Rho Kinase-Mediated Vasoconstriction in Pulmonary Hypertension

  • Ivan F. McMurtry
  • Kohtaro Abe
  • Hiroki Ota
  • Karen A. Fagan
  • Masahiko Oka
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (volume 661)


Rho kinase-mediated vasoconstriction rather than fixed arterial wall thickening is responsible for increased pulmonary vascular resistance and pulmonary hypertension in chronically hypoxic and monocrotaline-injected rats. In the absence of vascular tone, the medial and adventitial thickening in these models has only minimal impact on the cross-sectional area of the pulmonary arterial bed. In contrast, increased pulmonary vascular resistance in left-pneumonectomized plus monocrotaline-injected rats and VEGF receptor blocker-injected plus chronic hypoxia rats is attributable to both Rho kinase-mediated vasoconstriction and formation of lumen obliterating lesions in small pulmonary arteries. The upstream signals responsible for activation of RhoA/Rho kinase signaling in hypertensive pulmonary arteries and whether or not they differ in different forms of pulmonary hypertension are unclear. The RhoA/Rho kinase pathway is a convergence point of several different vasoconstrictor signals, including those mediated by G protein-coupled receptors, receptor tyrosine kinases, and integrin clustering. Both isoforms of Rho kinase can also be constitutively activated by cleavage, and cleaved Rho kinase 1 has been detected in the hypertensive lungs of left-pneumonectomized plus monocrotaline-injected rats. That such diverse stimuli can lead to activation of Rho kinase, which may cause hypercontraction of smooth muscle by promoting both actomyosin interaction and remodeling of the cytoskeleton, may explain why in various rat models of pulmonary hypertension Rho kinase inhibitors are more effective pulmonary vasodilators than conventional agents such as nitric oxide, prostacyclin, and nifedipine. We suspect the same will be true in at least some forms of human pulmonary arterial hypertension.


RhoA Rho kinase pulmonary vasoconstriction pulmonary hypertension pulmonary vascular remodeling chronic hypoxia monocrotaline 


