Introduction to TRP Channels: Structure, Function, and Regulation

  • Michael Y. Song
  • Jason X.-J. YuanEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (volume 661)


 Transient receptor potential or TRP families of ion channels demonstrate great diversity in activation and inhibition, and they are diverse in selectivity of ion conductance. TRP ion channels function as signal integrators through their ion conductance properties, and in some cases kinase activity. They mediate processes such as vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. TRP cation channels function by mediating the flux of Na+ and Ca2+ across the plasma membrane and into the cytoplasm. The influx of cations into the cytoplasm depolarizes cells and is necessary for action potentials in excitable cells such as neurons. In non-excitable cells, membrane depolarization by TRP ) and-channels stimulates voltage- dependent channels (Ca2+, K+, Cl- influences many cellular events, such as transcription, translation, contraction, and migration. TRP channels are important in human physiology, and mutations in TRP genes are associated with at least four diseases. Furthermore, altered expression, function, and/or regulation of TRP channels have been implicated in diseases such as pulmonary hypertension.


Canonical Vanilliod Melastatin Ankyrin Trpn=No mechanoreceptor potential Trpp=Polycystin Trpml=Mucolipin 


  1. 1.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517-529PubMedCrossRefGoogle Scholar
  2. 2.
    Putney J (1977) Muscarinic, α-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J Physiol 268:139-149PubMedGoogle Scholar
  3. 3.
    Tessier-Lavigne M, Goodman C (1996) The molecular biology of axon guidance. Science 274:1123-1133PubMedCrossRefGoogle Scholar
  4. 4.
    Clapham D (1995) Calcium signaling. Cell 80:259PubMedCrossRefGoogle Scholar
  5. 5.
    Clapham DE, Montell C, Schultz G, Julius D (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev 55:591-596PubMedCrossRefGoogle Scholar
  6. 6.
    Montell C, Birnbaumer L, Flockerzi V et al (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229-231PubMedCrossRefGoogle Scholar
  7. 7.
    Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540-22548PubMedCrossRefGoogle Scholar
  8. 8.
    Clapham DE, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427-450PubMedCrossRefGoogle Scholar
  9. 9.
    Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection. J Physiol 567:35-44PubMedCrossRefGoogle Scholar
  10. 10.
    Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619-647PubMedCrossRefGoogle Scholar
  11. 11.
    Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359-27370PubMedCrossRefGoogle Scholar
  12. 12.
    Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887-18894PubMedCrossRefGoogle Scholar
  13. 13.
    Voets T, Prenen J, Fleig A et al (2001) CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem 276:47767-47770PubMedGoogle Scholar
  14. 14.
    Zhang J, Xia S, Block ER, Patel JM (2002) NO upregulation of a cyclic nucleotide-gated channel contributes to calcium elevation in endothelial cells. Am J Physiol Cell Physiol 283:C1080-C1089PubMedGoogle Scholar
  15. 15.
    Zhu M (2005) Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflügers Arch 451:105-115PubMedCrossRefGoogle Scholar
  16. 16.
    Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031-29041PubMedCrossRefGoogle Scholar
  17. 17.
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517-524PubMedCrossRefGoogle Scholar
  18. 18.
    Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179-185PubMedCrossRefGoogle Scholar
  19. 19.
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92:9652-9656PubMedCrossRefGoogle Scholar
  20. 20.
    Plant TD, Schaefer M (2005) Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 371:266-276PubMedCrossRefGoogle Scholar
  21. 21.
    Jung S, Mühle A, Schaefer M, Strotmann R, Schultz G, Plant TD (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278:3562-3571PubMedCrossRefGoogle Scholar
  22. 22.
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259-263PubMedCrossRefGoogle Scholar
  23. 23.
    Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T (2003) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278:47842-47852PubMedCrossRefGoogle Scholar
  24. 24.
    Kwan H, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 101:2625-2630PubMedCrossRefGoogle Scholar
  25. 25.
    Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521-40528PubMedCrossRefGoogle Scholar
  26. 26.
    Vannier B, Peyton M, Boulay G et al (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96:2060-2064PubMedCrossRefGoogle Scholar
  27. 27.
    Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551-561PubMedCrossRefGoogle Scholar
  28. 28.
    Niemeyer BA (2005) Structure-function analysis of TRPV channels. Naunyn Schmiedebergs Arch Pharmacol 371:285-294PubMedCrossRefGoogle Scholar
  29. 29.
    Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140:790-801PubMedCrossRefGoogle Scholar
  30. 30.
    Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278:50080-50090PubMedCrossRefGoogle Scholar
  31. 31.
    Woodbury CJ, Zwick M, Wang S et al (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24:6410-6415PubMedCrossRefGoogle Scholar
  32. 32.
    Hu HZ, Gu Q, Wang C et al (2004) 2-Aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279:35741-35748PubMedCrossRefGoogle Scholar
  33. 33.
    Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396-401PubMedCrossRefGoogle Scholar
  34. 34.
    Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829-838PubMedCrossRefGoogle Scholar
  35. 35.
    Moqrich A, Hwang SW, Earley TJ et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468-1472PubMedCrossRefGoogle Scholar
