Molecular Targets of General Anesthetics in the Nervous System

Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Current concepts of the molecular and cellular mechanisms that underlie general anesthetic actions are incomplete. This is both surprising, given that leading scientists have approached this problem for more than a century, and unfortunate since this lack of knowledge limits our ability to employ these important drugs with optimal safety and efficacy. Considerable evidence now implicates agent-specific effects on discreet molecular targets and neuronal networks central to specific anesthetic end points. Major progress in understanding the molecular pharmacology of the intravenous anesthetics has been made using modern genetic approaches, but the actions of the inhaled anesthetics have been more difficult to resolve. This chapter provides an overview of the principal molecular targets implicated in mediating the effects of general anesthetics on vertebrate neuronal function.

Keywords

Mechanisms of anesthesia pharmacology general anesthetics pharmacology ion channels synaptic transmission inhaled anesthetics intravenous anesthetics 

References

  1. Antognini, J. F., and K. Schwartz. 1993. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79(6):1244–1249.PubMedGoogle Scholar
  2. Bai, D., G. Zhu, P. Pennefather, M. F. Jackson, J. F. MacDonald, and B. A. Orser. 2001. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by g-aminobutyric acid A receptors in hippocampal neurons. Mol Pharmacol 59:814–824.PubMedGoogle Scholar
  3. Bali, M., and M. H. Akabas. 2004. Defining the propofol binding site location on the GABAA receptor. Mol Pharmacol 65(1):68–76.PubMedGoogle Scholar
  4. Bean, B. P., P. Shrager, and D. A. Goldstein. 1981. Modification of sodium and potassium channel gating kinetics by ether and halothane. J Gen Physiol 77:233–253.PubMedGoogle Scholar
  5. Belelli, D., J. J. Lambert, J. A. Peters, K. Wafford, and P. J. Whiting. 1997. The interaction of the general anesthetic etomidate with the g -aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA 94(20):11031–11036.PubMedGoogle Scholar
  6. Berg-Johnsen, J., and I. A. Langmoen. 1986. The effect of isoflurane on unmyelinated and myelinated fibres in the rat brain. Acta Physiol Scand 127:87–93.PubMedGoogle Scholar
  7. Bertaccini, E. J., J. R. Trudell, and N. P. Franks. 2007. The common chemical motifs within anesthetic binding sites. Anesth Analg 104(2):318–324.PubMedGoogle Scholar
  8. Bieda, M. C., and M. B. MacIver. 2004. Major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability. J Neurophysiol 92(3):1658–1667.PubMedGoogle Scholar
  9. Caraiscos, V. B., E. M. Elliott, Ten You, V. Y. Cheng, D. Belelli, J. G. Newell, M. F. Jackson, J. J. Lambert, T. W. Rosahl, K. A. Wafford, J. F. MacDonald, and B. A. Orser. 2004. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by {alpha}5 subunit-containing {gamma}-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 101(10):3662–3667.PubMedGoogle Scholar
  10. Caraiscos, V. B., J. G. Newell, Ten You, E. M. Elliott, T. W. Rosahl, K. A. Wafford, J. F. MacDonald, and B. A. Orser. 2004. Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J Neurosci 24(39):8454–8458.PubMedGoogle Scholar
  11. Catterall, W. A. 2000. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555.PubMedGoogle Scholar
  12. Chen, X., S. Shu, and D. A. Bayliss. 2009. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 29(3):600–609.PubMedGoogle Scholar
  13. Chen, X., J. E. Sirois, Q. Lei, E. M. Talley, C. Lynch, III, and D. A. Bayliss. 2005. HCN subunit-specific and cAMP-modulated effects of anesthetics on neuronal pacemaker currents. J Neurosci 25(24):5803–5814.PubMedGoogle Scholar