  1. 1.
    Pietra GG, Capron F, Stewart S et al (2004) Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 43:25S-32SPubMedCrossRefGoogle Scholar
  2. 2.
    Rich S (2009) The effects of vasodilators in pulmonary hypertension. Pulmonary vascular or peripheral vascular? Circ Heart Fail 2:145-150PubMedCrossRefGoogle Scholar
  3. 3.
    Sitbon O, Humbert M, Jais X et al (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111:3105-3111PubMedCrossRefGoogle Scholar
  4. 4.
    Rabinovitch M (2008) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118:2372-2379PubMedCrossRefGoogle Scholar
  5. 5.
    Oka M, Fagan KA, Jones PL, McMurtry IF (2008) Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 155:444-454PubMedCrossRefGoogle Scholar
  6. 6.
    Oka M, Homma N, McMurtry IF (2008) Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension. Methods Enzymol 439:191-204PubMedCrossRefGoogle Scholar
  7. 7.
    Gunst SJ, Zhang W (2008) Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 295:C576-C587PubMedCrossRefGoogle Scholar
  8. 8.
    Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12:2165-2180PubMedCrossRefGoogle Scholar
  9. 9.
    Ratz PH, Berg KM, Urban NH, Miner AS (2005) Regulation of smooth muscle calcium sensitivity: KCl as a calcium-sensitizing stimulus. Am J Physiol Cell Physiol 288:C769-C783PubMedCrossRefGoogle Scholar
  10. 10.
    Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325-1358PubMedGoogle Scholar
  11. 11.
    Tang DD, Anfinogenova Y (2008) Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther 13:130-140PubMedCrossRefGoogle Scholar
  12. 12.
    Broughton BR, Walker BR, Resta TC (2008) Chronic hypoxia induces Rho kinase-dependent myogenic tone in small pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 294:L797-L806PubMedCrossRefGoogle Scholar
  13. 13.
    Jernigan NL, Walker BR, Resta TC (2008) Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 295:L515-L529PubMedCrossRefGoogle Scholar
  14. 14.
    Weigand L, Sylvester JT, Shimoda LA (2006) Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 290:L284-L290PubMedCrossRefGoogle Scholar
  15. 15.
    Wang J, Weigand L, Foxson J, Shimoda LA, Sylvester JT (2007) Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and rho kinase antagonists. Am J Physiol Lung Cell Mol Physiol 293:L674-L685PubMedCrossRefGoogle Scholar
  16. 16.
    Badejo AM Jr, Dhaliwal JS, Casey DB, Gallen TB, Greco AJ, Kadowitz PJ (2008) Analysis of pulmonary vasodilator responses to the Rho-kinase inhibitor fasudil in the anesthetized rat. Am J Physiol Lung Cell Mol Physiol 295:L828-L836PubMedCrossRefGoogle Scholar
  17. 17.
    Fagan KA, Oka M, Bauer NR et al (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L656-L664PubMedCrossRefGoogle Scholar
  18. 18.
    Nagaoka T, Morio Y, Casanova N et al (2004) Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 287:L665-L672PubMedCrossRefGoogle Scholar
  19. 19.
    Robertson TP, Dipp M, Ward JPT, Aaronson PI, Evans AM (2000) Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br J Pharmacol 131:5-9PubMedCrossRefGoogle Scholar
  20. 20.
    Knock GA, Snetkov VA, Shaifta Y et al (2009) Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization. Free Radic Biol Med 46:633-642PubMedCrossRefGoogle Scholar
  21. 21.
    Homma N, Nagaoka T, Morio Y et al (2007) Endothelin-1 and serotonin are involved in activation of RhoA/Rho kinase signaling in the chronically hypoxic hypertensive rat pulmonary circulation. J Cardiovasc Pharmacol 50:697-702PubMedCrossRefGoogle Scholar
  22. 22.
    Barman SA (2007) Vasoconstrictor effect of endothelin-1 on hypertensive pulmonary arterial smooth muscle involves Rho-kinase and protein kinase C. Am J Physiol Lung Cell Mol Physiol 293:L472-L479PubMedCrossRefGoogle Scholar
  23. 23.
    Alapati VR, McKenzie C, Blair A, Kenny D, MacDonald A, Shaw AM (2007) Mechanisms of U46619- and 5-HT-induced contraction of bovine pulmonary arteries: role of chloride ions. Br J Pharmacol 151:1224-1234PubMedCrossRefGoogle Scholar
  24. 24.
    Janssen LJ, Premji M, Netherton S, Coruzzi J, Lu-Chao H, Cox PG (2001) Vasoconstrictor actions of isoprostanes via tyrosine kinase and Rho kinase in human and canine pulmonary vascular smooth muscles. Br J Pharmacol 132:127-134PubMedCrossRefGoogle Scholar
  25. 25.
    Martin C, Goggel R, Ressmeyer AR, Uhlig S (2004) Pressor responses to platelet-activating factor and thromboxane are mediated by Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L250-L257PubMedCrossRefGoogle Scholar
  26. 26.
    Knock GA, Shaifta Y, Snetkov VA et al (2008) Interaction between src family kinases and Rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery. Cardiovasc Res 77:570-579PubMedCrossRefGoogle Scholar
  27. 27.
    Rodat-Despoix L, Crevel H, Marthan R, Savineau JP, Guibert C (2008) Heterogeneity in 5-HT-induced contractile and proliferative responses in rat pulmonary arterial bed. J Vasc Res 45:181-192PubMedCrossRefGoogle Scholar
  28. 28.
    Witzenrath M, Ahrens B, Kube SM et al (2006) Allergic lung inflammation induces pulmonary vascular hyperresponsiveness. Eur Respir J 28:370-377PubMedCrossRefGoogle Scholar
  29. 29.
    Boer C, van der Linden PJ, Scheffer GJ, Westerhof N, de Lange JJ, Sipkema P (2002) RhoA/Rho kinase and nitric oxide modulate the agonist-induced pulmonary artery diameter response time. Am J Physiol Heart Circ Physiol 282:H990-H998PubMedGoogle Scholar
  30. 30.
    Damron DS, Kanaya N, Homma Y, Kim SO, Murray PA (2002) Role of PKC, tyrosine kinases, and Rho kinase in α-adrenoreceptor-mediated PASM contraction. Am J Physiol Lung Cell Mol Physiol 283:L1051-L1064PubMedGoogle Scholar
  31. 31.
    Losapio JL, Sprague RS, Lonigro AJ, Stephenson AH (2005) 5,6-EET-induced contraction of intralobar pulmonary arteries depends on the activation of Rho-kinase. J Appl Physiol 99:1391-1396PubMedCrossRefGoogle Scholar
  32. 32.