  36. 36.
    Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044-47051PubMedCrossRefGoogle Scholar
  37. 37.
    Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279:35133-35138PubMedCrossRefGoogle Scholar
  38. 38.
    Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434-438PubMedCrossRefGoogle Scholar
  39. 39.
    Hoenderop JG, Voets T, Hoefs S et al (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776-785PubMedCrossRefGoogle Scholar
  40. 40.
    Van Abel M, Hoenderop JG, Bindels RJ (2005) The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease. Naunyn Schmiedebergs Arch Pharmacol 371:295-306PubMedCrossRefGoogle Scholar
  41. 41.
    Chang Q, Gyftogianni E, van de Graaf SF et al (2004) Molecular determinants in TRPV5 channel assembly. J Biol Chem 279:54304-54311PubMedCrossRefGoogle Scholar
  42. 42.
    Bödding M, Flockerzi V (2004) Ca2+ dependence of the Ca2+-selective TRPV6 channel. J Biol Chem 279:36546-36552PubMedCrossRefGoogle Scholar
  43. 43.
    Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ (2004) Regulation of the mouse epithelial Ca2+ channel TRPV6 by the Ca2+-sensor calmodulin. J Biol Chem 279:28855-28861PubMedCrossRefGoogle Scholar
  44. 44.
    Schlingmann KP, Weber S, Peters M et al (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166-170PubMedCrossRefGoogle Scholar
  45. 45.
    Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633-639PubMedCrossRefGoogle Scholar
  46. 46.
    McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278:11002-11006PubMedCrossRefGoogle Scholar
  47. 47.
    Fonfria E, Marshall IC, Benham CD et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186-192PubMedCrossRefGoogle Scholar
  48. 48.
    Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61-69PubMedCrossRefGoogle Scholar
  49. 49.
    Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493-21501PubMedCrossRefGoogle Scholar
  50. 50.
    Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397-407PubMedCrossRefGoogle Scholar
  51. 51.
    Nilius B, Prenen J, Voets T, Droogmans G (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflügers Arch 448:70-75PubMedCrossRefGoogle Scholar
  52. 52.
    Ullrich ND, Voets T, Prenen J et al (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267-278PubMedCrossRefGoogle Scholar
  53. 53.
    Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr Biol 13:1153-1158PubMedCrossRefGoogle Scholar
  54. 54.
    Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100:15160-15165PubMedCrossRefGoogle Scholar
  55. 55.
    Voets T, Nilius B, Hoefs S et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19-25PubMedCrossRefGoogle Scholar
  56. 56.
    Walder RY, Landau D, Meyer P et al (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171-174PubMedCrossRefGoogle Scholar
  57. 57.
    Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG (2004) Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279:3708-3716PubMedCrossRefGoogle Scholar
  58. 58.
    Matsushita M, Kozak JA, Shimizu Y et al (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 280:20793-20803PubMedCrossRefGoogle Scholar
  59. 59.
    Runnels LW, Yue L, Clapham D (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4:329-336PubMedGoogle Scholar
  60. 60.
    Schmitz C, Perraud AL, Johnson CO et al (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191-200PubMedCrossRefGoogle Scholar
  61. 61.
    Dorovkov MV, Ryazanov AG (2004) Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem 279:50643-50646PubMedCrossRefGoogle Scholar
  62. 62.
    Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci U S A 101:15494-15499PubMedCrossRefGoogle Scholar
  63. 63.
    Weil A, Moore SE, Waite NJ, Randall A, Gunthorpe MJ (2005) Conservation of functional and pharmacological properties in the distantly related temperature sensors TRPV1 and TRPM8. Mol Pharmacol 68:518-527PubMedGoogle Scholar
  64. 64.
    Rohács T, Lopes CM, Michailidis I, Logothetis DE (2005) PI4,5P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626-634PubMedCrossRefGoogle Scholar
  65. 65.
    Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15:929PubMedCrossRefGoogle Scholar
  66. 66.
    Corey DP, García-Añoveros J, Holt JR et al (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723-730PubMedCrossRefGoogle Scholar
  67. 67.
    Bandell M, Story GM, Hwang SW et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849-857PubMedCrossRefGoogle Scholar
  68. 68.
    Nagata K, Duggan A, Kumar G, García-Añoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052-4061PubMedCrossRefGoogle Scholar
  69. 69.
    Menè P (2006) Transient receptor potential channels in the kidney: calcium signaling, transport and beyond. J Nephrol 19:21-29PubMedGoogle Scholar
  70. 70.
    Kwan HY, Huang Y, Yao X (2007) TRP channels in endothelial function and dysfunction. Biochim Biophys Acta 1772:907-914PubMedCrossRefGoogle Scholar
  71. 71.
    Köttgen M, Buchholz B, Garcia-Gonzalez MA et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437-447PubMedCrossRefGoogle Scholar
  72. 72.
    Köttgen M, Benzing T, Simmen T et al (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24:705-716PubMedCrossRefGoogle Scholar
  73. 73.
    Wu G, D’Agati V, Cai Y et al (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177-188PubMedCrossRefGoogle Scholar
  74. 74.
    Song Y, Dayalu R, Matthews SA, Scharenberg AM (2006) TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes. Eur J Cell Biol 85:1253-1264PubMedCrossRefGoogle Scholar
  75. 75.
    Qian F, Noben-Trauth K (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflügers Arch 451:277-285PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of CaliforniaSan DiegoUSA

Personalised recommendations