Cancer and IgE pp 159-183 | Cite as

The IgE Antibody and Its Use in Cancer Immunotherapy

  • Tracy R. Daniels
  • José A. Rodríguez
  • Elizabeth Ortiz-Sánchez
  • Gustavo Helguera
  • Manuel L. Penichet
Chapter

Abstract

The immunoglobulin E (IgE) is a class of antibody that is capable of mounting a robust immune response resulting in anaphylaxis, which plays a central role in allergic reactions against environmental agents and immunity against parasites. Multiple studies also suggest that IgE plays a role in cancer immunosurveillance, which implies that this class of antibody can be exploited for the treatment of cancer. While most therapeutic antibodies developed for cancer therapy are of the IgG class, IgE has several advantages including the exceptionally high affinity for its Fc receptors (FcɛRs) and its low serum concentration that provides less competition for Fc receptor occupancy. In addition, FcɛRs are expressed on relevant effector cells involved in antibody-dependent cell-mediated cytotoxicity (ADCC) and/or antibody-dependent cell-mediated phagocytosis (ADCP) including antigen-presenting cells (APC). In fact, multiple IgEs targeting different tumor-associated antigens (TAA) have been developed and shown to be effective against cancer cells in vitro and in animal models. Further advances of current technologies and experimental models, coupled with a better understanding of IgE-mediated immune effector mechanisms against targeted tumors, are expected to help elucidate the full potential of tumor-specific IgE antibodies for cancer immunotherapy.

References

  1. 1.
    Janeway CA, Travers P, Walport M, and Shlomchik M (2005) The generation of lymphocyte antigen receptors. In: Immunobiology: The Immune System in Health and Disease. New York: Garland Science Publishing, pp. 123–154Google Scholar
  2. 2.
    Penichet ML and Morrison SL (2004) Design and engineering of human forms of monoclonal antibodies. Drug Dev Res 61:121–136CrossRefGoogle Scholar
  3. 3.
    Arnold JN, Wormald MR, Sim RB, Rudd PM, and Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50CrossRefPubMedGoogle Scholar
  4. 4.
    Stavnezer J, Guikema JE, and Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292CrossRefPubMedGoogle Scholar
  5. 5.
    Helguera G, Daniels TR, Rodriguez JA, and Penichet ML (2010) Monoclonal antibodies, human engineered. In: Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, M. Flickinger (ed.). New York: John Wiley & Sons, Inc. http://mrw.interscience.wiley.com/emrw/978047005481/home/
  6. 6.
    Adams GP and Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157CrossRefPubMedGoogle Scholar
  7. 7.
    Reichert JM, Rosensweig CJ, Faden LB, and Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078CrossRefPubMedGoogle Scholar
  8. 8.
    Wan T, Beavil RL, Fabiane SM, Beavil AJ, Sohi MK, Keown M, Young RJ, Henry AJ, Owens RJ, Gould HJ, and Sutton BJ (2002) The crystal structure of IgE Fc reveals an asymmetrically bent conformation. Nat Immunol 3:681–686CrossRefPubMedGoogle Scholar
  9. 9.
    Beavil AJ, Young RJ, Sutton BJ, and Perkins SJ (1995) Bent domain structure of recombinant human IgE-Fc in solution by X-ray and neutron scattering in conjunction with an automated curve fitting procedure. Biochemistry 34:14449–14461CrossRefPubMedGoogle Scholar
  10. 10.
    Janeway CA, Travers P, Walport M, and Shlomchik M. (2005) The humoral immune response. In: Immunobiology: The Immune System in Health and Disease. New York: Garland Science Publishing, pp. 367–406Google Scholar
  11. 11.
    Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, and Smurthwaite L (2003) The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21:579–628CrossRefPubMedGoogle Scholar
  12. 12.
    Ravetch JV and Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492PubMedGoogle Scholar
  13. 13.
    Davis KG, Glennie M, Harding SE, and Burton DR (1990) A model for the solution conformation of rat IgE. Biochem Soc Trans 18:935–936PubMedGoogle Scholar
  14. 14.