    Thomas GD, Snetkov VA, Patel R, Leach RM, Aaronson PI, Ward JPT (2005) Sphingosylphosphorylcholine-induced vasoconstriction of pulmonary artery: activation of non-store-operated Ca2+ entry. Cardiovasc Res 68:56-64PubMedCrossRefGoogle Scholar
  33. 33.
    Beutz MA, Nagaoka T, Oka M, McMurtry IF (2005) Sphingosine-1-phosphate constricts fawn-hooded rat pulmonary arteries. Proc Am Thorac Soc 2:A706Google Scholar
  34. 34.
    Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97:185-191PubMedCrossRefGoogle Scholar
  35. 35.
    McNamara PJ, Murthy P, Kantores C et al (2008) Acute vasodilator effects of Rho-kinase inhibitors in neonatal rats with pulmonary hypertension unresponsive to nitric oxide. Am J Physiol Lung Cell Mol Physiol 294:L205-L213PubMedCrossRefGoogle Scholar
  36. 36.
    Stenmark KR, McMurtry IF (2005) Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension: a time for reappraisal? Circ Res 97:95-98PubMedCrossRefGoogle Scholar
  37. 37.
    Howell K, Preston RJ, McLoughlin P (2003) Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J Physiol 547:133-145PubMedCrossRefGoogle Scholar
  38. 38.
    van Suylen RJ, Smits JF, Daemen MJ (1998) Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med 157:1423-1428PubMedGoogle Scholar
  39. 39.
    Crossno JT Jr, Garat CV, Reusch JE et al (2007) Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 292:L885-L897PubMedCrossRefGoogle Scholar
  40. 40.
    Daley E, Emson C, Guignabert C et al (2008) Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med 205:361-372PubMedCrossRefGoogle Scholar
  41. 41.
    Hopkins N, Cadogan E, Giles S, McLoughlin P (2001) Chronic airway infection leads to angiogenesis in the pulmonary circulation. J Appl Physiol 91:919-928PubMedGoogle Scholar
  42. 42.
    Nagaoka T, Fagan KA, Gebb SA et al (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494-499PubMedCrossRefGoogle Scholar
  43. 43.
    Homma N, Nagaoka T, Karoor V et al (2008) Involvement of RhoA/Rho kinase signaling in protection against monocrotaline-induced pulmonary hypertension in pneumonectomized rats by dehydroepiandrosterone. Am J Physiol Lung Cell Mol Physiol 295:L71-L78PubMedCrossRefGoogle Scholar
  44. 44.
    Oka M, Homma N, Taraseviciene-Stewart L et al (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923-929PubMedCrossRefGoogle Scholar
  45. 45.
    Nagaoka T, Gebb SA, Karoor V et al (2006) Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol 100:996-1002PubMedCrossRefGoogle Scholar
  46. 46.
    Jiang BH, Tawara S, Abe K, Takaki A, Fukumoto Y, Shimokawa H (2007) Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 49:85-89PubMedCrossRefGoogle Scholar
  47. 47.
    Parker TA, Roe G, Grover TR, Abman SH (2006) Rho kinase activation maintains high pulmonary vascular resistance in the ovine fetal lung. Am J Physiol Lung Cell Mol Physiol 291:L976-L982PubMedCrossRefGoogle Scholar
  48. 48.
    Young KA, Ivester C, West J, Carr M, Rodman DM (2006) BMP signaling controls PASMC Kv channel expression in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 290:L841-L848PubMedCrossRefGoogle Scholar
  49. 49.
    Long L, MacLean MR, Jeffery TK et al (2006) Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 98:818-827PubMedCrossRefGoogle Scholar
  50. 50.
    Frank DB, Lowery J, Anderson L, Brink M, Reese J, de Caestecker M (2008) Increased susceptibility to hypoxic pulmonary hypertension in bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 294:L98-L109PubMedCrossRefGoogle Scholar
  51. 51.
    Song Y, Coleman L, Shi J et al (2008) Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am J Physiol Heart Circ Physiol 295:H677-H690PubMedCrossRefGoogle Scholar
  52. 52.
    Doe Z, Fukumoto Y, Takaki A et al (2008) Evidence for Rho-kinase activation in patients with pulmonary hypertension. Circulation 118:S-446Google Scholar
  53. 53.
    Guilluy C, Eddahibi S, Agard C et al (2009) Rhoa and Rho kinase activation in human pulmonary hypertension - role of 5-HT signaling. Am J Respir Crit Care Med 179(12):1151-1158PubMedCrossRefGoogle Scholar
  54. 54.
    Hemnes AR, Wigley F, Rodrigues FW, Girgis RE, Yang SC, Conte JV (2005) Pulmonary hypertension is associated with increased expression and activity of phosphodiesterase type 5a. Circulation 112:II-221-II-222Google Scholar
  55. 55.
    Laumanns IP, Fink L, Wilhelm J et al (2009) The non-canonical WNT-pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 40(6):683-691PubMedCrossRefGoogle Scholar
  56. 56.
    Fukumoto Y, Matoba T, Ito A et al (2005) Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91:391-392PubMedCrossRefGoogle Scholar
  57. 57.
    Ishikura K, Yamada N, Ito M et al (2006) Beneficial acute effects of Rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 70:174-178PubMedCrossRefGoogle Scholar
  58. 58.
    Li F, Xia W, Yuan S, Sun R (2009) Acute inhibition of Rho-kinase attenuates pulmonary hypertension in patients with congenital heart disease. Pediatr Cardiol 30(3):363-366PubMedCrossRefGoogle Scholar
  59. 59.
    Schermuly RT, Dony E, Ghofrani HA et al (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811-2821PubMedCrossRefGoogle Scholar
  60. 60.
    Gokina NI, Park KM, McElroy-Yaggy K, Osol G (2005) Effects of Rho kinase inhibition on cerebral artery myogenic tone and reactivity. J Appl Physiol 98:1940-1948PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ivan F. McMurtry
    • 1
    • 3
    • 4
  • Kohtaro Abe
    • 2
    • 4
  • Hiroki Ota
    • 1
    • 4
  • Karen A. Fagan
    • 1
    • 3
    • 4
  • Masahiko Oka
    • 1
    • 3
    • 4
  1. 1.Department of PharmacologyUniversity of South Alabama College of MedicineMobileUSA
  2. 2.Department of BiochemistryUniversity of South Alabama College of MedicineMobileUSA
  3. 3.Department of MedicineUniversity of South Alabama College of MedicineMobileUSA
  4. 4.Center for Lung BiologyUniversity of South Alabama College of MedicineMobileUSA

Personalised recommendations