiltrating lymphocytes expanded in hollow-fiber bioreactors for immunotherapy of cancer. Cancer Biother Radiopharm 16:381–390PubMedCrossRefGoogle Scholar
  132. 132.
    Knazek RA, Wu YW, Aebersold PM et al (1990) Culture of human tumor infiltrating lymphocytes in hollow fiber bioreactors. J Immunol Methods 127:29–37PubMedCrossRefGoogle Scholar
  133. 133.
    Tran CA, Burton L, Russom D et al (2007) Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity. J Immunother 30:644–654PubMedCrossRefGoogle Scholar
  134. 134.
    Vera J, Brenner L, Gerdemann U et al (2010) Accelerated production of antigen-specific T-cells for pre-clinical and clinical applications using Gas-permeable Rapid Expansion cultureware (G-Rex). J Immunother 33:305–315PubMedCrossRefGoogle Scholar
  135. 135.
    Taylor DC, Zhou Z, Haider S et al (2006) Health-care utilization and cost for the treatment of melanoma in the six months following diagnosis. J Clin Oncol 24:18005Google Scholar
  136. 136.
    Saito AM, Cutler C, Zahrieh D et al (2008) Costs of allogeneic hematopoietic cell transplantation with high-dose regimens. Biol Blood Marrow Transplant 14:197–207PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Cell and Gene TherapyBaylor College of Medicine, Texas Children’s Hospital and The Methodist HospitalHoustonUSA

Personalised recommendations