    Zheng Y, Shopes B, Holowka D, and Baird B (1991) Conformations of IgE bound to its receptor Fc epsilon RI and in solution. Biochemistry 30:9125–9132CrossRefPubMedGoogle Scholar
  15. 15.
    Maenaka K, van der Merwe PA, Stuart DI, Jones EY, and Sondermann P (2001) The human low affinity Fcgamma receptors IIa, IIb, and III bind IgG with fast kinetics and distinct thermodynamic properties. J Biol Chem 276:44898–44904CrossRefPubMedGoogle Scholar
  16. 16.
    Ishizaka T, Helm B, Hakimi J, Niebyl J, Ishizaka K, and Gould HJ (1986) Biological properties of a recombinant human immunoglobulin epsilon-chain fragment. Proc Natl Acad Sci USA 83:8323–8327CrossRefPubMedGoogle Scholar
  17. 17.
    Keown MB, Ghirlando R, Mackay GA, Sutton BJ, and Gould HJ (1997) Basis of the 1:1 stoichiometry of the high affinity receptor Fc epsilon RI-IgE complex. Eur Biophys J 25:471–476CrossRefPubMedGoogle Scholar
  18. 18.
    Garman SC, Wurzburg BA, Tarchevskaya SS, Kinet JP, and Jardetzky TS (2000) Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature 406:259–266CrossRefPubMedGoogle Scholar
  19. 19.
    Gould HJ and Sutton BJ (2008) IgE in allergy and asthma today. Nat Rev Immunol 8:205–217CrossRefPubMedGoogle Scholar
  20. 20.
    Conrad DH (1990) Fc epsilon RII/CD23: the low affinity receptor for IgE. Annu Rev Immunol 8:623–645CrossRefPubMedGoogle Scholar
  21. 21.
    Hibbert RG, Teriete P, Grundy GJ, Beavil RL, Reljic R, Holers VM, Hannan JP, Sutton BJ, Gould HJ, and McDonnell JM (2005) The structure of human CD23 and its interactions with IgE and CD21. J Exp Med 202:751–760CrossRefPubMedGoogle Scholar
  22. 22.
    McCloskey N, Hunt J, Beavil RL, Jutton MR, Grundy GJ, Girardi E, Fabiane SM, Fear DJ, Conrad DH, Sutton BJ, and Gould HJ (2007) Soluble CD23 monomers inhibit and oligomers stimulate IGE synthesis in human B cells. J Biol Chem 282:24083–24091CrossRefPubMedGoogle Scholar
  23. 23.
    Sayers I, Housden JE, Spivey AC, and Helm BA (2004) The importance of Lys-352 of human immunoglobulin E in FcepsilonRII/CD23 recognition. J Biol Chem 279:35320–35325CrossRefPubMedGoogle Scholar
  24. 24.
    Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodriguez JA, Siccardi AG, Vangelista L, Riemer AB, and Gould HJ (2008) AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy 63:1255–1266CrossRefPubMedGoogle Scholar
  25. 25.
    Fu SL, Pierre J, Smith-Norowitz TA, Hagler M, Bowne W, Pincus MR, Mueller CM, Zenilman ME, and Bluth MH (2008) Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin Exp Immunol 153:401–409CrossRefPubMedGoogle Scholar
  26. 26.
    Matta GM, Battaglio S, Dibello C, Napoli P, Baldi C, Ciccone G, Coscia M, Boccadoro M, and Massaia M (2007) Polyclonal immunoglobulin E levels are correlated with hemoglobin values and overall survival in patients with multiple myeloma. Clin Cancer Res 13:5348–5354CrossRefPubMedGoogle Scholar
  27. 27.
    Schulman ES (2001) Development of a monoclonal anti-immunoglobulin E antibody (omalizumab) for the treatment of allergic respiratory disorders. Am J Respir Crit Care Med 164:S6–11PubMedGoogle Scholar
  28. 28.