  14. Cheng, V. Y., L. J. Martin, E. M. Elliott, J. H. Kim, H. T. Mount, F. A. Taverna, J. C. Roder, J. F. MacDonald, A. Bhambri, N. Collinson, K. A. Wafford, and B. A. Orser. 2006. Alpha5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J Neurosci 26(14):3713–3720.PubMedGoogle Scholar
  15. Culley, D. J., R. Y. Yukhananov, Z. C. Xie, R. R. Gali, R. E. Tanzi, and G. Crosby. 2006. Altered hippocampal gene expression 2 days after general anesthesia in rats. Eur J Pharmacol 549(1–3):71–78.PubMedGoogle Scholar
  16. Dai, S., M. Perouansky, and R. A. Pearce. 2009. Amnestic concentrations of etomidate modulate GABAA,slow synaptic inhibition in hippocampus. Anesthesiology. Sep7. (Epub a head of print) PMID: 19741493Google Scholar
  17. Das, Joydip, George H. Addona, Warren S. Sandberg, S. Shaukat Husain, Thilo Stehle, and Keith W. Miller. 2004. Identification of a General Anesthetic Binding Site in the Diacylglycerol-binding Domain of Protein Kinase C{δ}. J Biol Chem 279(36):37964–37972.PubMedGoogle Scholar
  18. Dickinson, R., B. K. Peterson, P. Banks, C. Simillis, J. C. S. Martin, C. A. Valenzuela, M. Maze, and N. P. Franks. 2007. Competitive inhibition at the glycine site of the n-methyl-d-aspartate receptor by the Anesthetics xenon and Isoflurane. Anesthesiology 107(5):756–767.PubMedGoogle Scholar
  19. Dingledine, R., K. Borges, D. Bowie, and S. F. Traynelis. 1999. The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61.PubMedGoogle Scholar
  20. Eger, E. I., 2nd, D. M. Fisher, J. P. Dilger, J. M. Sonner, A. R. Evers, N. P. Franks, R. A. Harris, J. J. Kendig, W. R. Lieb, and T. Yamakura. 2001. Relevant concentrations of inhaled anesthetics for in vitro studies of anesthetic mechanisms. Anesthesiology 94:915–921.PubMedGoogle Scholar
  21. Flood, P., J. Ramirez-Latorre, and L. Role. 1997. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected [see comments]. Anesthesiology 86(4):859–865.PubMedGoogle Scholar
  22. Franks, N. P., R. Dickinson, S. L. de Sousa, A. C. Hall, and W. R. Lieb. 1998. How does xenon produce anaesthesia? Nature 396(6709):324.PubMedGoogle Scholar
  23. Franks, N. P., and E. Honore. 2004. The TREK K-2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25(11):601–608.PubMedGoogle Scholar
  24. Franks, N. P., and W. R. Lieb. 1988. Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333:662–664.PubMedGoogle Scholar
  25. Franks, N. P. 1994. Molecular and cellular mechanisms of general anaesthesia. Nature 367(6464):607–614.PubMedGoogle Scholar
  26. Friederich, P., D. Benzenberg, S. Trellakis, and B. W. Urban. 2001. Interaction of volatile anesthetics with human Kv channels in relation to clinical concentrations. Anesthesiology 95(4):954–958.PubMedGoogle Scholar
  27. Futterer, C. D., M. H. Maurer, A. Schmitt, R. E. Feldmann, W. Kuschinsky, and K. F. Waschke. 2004. Alterations in rat brain proteins after desflurane anesthesia. Anesthesiology 100(2):302–308.PubMedGoogle Scholar
  28. Girault, JA, and HC Jr Hemmings. 2006. Cell Signaling. In Foundations of Anesthesia: Basic Sciences for Clinical Practice, edited by H. C. Hemmings, Jr. and P. M. Hopkins. London: Moby Elsevier.Google Scholar
  29. Gomez, R. S., C. Guatimosim, and M. V. Gomez. 2003. Mechanism of action of volatile anesthetics: Role of protein kinase C. Cell Mol Neurobiol 23(6):877–885.PubMedGoogle Scholar
  30. Gruss, M., T. J. Bushell, D. P. Bright, W. R. Lieb, A. Mathie, and N. P. Franks. 2004. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65(2):443–452.PubMedGoogle Scholar