    Presta LG, Lahr SJ, Shields RL, Porter JP, Gorman CM, Fendly BM, and Jardieu PM (1993) Humanization of an antibody directed against IgE. J Immunol 151:2623–2632PubMedGoogle Scholar
  29. 29.
    Strunk RC and Bloomberg GR (2006) Omalizumab for asthma. N Engl J Med 354:2689–2695CrossRefPubMedGoogle Scholar
  30. 30.
    Dodig S, Richter D, Cepelak I, and Benko B (2005) Anti-IgE therapy with omalizumab in asthma and allergic rhinitis. Acta Pharm 55:123–138PubMedGoogle Scholar
  31. 31.
    Manz RA, Hauser AE, Hiepe F, and Radbruch A (2005) Maintenance of serum antibody levels. Annu Rev Immunol 23:367–386CrossRefPubMedGoogle Scholar
  32. 32.
    Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, and Prang NS (2006) High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol 43:1183–1193CrossRefPubMedGoogle Scholar
  33. 33.
    Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17:931–972CrossRefPubMedGoogle Scholar
  34. 34.
    Sukumar S, Conrad DH, Szakal AK, and Tew JG (2006) Differential T cell-mediated regulation of CD23 (Fc epsilonRII) in B cells and follicular dendritic cells. J Immunol 176:4811–4817PubMedGoogle Scholar
  35. 35.
    Delespesse G, Sarfati M, Wu CY, Fournier S, and Letellier M (1992) The low-affinity receptor for IgE. Immunol Rev 125:77–97CrossRefPubMedGoogle Scholar
  36. 36.
    Clynes RA, Towers TL, Presta LG, and Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446.CrossRefPubMedGoogle Scholar
  37. 37.
    Nimmerjahn F and Ravetch JV (2007) Antibodies, Fc receptors and cancer. Curr Opin Immunol 19:239–245CrossRefPubMedGoogle Scholar
  38. 38.
    Weng WK and Levy R (2001) Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood 98:1352–1357CrossRefPubMedGoogle Scholar
  39. 39.
    Peipp M, Dechant M, and Valerius T (2008) Effector mechanisms of therapeutic antibodies against ErbB receptors. Curr Opin Immunol 20:436–443CrossRefPubMedGoogle Scholar
  40. 40.
    Hudis CA (2007) Trastuzumab – mechanism of action and use in clinical practice. N Engl J Med 357:39–51CrossRefPubMedGoogle Scholar
  41. 41.
    Wang SY, Racila E, Taylor RP, and Weiner GJ (2008) NK-cell activation and antibody-dependent cellular cytotoxicity induced by rituximab-coated target cells is inhibited by the C3b component of complement. Blood 111:1456–1463CrossRefPubMedGoogle Scholar
  42. 42.
    Janeway CA, Travers P, Walport M, and Shlomchik M (2005) Allergy and hypersensitivity. In: Immunobiology: The Immune System in Health and Disease. New York: Garland Science Publishing,. pp. 517–555Google Scholar
  43. 43.
    Bieber T (1997) Fc epsilon RI on human epidermal Langerhans cells: an old receptor with new structure and functions. Int Arch Allergy Immunol 113:30–34CrossRefPubMedGoogle Scholar
  44. 44.
    Bieber T (1997) Fc epsilon RI-expressing antigen-presenting cells: new players in the atopic game. Immunol Today 18:311–313CrossRefPubMedGoogle Scholar
  45. 45.
    Maurer D, Ebner C, Reininger B, Fiebiger E, Kraft D, Kinet JP, and Stingl G (1995) The high affinity IgE receptor (Fc epsilon RI) mediates IgE-dependent allergen presentation. J Immunol 154:6285–6290PubMedGoogle Scholar
  46. 46.
    Maurer D, Fiebiger S, Ebner C, Reininger B, Fischer GF, Wichlas S, Jouvin MH, Schmitt-Egenolf M, Kraft D, Kinet JP, and Stingl G (1996) Peripheral blood dendritic cells express Fc epsilon RI as a complex composed of Fc epsilon RI alpha- and Fc epsilon RI gamma-chains and can use this receptor for IgE-mediated allergen presentation. J Immunol 157:607–616PubMedGoogle Scholar
  47. 47.