  31. Hall, A. C., W. R. Lieb, and N. P. Franks. 1994. Insensitivity of P-type calcium channels to inhalational and intravenous general anesthetics. Anesthesiology 81(1):117–123.PubMedGoogle Scholar
  32. Hamaya, Y., T. Takeda, S. Dohi, S. Nakashima, and Y. Nozawa. 2000. The effects of pentobarbital, isoflurane, and propofol on immediate-early gene expression in the vital organs of the rat. Anesth Analg 90(5):1177–1183.PubMedGoogle Scholar
  33. Harris, R. A., S. J. Mihic, J. E. Dildymayfield, and T. K. Machu. 1995. Actions of anesthetics on ligand-gated ion channels - Role of Receptor Subunit Composition. FASEB J 9(14):1454–1462.PubMedGoogle Scholar
  34. Haseneder, R., S. Kratzer, E. Kochs, V. S. Eckle, W. Zieglgansberger, and G. Rammes. 2008. Xenon reduces N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission in the amygdala. Anesthesiology 109(6):998–1006.PubMedGoogle Scholar
  35. Haydon, D. A., and B. W. Urban. 1983. The effects of some inhalation anaesthetics on the sodium current of the squid giant axon. J Physiol (Lond) 341:429–439.Google Scholar
  36. Hemmings, H. C., Jr. 1998. General anesthetic effects on protein kinase C. Toxicol Lett 100–101:89–95.PubMedGoogle Scholar
  37. Hemmings, H. C., Jr., and A. I. Adamo. 1994. Effects of halothane and propofol on purified brain protein kinase C activation. Anesthesiology 81(1):147–155.PubMedGoogle Scholar
  38. Hemmings, H. C., Jr., M. H. Akabas, P. A. Goldstein, J. R. Trudell, B. A. Orser, and N. L. Harrison. 2005. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 26(10):503–510.PubMedGoogle Scholar
  39. Hemmings, H. C., Jr., Perouansky, M. 2009. Neurotoxicity of general anesthetics: cause for concern? Anesthesiology (in press).Google Scholar
  40. Hemmings, H. C., Jr., W. Yan, R. I. Westphalen, and T. A. Ryan. 2005. The general anesthetic isoflurane depresses synaptic vesicle exocytosis. Mol Pharmacol 67(5):1591–1599.PubMedGoogle Scholar
  41. Herold, K.F., C. Nau, W. Ouyang, and H.C. Jr. Hemmings. 2009. Isoflurane inhibits the tetrodotoxin-resistant voltage-gated sodium channel Nav1.8. Anesthesiology 111:591–599.Google Scholar
  42. Heurteaux, C., N. Guy, C. Laigle, N. Blondeau, F. Duprat, M. Mazzuca, L. Lang-Lazdunski, C. Widmann, M. Zanzouri, G. Romey, and M. Lazdunski. 2004. TREK-1, a K(+) channel involved in neuroprotection and general anesthesia. EMBO J 23(13):2684–2695.PubMedGoogle Scholar
  43. Jenkins, A., N. P. Franks, and W. R. Lieb. 1996. Actions of general anaesthetics on 5-HT3 receptors in N1E-115 neuroblastoma cells. Br J Pharmacol 117(7):1507–1515.PubMedGoogle Scholar
  44. Jenkins, A., E. P. Greenblatt, H. J. Faulkner, E. Bertaccini, A. Light, A. Lin, A. Andreasen, A. Viner, J. R. Trudell, and N. L. Harrison. 2001. Evidence for a common binding cavity for three general anesthetics within the GABA(A) receptor. J Neurosci 21(6):art-RC136.Google Scholar
  45. Jevtovic-Todorovic, V., S. M. Todorovic, S. Mennerick, S. Powell, K. Dikranian, N. Benshoff, C. F. Zorumski, and J. W. Olney. 1998. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med (4):460–463.Google Scholar
  46. Joksovic, Pavle M., Douglas A. Bayliss, and Slobodan M. Todorovic. 2005. Different kinetic properties of two T-type Ca2+ currents of rat reticular thalamic neurones and their modulation by enflurane. J Physiol Online 566(1):125–142.Google Scholar
  47. Jones, M. V., and N. L. Harrison. 1993. Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol 70(4):1339–1349.PubMedGoogle Scholar
  48. Jurd, R., M. Arras, S. Lambert, B. Drexler, R. Siegwart, F. Crestani, M. Zaugg, K. E. Vogt, B. Ledermann, B. Antkowiak, and U. Rudolph. 2003. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J 17(2):250–252.PubMedGoogle Scholar
  49. Kameyama, K., K. Aono, and K. Kitamura. 1999. Isoflurane inhibits neuronal Ca2+ channels through enhancement of current inactivation. Br J Anaesth 82(3):402–411.PubMedGoogle Scholar
  50. Koblin, D. D., B. S. Chortkoff, M. J. Laster, E. I. Eger, 2nd, M. J. Halsey, and P. Ionescu. 1994. Polyhalogenated and perfluorinated compounds that disobey the meyer-overton hypothesis. Anesth Analg 79(6):1043–1048.PubMedGoogle Scholar
  51. Koltchine, V. V., S. E. Finn, A. Jenkins, N. Nikolaeva, A. Lin, and N. L. Harrison. 1999. Agonist gating and isoflurane potentiation in the human gamma-aminobutyric acid type A receptor determined by the volume of a second transmembrane domain residue. Mol Pharmacol. 56(5):1087–1093.PubMedGoogle Scholar
  52. Krasowski, M. D., and N. L. Harrison. 1999. General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 55(10):1278–1303.PubMedGoogle Scholar
  53. Krasowski, M. D., K. Nishikawa, N. Nikolaeva, A. Lin, and N. L. Harrison. 2001. Methionine 286 in transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology 41(8):952–964.PubMedGoogle Scholar
  54. Larrabee, M. G., and J. M. Posternak. 1952. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J Neurophysiol 15:91–114.PubMedGoogle Scholar
  55. Linden, A. M., M. I. Aller, E. Leppa, O. Vekovischeva, T. itta-Aho, E. L. Veale, A. Mathie, P. Rosenberg, W. Wisden, and E. R. Korpi. 2006. The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmacol Exp Ther 317(2):615–626.PubMedGoogle Scholar
  56. Linden, A. M., C. Sandu, M. I. Aller, O. Y. Vekovischeva, P. H. Rosenberg, W. Wisden, and E. R. Korpi. 2007. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J Pharmacol Exp Ther 323(3):924–934.PubMedGoogle Scholar
  57. Machu, T. K., and R. A. Harris. 1994. Alcohols and anesthetics enhance the function of 5-hydroxytryptamine(3) receptors expressed in Xenopus-laevis oocytes. J Pharmacol Exp Ther 271(2):898–905.PubMedGoogle Scholar
  58. MacIver, M. B., A. A. Mikulec, S. M. Amagasu, and F. A. Monroe. 1996. Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology 85:823–834.Google Scholar
  59. Marota, J. J., G. Crosby, and G. R. Uhl. 1992. Selective effects of pentobarbital and halothane on c-fos and jun-B gene expression in rat brain. Anesthesiology 77(2):365–371.PubMedGoogle Scholar
  60. Mennerick, S., V. Jevtovic-Todorovic, S. M. Todorovic, W. Shen, J. W. Olney, and C. F. Zorumski. 1998. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 26(23):9716–9726.Google Scholar
  61. Miao, N., M. J. Frazer, and C. Lynch, 3rd. 1995. Volatile anesthetics depress ca2+ transients and glutamate release in isolated cerebral synaptosomes. Anesthesiology 83(3):593–603.PubMedGoogle Scholar
  62. Mihic, S. J., Q. Ye, M. J. Wick, V. V. Koltchine, M. D. Krasowski, S. E. Finn, M. P. Mascia, C. F. Valenzuela, K. K. Hanson, E. P. Greenblatt, R. A. Harris, and N. L. Harrison. 1997. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389(6649):385–389.PubMedGoogle Scholar
  63. Mikulec, A. A., S. Pittson, S. M. Amagasu, F. A. Monroe, and M. B. MacIver. 1998. Halothane depresses action potential conduction in hippocampal axons. Brain Res 796(1–2):231–238.PubMedGoogle Scholar
  64. Minami, K., R. W. Gereau, M. Minami, S. F. Heinemann, and R. A. Harris. 1998. Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol. 53(1):148–156.PubMedGoogle Scholar
  65. Minami, K., M. Minami, and R. A. Harris. 1997. Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics. J Pharmacol Exp Ther. 281(3):1136–1143.PubMedGoogle Scholar
  66. Minami, K., T. W. Vanderah, M. Minami, and R. A. Harris. 1997. Inhibitory effects of anesthetics and ethanol on muscarinic receptors expressed in Xenopus oocytes. Eur J Pharmacol. 339(2–3):237–244.PubMedGoogle Scholar