    Karagiannis SN, Bracher MG, Beavil RL, Beavil AJ, Hunt J, McCloskey N, Thompson RG, East N, Burke F, Sutton BJ, Dombrowicz D, Balkwill FR, and Gould HJ (2008) Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunol Immunother 57:247–263CrossRefPubMedGoogle Scholar
  48. 48.
    Karagiannis SN, Bracher MG, Hunt J, McCloskey N, Beavil RL, Beavil AJ, Fear DJ, Thompson RG, East N, Burke F, Moore RJ, Dombrowicz DD, Balkwill FR, and Gould HJ (2007) IgE-antibody-dependent immunotherapy of solid tumors: cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. J Immunol 179:2832–2843PubMedGoogle Scholar
  49. 49.
    Karagiannis P, Singer J, Hunt J, Gan SK, Rudman SM, Mechtcheriakova D, Knittelfelder R, Daniels TR, Hobson PS, Beavil AJ, Spicer J, Nestle FO, Penichet ML, Gould HJ, Jensen-Jarolim E, and Karagiannis SN (2009) Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells. Cancer Immunol Immunother 58:915–930CrossRefPubMedGoogle Scholar
  50. 50.
    Arase N, Arase H, Hirano S, Yokosuka T, Sakurai D, and Saito T (2003) IgE-mediated activation of NK cells through Fc gamma RIII. J Immunol 170:3054–3058PubMedGoogle Scholar
  51. 51.
    Coca AF and Grove EF (1925) Studies in hypersensitiveness: a study of the atopic reagins. J Immunol 10:445–464Google Scholar
  52. 52.
    Stanworth DR (1993) The discovery of IgE. Allergy 48:67–71CrossRefPubMedGoogle Scholar
  53. 53.
    Bennich HH, Ishizaka K, Johansson SG, Rowe DS, Stanworth DR, and Terry WD (1968) Immunoglobulin E. A new class of human immunoglobulin. Immunochemistry 5:327–328CrossRefPubMedGoogle Scholar
  54. 54.
    Bartholomaeus WN and Keast D (1972) Reaginic antibody to tumour and alloantigens in mice. Nat New Biol 239:206–207PubMedGoogle Scholar
  55. 55.
    Lynch NR and Salomon JC (1977) Passive local anaphylaxis: demonstration of antitumor activity and complementation of intratumor BCG. J Natl Cancer Inst 58:1093–1098PubMedGoogle Scholar
  56. 56.
    Kohler G and Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497CrossRefPubMedGoogle Scholar
  57. 57.
    Morrison SL, Johnson MJ, Herzenberg LA, and Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81:6851–6855CrossRefPubMedGoogle Scholar
  58. 58.
    Neuberger MS, Williams GT, Mitchell EB, Jouhal SS, Flanagan JG, and Rabbitts TH (1985) A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature 314:268–270CrossRefPubMedGoogle Scholar
  59. 59.
    Bruggemann M, Williams GT, Bindon CI, Clark MR, Walker MR, Jefferis R, Waldmann H, and Neuberger MS (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 166:1351–1361CrossRefPubMedGoogle Scholar
  60. 60.
    Nagy E, Berczi I, and Sehon AH (1991) Growth inhibition of murine mammary carcinoma by monoclonal IgE antibodies specific for the mammary tumor virus. Cancer Immunol Immunother 34:63–69CrossRefPubMedGoogle Scholar
  61. 61.
    Isaacs JD, Clark MR, Greenwood J, and Waldmann H (1992) Therapy with monoclonal antibodies. An in vivo model for the assessment of therapeutic potential. J Immunol 148:3062–3071PubMedGoogle Scholar
  62. 62.
    Panaccio M, Gillespie MT, Walker ID, Kirszbaum L, Sharpe JA, Tobias GH, McKenzie IF, and Deacon NJ (1987) Molecular characterization of the murine cytotoxic T-cell membrane glycoprotein Ly-3 (CD8). Proc Natl Acad Sci USA 84:6874–6878CrossRefPubMedGoogle Scholar
  63. 63.