  67. Ouyang, W., and H. C. Hemmings, Jr. 2005. Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals. J Pharmacol Exp Ther 312(2):801–808.PubMedGoogle Scholar
  68. Ouyang, W. 2007. Isoform-selective effects of isoflurane on voltage-gated Na+ channels. Anesthesiology 107(1):91–98.PubMedGoogle Scholar
  69. Ouyang, W., K. F. Herold, and H. C. Hemmings, Jr. 2009. Comparative effects of halogenated inhaled anesthetics on voltage-gated Na+ channel function. Anesthesiology 110(3):582–590.PubMedGoogle Scholar
  70. Ouyang, W., T. Y. Jih, T. T. Zhang, A. M. Correa, and H. C. Hemmings, Jr. 2007. Isoflurane inhibits NaChBac, a prokaryotic voltage-gated sodium channel. J Pharmacol Exp Ther 322(3):1076–1083.PubMedGoogle Scholar
  71. Ouyang, W., G. Wang, and H. C. Hemmings. 2003. Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol Pharmacol 64(2):373–381.PubMedGoogle Scholar
  72. Patel, A. J., and E. Honore. 2001. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95(4):1013–1021.PubMedGoogle Scholar
  73. Patel, A. J., E. Honore, F. Lesage, M. Fink, G. Romey, and M. Lazdunski. 1999. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2(5):422–426.PubMedGoogle Scholar
  74. Perouansky, M., and H. C. Hemmings, Jr. 2009. Neurotoxicity of general anesthetics: Cause for concern? Anesthesiology, in press.Google Scholar
  75. Perouansky, M., D. Baranov, M. Salman, and Y. Yaari. 1995. Effects of halothane on glutamate receptor-mediated excitatory postsynaptic currents. a patch-clamp study in adult mouse hippocampal slices. Anesthesiology 83(1):109–119.PubMedGoogle Scholar
  76. Perouansky, M., H. C. Hemmings. 2003. Presynaptic actions of general anesthetics. In Neural Mechanisms of Anesthesia, edited by J. F. Antognini, E. E. Carstens, and D. E. Raines. Totowa, NJ: Humana Press.Google Scholar
  77. Peterlin, Zita, Yumiko Ishizawa, Ricardo Araneda, Roderic Eckenhoff, and Stuart Firestein. 2005. Selective activation of G-protein coupled receptors by volatile anesthetics. Mol Cell Neurosci 30(4):506–512.PubMedGoogle Scholar
  78. Petrenko, A. B., M. Tsujita, T. Kohno, K. Sakimura, and H. Baba. 2007. Mutation of alpha(1G) T-type calcium channels in mice does not change anesthetic requirements for loss of the righting reflex and minimum alveolar concentration but delays the onset of anesthetic induction. Anesthesiology 106(6):1177–1185.PubMedGoogle Scholar
  79. Raines, D. E., R. J. Claycomb, M. Scheller, and S. A. Forman. 2001. Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated ion channels. Anesthesiology 95(2):470–477.PubMedGoogle Scholar
  80. Raines, D. E., and K. W. Miller. 1994. On the importance of volatile agents devoid of anesthetic action. Anesth Analg 79(6):1031–1033.PubMedGoogle Scholar
  81. Rampil, I. J., P. Mason, and H. Singh. 1993. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78(4):707–712.PubMedGoogle Scholar
  82. Ratnakumari, L., and H. C. Hemmings. 1998. Inhibition of presynaptic sodium channels by halothane. Anesthesiology 88(4):1043–1054.PubMedGoogle Scholar
  83. Ratnakumari, L., T. N. Vysotskaya, D. S. Duch, and H. C. Hemmings. 2000. Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology 92(2):529–541.PubMedGoogle Scholar
  84. Rebecchi, M. J., and S. N. Pentyala. 2002. Anaesthetic actions on other targets:protein kinase C and guanine nucleotide-binding proteins. Br J Anaesth 89(1):62–78.PubMedGoogle Scholar
  85. Rehberg, B., Y. H. Xiao, and D. S. Duch. 1996. Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics. Anesthesiology 84(5):1223–1233.PubMedGoogle Scholar