    Kershaw MH, Darcy PK, Trapani JA, and Smyth MJ (1996) The use of chimeric human Fc(epsilon) receptor I to redirect cytotoxic T lymphocytes to tumors. J Leukoc Biol 60:721–728PubMedGoogle Scholar
  64. 64.
    Fung-Leung WP, De Sousa-Hitzler J, Ishaque A, Zhou L, Pang J, Ngo K, Panakos JA, Chourmouzis E, Liu FT, and Lau CY (1996) Transgenic mice expressing the human high-affinity immunoglobulin (Ig) E receptor alpha chain respond to human IgE in mast cell degranulation and in allergic reactions. J Exp Med 183:49–56CrossRefPubMedGoogle Scholar
  65. 65.
    Dombrowic, D, Brini AT, Flamand V, Hicks E, Snouwaert JN, Kinet JP, and Koller BH (1996) Anaphylaxis mediated through a humanized high affinity IgE receptor. J Immunol 157:1645–1651Google Scholar
  66. 66.
    Teng MW, Kershaw MH, Jackson JT, Smyth MJ, and Darcy PK (2006) Adoptive transfer of chimeric FcepsilonRI gene-modified human T cells for cancer immunotherapy. Hum Gene Ther 17:1134–1143CrossRefPubMedGoogle Scholar
  67. 67.
    Kershaw MH, Darcy PK, Trapani JA, MacGregor D, and Smyth MJ (1998) Tumor-specific IgE-mediated inhibition of human colorectal carcinoma xenograft growth. Oncol Res 10:133–142PubMedGoogle Scholar
  68. 68.
    Mount PF, Sutton VR, Li W, Burgess J, McKenzie IF, Pietersz GA, and Trapani JA (1994) Chimeric (mouse/human) anti-colon cancer antibody c30.6 inhibits the growth of human colorectal cancer xenografts in scid/scid mice. Cancer Res 54:6160–6166PubMedGoogle Scholar
  69. 69.
    Gould HJ, Mackay GA, Karagiannis SN, O’Toole CM, Marsh PJ, Daniel BE, Coney LR, Zurawski VR Jr, Joseph M, Capron M, Gilbert M, Murphy GF, and Korngold R (1999) Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29:3527–3537CrossRefPubMedGoogle Scholar
  70. 70.
    Karagiannis SN, Wang Q, East N, Burke F, Riffard S, Bracher MG, Thompson RG, Durham SR, Schwartz LB, Balkwill FR, and Gould HJ (2003) Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 33:1030–1040CrossRefPubMedGoogle Scholar
  71. 71.
    Weng WK and Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947CrossRefPubMedGoogle Scholar
  72. 72.
    Slamon DJ, Clark, GM, Wong SG, Levin WJ, Ullrich A, and McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182CrossRefPubMedGoogle Scholar
  73. 73.
    Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, and Norton L (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744PubMedGoogle Scholar
  74. 74.
    Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, and Norton L. (1999) Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin Oncol 26:78–83PubMedGoogle Scholar
  75. 75.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, and Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20:719–726CrossRefPubMedGoogle Scholar
  76. 76.
    Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, Baly D, Baughman SA, Twaddell T, Glaspy JA, and Slamon DJ (1998) Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 16:2659–2671PubMedGoogle Scholar
  77. 77.
    Pegram MD, Pienkowski T, Northfelt DW, Eiermann W, Patel R, Fumoleau P, Quan E, Crown J, Toppmeyer D, Smylie M, Riva A, Blitz S, Press MF, Reese D, Lindsay MA, and Slamon DJ (2004) Results of two open-label, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J Natl Cancer Inst 96:759–769CrossRefPubMedGoogle Scholar
  78. 78.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, and Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792CrossRefPubMedGoogle Scholar
  79. 79.
    Baselga J, Carbonell X, Castaneda-Soto NJ, Clemens M, Green M, Harvey V, Morales S, Barton C, and Ghahramani P (2005) Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 23:2162–2171CrossRefPubMedGoogle Scholar
  80. 80.
    Schier R, Marks JD, Wolf EJ, Apell G, Wong C, McCartney JE, Bookman MA, Huston JS, Houston LL, Weiner LM, and Adams GP (1995) In vitro and in vivo characterization of a human anti-c-erbB-2 single-chain Fv isolated from a filamentous phage antibody library. Immunotechnology 1:73–81CrossRefPubMedGoogle Scholar
  81. 81.
    Schier R, McCall A, Adams GP, Marshall KW, Merritt H, Yim M, Crawford RS, Weiner LM, Marks C, and Marks JD (1996) Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 263:551–567CrossRefPubMedGoogle Scholar
  82. 82.
    Penichet ML. Novel antibodies of IgE class targeting HER2/neu and CD20 for the treatment of cancer. Proceedings of the 2nd International AllergoOncology Symposium (Vienna, Austria, April 11–12, 2008) Abstract No. S-10Google Scholar
  83. 83.
    Tang Y, Lou J, Alpaugh RK, Robinson MK, Marks JD, and Weiner LM (2007) Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. J Immunol 179:2815–2823PubMedGoogle Scholar
  84. 84.
    Coiffier B (2007) Rituximab therapy in malignant lymphoma. Oncogene 26:3603–3613CrossRefPubMedGoogle Scholar
  85. 85.
    Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22:7359–7368CrossRefPubMedGoogle Scholar
  86. 86.
    Helguera G, Rodriguez JA, Daniels TR, Ortiz-Sanchez E, Quintero R, Timmerman JM, Wu A, Martinez-Maza O, and Penichet ML. Anti-CD20 IgE: a novel antibody for the treatment of non-Hodgkin’s lymphoma. Proceedings of the American Association for Cancer Research Special Conference “Tumor Immunology: An integrated perspective” (Miami, Florida, USA, December 2–5, 2008). Abstract No. B18/PR04Google Scholar
  87. 87.
    Riemer AB, Untersmayr E, Knittelfelder R, Duschl A, Pehamberger H, Zielinski CC, Scheiner O, and Jensen-Jarolim E (2007) Active induction of tumor-specific IgE antibodies by oral mimotope vaccination. Cancer Res 67:3406–3411CrossRefPubMedGoogle Scholar
  88. 88.
    Riemer AB, Klinger M, Wagner S, Bernhaus A, Mazzucchelli L, Pehamberger H, Scheiner O, Zielinski CC, and Jensen-Jarolim E (2004) Generation of peptide mimics of the epitope recognized by trastuzumab on the oncogenic protein Her-2/neu. J Immunol 173:394–401PubMedGoogle Scholar
  89. 89.
    Scholl I, Untersmayr E, Bakos N, Roth-Walter F, Gleiss A, Boltz-Nitulescu G, Scheiner O, and Jensen-Jarolim E (2005) Antiulcer drugs promote oral sensitization and hypersensitivity to hazelnut allergens in BALB/c mice and humans. Am J Clin Nutr 81:154–160PubMedGoogle Scholar
  90. 90.
    Untersmayr E, Scholl I, Swoboda I, Beil WJ, Forster-Waldl E, Walter F, Riemer A, Kraml G, Kinaciyan T, Spitzauer S, Boltz-Nitulescu G, Scheiner O, and Jensen-Jarolim E (2003) Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in BALB/c mice. J Allergy Clin Immunol 112:616–623CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tracy R. Daniels
    • 1
  • José A. Rodríguez
    • 2
  • Elizabeth Ortiz-Sánchez
    • 1
  • Gustavo Helguera
    • 1
  • Manuel L. Penichet
    • 3
  1. 1.Division of Surgical Oncology, Department of SurgeryUniversity of CaliforniaLos AngelesUSA
  2. 2.Division of Surgical Oncology, Department of Surgery andMolecular Biology InstituteUniversity of CaliforniaLos AngelesUSA
  3. 3.Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology InstituteJonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of CaliforniaLos AngelesUSA

Personalised recommendations