  86. Reynolds, D. S., T. W. Rosahl, J. Cirone, G. F. O'Meara, A. Haythornthwaite, R. J. Newman, J. Myers, C. Sur, O. Howell, A. R. Rutter, J. Atack, A. J. Macaulay, K. L. Hadingham, P. H. Hutson, D. Belelli, J. J. Lambert, G. R. Dawson, R. McKernan, P. J. Whiting, and K. A. Wafford. 2003. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 23(24):8608–8617.PubMedGoogle Scholar
  87. Robinson, R. B., and S. A. Siegelbaum. 2003. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480.PubMedGoogle Scholar
  88. Role, L. W., and D. K. Berg. 1996. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16(6):1077–1085.PubMedGoogle Scholar
  89. Rudolph, U., and B. Antkowiak. 2004. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5(9):709–720.PubMedGoogle Scholar
  90. Schlame, M., and H. C. Hemmings, Jr. 1995. Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology 82(6):1406–1416.PubMedGoogle Scholar
  91. Semyanov, A., M. C. Walker, D. M. Kullmann, and R. A. Silver. 2004. Tonically active GABA(A) receptors: modulating gain and maintaining the tone. Trends Neurosci 27(5):262–269.PubMedGoogle Scholar
  92. Shiraishi, M., and R. A. Harris. 2004. Effects of alcohols and anesthetics on recombinant voltage-gated Na+ channels. J Pharmacol Exp Ther 309(3):987–994.PubMedGoogle Scholar
  93. Shumilla, Jennifer A., Sarah M. Sweitzer, Edmond I. Eger, II, Michael J. Laster, and Joan J. Kendig. 2004. Inhibition of spinal protein kinase C-{epsilon} or -{gamma} isozymes does not affect halothane minimum alveolar anesthetic concentration in rats. Anesth Analg 99(1):82–84.PubMedGoogle Scholar
  94. Sirois, J. E., Q. Lei, E. M. Talley, C. Lynch, III, and D. A. Bayliss. 2000. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 20(17):6347–6354.PubMedGoogle Scholar
  95. Sirois, J. E., C. Lynch, III, and D. A. Bayliss. 2002. Convergent and reciprocal modulation of a leak K+ current and I(h) by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J Physiol 541(Pt 3):717–729.PubMedGoogle Scholar
  96. Snyder, G. L., S. Galdi, J. P. Hendrick, and H. C. Hemmings, Jr. 2007. General anesthetics selectively modulate glutamatergic and dopaminergic signaling via site-specific phosphorylation in vivo. Neuropharmacology 53(5):619–630.PubMedGoogle Scholar
  97. Solt, K., E. I. Eger, and D. E. Raines. 2006. Differential modulation of human N-Methyl-▵-aspartate receptors by structurally diverse general anesthetics. Anesth Analg 102(5):1407–1411.PubMedGoogle Scholar
  98. Sonner, J. M., J. F. Antognini, R. C. Dutton, P. Flood, A. T. Gray, R. A. Harris, G. E. Homanics, J. Kendig, B. Orser, D. E. Raines, I. J. Rampil, J. Trudell, B. Vissel, and E. I. Eger. 2003. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg 97(3):718–740.PubMedGoogle Scholar
  99. Sonner, J. M., D. Gong, J. Li, E. I. Eger, and M. J. Laster. 1999. Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds. Anesth Analg 89(4):1030–1034.PubMedGoogle Scholar
  100. Sonner, J. M., B. Vissel, G. Royle, A. Maurer, D. Gong, N. V. Baron, N. Harrison, M. Fanselow, and E. I. Eger. 2005. The effect of three inhaled anesthetics in mice harboring mutations in the GluR6 (kainate) receptor gene. Anesth Analg 101(1):143–148, table.PubMedGoogle Scholar
  101. Stadnicka, A., W. M. Kwok, H. A. Hartmann, and Z. J. Bosnjak. 1999. Effects of halothane and isoflurane on fast and slow inactivation of human heart hH1a sodium channels. Anesthesiology 90(6):1671–1683.PubMedGoogle Scholar
  102. Stowe, D. F., G. C. Rehmert, W. M. Kwok, H. U. Weigt, M. Georgieff, and Z. J. Bosnjak. 2000. Xenon does not alter cardiac function or major cation currents in isolated guinea pig hearts or myocytes. Anesthesiology 92(2):516–522.PubMedGoogle Scholar
  103. Study, R. E. 1994. Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology 81(1):104–116.PubMedGoogle Scholar
  104. Takei, T., H. Saegusa, S. Zong, T. Murakoshi, K. Makita, and T. Tanabe. 2003. Increased sensitivity to halothane but decreased sensitivity to propofol in mice lacking the N-type Ca2+ channel. Neurosci Lett 350(1):41–45.PubMedGoogle Scholar
  105. Todorovic, S. M., V. Jevtovic-Todorovic, S. Mennerick, E. Perez-Reyes, and C. F. Zorumski. 2001. Ca(v)3.2 channel is a molecular substrate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide. Mol Pharmacol 60(3):603–610.PubMedGoogle Scholar
  106. Topf, N., E. Recio-Pinto, T. J. Blanck, and H. C. Hemmings. 2003. Actions of general anesthetics on voltage-gated ion channels. In Neural Mechanisms of Anesthesia, edited by J. F. Antognini, E. E. Carstens, and D.E. Raines. Totowa, NJ: Humana Press.Google Scholar
  107. Trudell, J. R., and E. Bertaccini. 2004. Comparative modeling of a GABAA alpha1 receptor using three crystal structures as templates. J Mol Graph Model 23(1):39–49.PubMedGoogle Scholar
  108. Violet, J. M., D. L. Downie, R. C. Nakisa, W. R. Lieb, and N. P. Franks. 1997. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology 86(4):866–874.PubMedGoogle Scholar
  109. Westphalen, R. I., R. S. Gomez, and H. C. Hemmings, Jr. 2009. Nicotinic receptor-evoked hippocampal norepinephrine release is highly sensitive to inhibition by isoflurane. Br J Anaesth 102(3):355–360.PubMedGoogle Scholar
  110. Westphalen, R. I., and H. C. Hemmings. 2003. Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J Pharmacol Exp Ther 304(3):1188–1196.PubMedGoogle Scholar
  111. Westphalen, R. I., M. Krivitski, A. Amarosa, N. Guy, and H. C. Hemmings, Jr. 2007. Reduced inhibition of cortical glutamate and GABA release by halothane in mice lacking the K(+) channel, TREK-1. Br J Pharmacol 152(6):939–945.PubMedGoogle Scholar
  112. Wick, M. J., S. J. Mihic, S. Ueno, M. P. Mascia, J. R. Trudell, S. J. Brozowski, Q. Ye, N. L. Harrison, and R. A. Harris. 1998. Mutations of gamma-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc Natl Acad Sci USA 95(11):6504–6509.PubMedGoogle Scholar
  113. Wu, X. S., J. Y. Sun, A. S. Evers, M. Crowder, and L. G. Wu. 2004. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 100(3):663–670.PubMedGoogle Scholar
  114. Yamakura, T., E. Bertaccini, J. R. Trudell, and R. A. Harris. 2001. Anesthetics and ion channels: molecular models and sites of action. Ann Rev Pharmacol Toxicol 41:23–51.Google Scholar
  115. Yost, C. S. 1999. Potassium channels: basic aspects, functional roles, and medical significance. Anesthesiology 90(4):1186–1203.PubMedGoogle Scholar
  116. Yu, F. H., and W. A. Catterall. 2004. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004(253):re15.Google Scholar
  117. Zarnowska, E. D., R. Keist, U. Rudolph, and R. A. Pearce. 2009. GABAA receptor alpha5 subunits contribute to GABAA, slow synaptic inhibition in mouse hippocampus. J Neurophysiol 101(3):1179–1191.PubMedGoogle Scholar
  118. Zecharia, A. Y., L. E. Nelson, T. C. Gent, M. Schumacher, R. Jurd, U. Rudolph, S. G. Brickley, M. Maze, and N. P. Franks. 2009. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor {beta}3N265M knock-in mouse. J Neurosci 29(7):2177–2187.PubMedGoogle Scholar
  119. Zeilhofer, H. U., D. Swandulla, G. Geisslinger, and K. Brune. 1992. Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol 213(1):155–158.PubMedGoogle Scholar
  120. Zeller, A., R. Jurd, S. Lambert, M. Arras, B. Drexler, C. Grashoff, B. Antkowiak, and U. Rudolph. 2008. Inhibitory ligand-gated ion channels as substrates for general anesthetic actions. Handb Exp Pharmacol 182:31–51.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations