Advertisement

Punching Holes in Membranes: How Oligomeric Pore-Forming Proteins and Lipids Cooperate to Form Aqueous Channels in Membranes

  • Cécile FradinEmail author
  • Dmitri Satsoura
  • David W. Andrews
Chapter
Part of the Handbook of Modern Biophysics book series (HBBT)

Abstract

Many important biological processes are carried out by a small number of proteins working together as a team to accomplish a specific task. Cooperation between the different proteins is often accomplished through the formation of a supramolecular complex, comprised of either identical or different subunits. Although the formation of protein assemblies is a favored mechanism throughout the cell, it becomes especially important in lipid membranes, as evidenced by the numerous cellular events that are either triggered by or result in the formation of protein complexes in membranes. However, due to the difficulties associated with the study of membrane proteins, the formation of oligomers in lipid membranes is perhaps one of the least understood cellular processes. In this chapter we focus our attention on a subset of membrane complexes — namely, those formed by proteins that are able to pass from a water-soluble to a transmembrane form in order to create a water-filled channel through the lipid membrane. These pore-forming proteins (PFPs) are found in many organisms throughout different kingdoms of life, from bacteria to human. They are often involved in cell death mechanisms through their capacity to break membrane permeability barriers, which can lead to dissipation of the membrane potential as well as introduction or leakage of enzymatic proteins. In fact, a large subset of the PFPs are toxins, and referred to in the literature as pore-forming toxins (PFTs). The association of several monomers into an oligomer is almost always an important aspect of the modus operandi of these proteins. Oligomerization can be useful in several ways: it results in structures large enough to delineate nanometer-size water-filled channels in lipid bilayers, it ensures the presence of large hydrophobic surfaces that can support insertion in the membrane, and it permits cooperative formation and insertion mechanisms.

Keywords

Diphtheria Toxin Membrane Insertion Anthrax Toxin Curr Opin Struct Biol Solution Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abstract

  1. Van der Goot G. 2001. Pore-forming toxins. In Current topics in microbiology and immunology, Vol. 257. Paris: Lavoisier Publishers.Google Scholar
  2. Menestrina G, Dalla Sera M, Lazarovici P, eds. 2003. Pore-forming peptides and protein toxins. In Cell and molecular mechanisms of toxin action, Vol. 5. Philadelphia: Taylor & Francis.Google Scholar

References

  1. 1.
    Gouaux E. 1997. Channel-forming toxins: tales of transformation. Curr Opin Struct Biol 7:566–573.Google Scholar
  2. 2.
    Matsuzaki K. 1999. Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462:1–10.Google Scholar
  3. 3.
    Lesieur C, Vecsey-Semjen B, Abrami L, Fivaz M, Gisou van der Goot F. 1997. Membrane insertion: the strategies of toxins (review). Mol Membr Biol 14:45–64.Google Scholar
  4. 4.
    Walker JE, Saraste M. 1996. Membrane proteins: membrane protein structure. Curr Opin Struct Biol 6:457–459.Google Scholar
  5. 5.
    Montal M. 1996. Protein folds in channel structure. Curr Opin Struct Biol 6:499–510.Google Scholar
  6. 6.
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH. 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929.Google Scholar
  7. 7.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77.ADSGoogle Scholar
  8. 8.
    Cramer WA, Heymann JB, Schendel SL, Deriy BN, Cohen FS, Elkins PA, Stauffacher CV. 1995. Structure–function of the channel-forming colicins. Annu Rev Biophys Biomol Struct 24:611–641.Google Scholar
  9. 9.
    Lakey JH, Slatin SL. 2001. Pore-forming colicins and their relatives. Curr Top Microbiol Immunol 257:131–161.Google Scholar
  10. 10.
    Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. 2007. Colicin biology. Microbiol Mol Biol Rev 71:158–229.Google Scholar
  11. 11.
    Wiener M, Freymann D, Ghosh P, Stroud RM. 1997. Crystal structure of colicin Ia. Nature 385:461–464.ADSGoogle Scholar
  12. 12.
    Vetter IR, Parker MW, Tucker AD, Lakey JH, Pattus F, Tsernoglou D. 1998. Crystal structure of a colicin N fragment suggests a model for toxicity. Structure 6:863–874.Google Scholar
  13. 13.
    Parker MW, Pattus F, Tucker AD, Tsernoglou D. 1989. Structure of the membrane-pore-forming fragment of colicin A. Nature 337:93–96.ADSGoogle Scholar
  14. 14.
    Elkins P, Bunker A, Cramer WA, Stauffacher CV. 1997. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 5:443–458.Google Scholar
  15. 15.
    Muga A, Gonzalez-Manas JM, Lakey JH, Pattus F, Surewicz WK. 1993. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem 268:1553–1557.Google Scholar
  16. 16.
    Gonzalez-Manas JM, Lakey JH, Pattus F. 1992. Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A. Biochemistry 31:7294–7300.Google Scholar
  17. 17.
    Shin YK, Levinthal C, Levinthal F, Hubbell WL. 1993. Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259:960–963.ADSGoogle Scholar
  18. 18.
    Lakey JH, Massotte D, Heitz F, Dasseux JL, Faucon JF, Parker MW, Pattus F. 1991. Membrane insertion of the pore-forming domain of colicin A: a spectroscopic study. Eur J Biochem 196:599–607.Google Scholar
  19. 19.
    Rath P, Bousche O, Merrill AR, Cramer WA, Rothschild KJ. 1991. Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1. Biophys J 59:516–522.Google Scholar
  20. 20.
    van der Goot FG, Didat N, Pattus F, Dowhan W, Letellier L. 1993. Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. Eur J Biochem 213:217–221.Google Scholar
  21. 21.
    Slatin SL, Qiu XQ, Jakes KS, Finkelstein A. 1994. Identification of a translocated protein segment in a voltage-dependent channel. Nature 371:158–161.ADSGoogle Scholar
  22. 22.
    Qiu XQ, Jakes KS, Finkelstein A, Slatin SL. 1994. Site-specific biotinylation of colicin Ia: a probe for protein conformation in the membrane. J Biol Chem 269:7483–7488.Google Scholar
  23. 23.
    Parker MW, Feil SC. 2005. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88:91–142.Google Scholar
  24. 24.
    Qiu XQ, Jakes KS, Kienker PK, Finkelstein A, Slatin SL. 1996. Major transmembrane movement associated with colicin Ia channel gating. J Gen Physiol 107:313–328.Google Scholar
  25. 25.
    Jakes KS, Kienker PK, Slatin SL, Finkelstein A. 1998. Translocation of inserted foreign epitopes by a channel-forming protein. Proc Natl Acad Sci USA 95:4321–4326.ADSGoogle Scholar
  26. 26.
    Zhang YL, Cramer WA. 1993. Intramembrane helix-helix interactions as the basis of inhibition of the colicin E1 ion channel by its immunity protein. J Biol Chem 268:10176–10184.Google Scholar
  27. 27.
    Collier RJ. 2001. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39:1793–1803.Google Scholar
  28. 28.
    Tsuneoka M, Nakayama K, Hatsuzawa K, Komada M, Kitamura N, Mekada E. 1993. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem 268:26461–26465.Google Scholar
  29. 29.
    Yamaizumi M, Mekada E, Uchida T, Okada Y. 1978. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250.Google Scholar
  30. 30.
    Naglich JG, Metherall JE, Russell DW, Eidels L. 1992. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69:1051–1061.Google Scholar
  31. 31.
    Kagan BL, Finkelstein A, Colombini M. 1981. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc Natl Acad Sci USA 78:4950–4954.ADSGoogle Scholar
  32. 32.
    Sharpe JC, London E. 1999. Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: probable relationship to oligomerization. J Membr Biol 171:209–221.Google Scholar
  33. 33.
    Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D. 1992. The crystal structure of diphtheria toxin. Nature 357:216–222.ADSGoogle Scholar
  34. 34.
    Bennett MJ, Eisenberg D. 1994. Refined structure of monomeric diphtheria toxin at 2.3 Å resolution. Protein Sci 3:1464–1475.Google Scholar
  35. 35.
    Carroll SF, Barbieri JT, Collier RJ. 1986. Dimeric form of diphtheria toxin: purification and characterization. Biochemistry 25:2425–2430.Google Scholar
  36. 36.
    Chenal A, Savarin P, Nizard P, Guillain F, Gillet D, Forge V. 2002. Membrane protein insertion regulated by bringing electrostatic and hydrophobic interactions into play: a case study with the translocation domain of diphtheria toxin. J Biol Chem 277:43425–43432.Google Scholar
  37. 37.
    Oh KJ, Zhan H, Cui C, Hideg K, Collier RJ, Hubbell WL. 1996. Organization of diphtheria toxin T domain in bilayers: a site-directed spin labeling study. Science 273:810–812.ADSGoogle Scholar
  38. 38.
    Knowles BH. 1994. Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Adv Insect Physiol 24:275–308.Google Scholar
  39. 39.
    Li JD, Carroll J, Ellar DJ. 1991. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5-Å resolution. Nature 353:815–821.ADSGoogle Scholar
  40. 40.
    Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M. 1995. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254:447–464.Google Scholar
  41. 41.
    Li J, Derbyshire DJ, Promdonkoy B, Ellar DJ. 2001. Structural implications for the transformation of the Bacillus thuringiensis delta-endotoxins from water-soluble to membrane-inserted forms. Biochem Soc Trans 29:571–577.Google Scholar
  42. 42.
    Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L. 2001. Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr 57:1101–1109.Google Scholar
  43. 43.
    Morse RJ, Yamamoto T, Stroud RM. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9:409–417.Google Scholar
  44. 44.
    Cory S, Huang DC, Adams JM. 2003. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607.Google Scholar
  45. 45.
    Youle RJ, Strasser A. 2008. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59.Google Scholar
  46. 46.
    Leber B, Lin J, Andrews DW. 2007. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12:897–911.Google Scholar
  47. 47.
    Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW. 1996. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341.ADSGoogle Scholar
  48. 48.
    Aouacheria A, Brunet F, Gouy M. 2005. Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. Mol Biol Evol 22:2395–2416.Google Scholar
  49. 49.
    Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW. 2001. Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci USA 98:3012–3017.ADSGoogle Scholar
  50. 50.
    Denisov AY, Madiraju MS, Chen G, Khadir A, Beauparlant P, Attardo G, Shore GC, Gehring K. 2003. Solution structure of human BCL-w: modulation of ligand binding by the C-terminal helix. J Biol Chem 278:21124–21128.Google Scholar
  51. 51.
    Woo JS, Jung JS, Ha NC, Shin J, Kim KH, Lee W, Oh BH. 2003. Unique structural features of a BCL-2 family protein CED-9 and biophysical characterization of CED-9/EGL-1 interactions. Cell Death Differ 10:1310–1319.Google Scholar
  52. 52.
    Suzuki M, Youle RJ, Tjandra N. 2000. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654.Google Scholar
  53. 53.
    McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D. 1999. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96:625–634.Google Scholar
  54. 54.
    Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. 1999. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96:615–624.Google Scholar
  55. 55.
    Wolter KG, Hsu Y-T, Smith CL, Nechushtan A, Xi X-G, Youle RJ. 1997. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292.Google Scholar
  56. 56.
    Sharpe JC, Arnoult D, Youle RJ. 2004. Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644:107–113.Google Scholar
  57. 57.
    Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB. 1997. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385:353–357.ADSGoogle Scholar
  58. 58.
    Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J. 2002. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277:49360–49365.Google Scholar
  59. 59.
    Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC. 2000. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345 Pt 2:271–278.Google Scholar
  60. 60.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. 1997. Alpha-synuclein in Lewy bodies. Nature 388:839–840.ADSGoogle Scholar
  61. 61.
    Goldberg MS, Lansbury Jr PT. 2000. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson's disease? Nat Cell Biol 2:E115–E119.Google Scholar
  62. 62.
    Davidson WS, Jonas A, Clayton DF, George JM. 1998. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449.Google Scholar
  63. 63.
    Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE. 2000. α-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334.Google Scholar
  64. 64.
    Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC. 2003. A broken alpha-helix in folded alpha-Synuclein. J Biol Chem 278:15313–15318.Google Scholar
  65. 65.
    Ulmer TS, Bax A, Cole NB, Nussbaum RL. 2005. Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280:9595–9603.Google Scholar
  66. 66.
    Zakharov SD, Hulleman JD, Dutseva EA, Antonenko YN, Rochet JC, Cramer WA. 2007. Helical alpha-synuclein forms highly conductive ion channels. Biochemistry 46:14369–14379.Google Scholar
  67. 67.
    Volles MJ, Lansbury Jr PT. 2002. Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602.Google Scholar
  68. 68.
    Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury Jr PT. 2002. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322:1089–1102.Google Scholar
  69. 69.
    Ding TT, Lee SJ, Rochet JC, Lansbury Jr PT. 2002. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41:10209–10217.Google Scholar
  70. 70.
    Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E. 2001. β-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32:213–223.Google Scholar
  71. 71.
    Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL. 2002. Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978.Google Scholar
  72. 72.
    Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury Jr PT. 2001. Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 40:7812–7819.Google Scholar
  73. 73.
    Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG. 2004. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366.Google Scholar
  74. 74.
    Lashuel HA, Lansbury Jr PT. 2006. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys 39:167–201.Google Scholar
  75. 75.
    Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. 2000. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220.Google Scholar
  76. 76.
    Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury Jr PT. 2002. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291.ADSGoogle Scholar
  77. 77.
    Allured VS, Collier RJ, Carroll SF, McKay DB. 1986. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Å resolution. Proc Natl Acad Sci USA 83:1320–1324.ADSGoogle Scholar
  78. 78.
    Amino R, Martins RM, Procopio J, Hirata IY, Juliano MA, Schenkman S. 2002. Trialysin, a novel poreforming protein from saliva of hematophagous insects activated by limited proteolysis. J Biol Chem 277:6207–6213.Google Scholar
  79. 79.
    Martins RM, Amino R, Daghastanli KR, Cuccovia IM, Juliano MA, Schenkman S. 2008. A short proregion of trialysin, a pore-forming protein of Triatoma infestans salivary glands, controls activity by folding the N-terminal lytic motif. FEBS J 275:994–1002.Google Scholar
  80. 80.
    Anderluh G, Macek P. 2002. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 40:111–124.Google Scholar
  81. 81.
    Mancheno JM, Martin-Benito J, Martinez-Ripoll M, Gavilanes JG, Hermoso JA. 2003. Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 11:1319–1328.Google Scholar
  82. 82.
    Mancheno JM, Martinez-Ripoll M, Gavilanes JG, Hermoso JA. 2002. Crystallization and preliminary X-ray diffraction studies of the water-soluble state of the pore-forming toxin sticholysin II from the sea anemone Stichodactyla helianthus. Acta Crystallogr D Biol Crystallogr 58:1229–1231.Google Scholar
  83. 83.
    Anderluh G, Krizaj I, Strukelj B, Gubensek F, Macek P, Pungercar J. 1999. Equinatoxins, pore-forming proteins from the sea anemone Actinia equina, belong to a multigene family. Toxicon 37:1391–1401.Google Scholar
  84. 84.
    Parker MW. 2003. Cryptic clues as to how water-soluble protein toxins form pores in membranes. Toxicon 42:1–6.ADSGoogle Scholar
  85. 85.
    Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. 1996. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866.ADSGoogle Scholar
  86. 86.
    Schulz GE. 1996. Porins: general to specific, native to engineered passive pores. Curr Opin Struct Biol 6:485–490.Google Scholar
  87. 87.
    Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC. 1997. Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838.ADSGoogle Scholar
  88. 88.
    Menestrina G, Serra MD, Prevost G. 2001. Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39:1661–1672.Google Scholar
  89. 89.
    Montoya M, Gouaux E. 2003. Beta-barrel membrane protein folding and structure viewed through the lens of alpha-hemolysin. Biochim Biophys Acta 1609:19–27.Google Scholar
  90. 90.
    Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E. 1999. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6:134–140.Google Scholar
  91. 91.
    Miles G, Movileanu L, Bayley H. 2002. Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci 11:894–902.Google Scholar
  92. 92.
    Sugawara-Tomita N, Tomita T, Kamio Y. 2002. Stochastic assembly of two-component staphylococcal gamma-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. J Bacteriol 184:4747–4756.Google Scholar
  93. 93.
    Palmer M. 2001. The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 39:1681–1689.Google Scholar
  94. 94.
    Tweten RK, Parker MW, Johnson AE. 2001. The cholesterol-dependent cytolysins. Curr Top Microbiol Immunol 257:15–33.Google Scholar
  95. 95.
    Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B. 2008. Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci 65:493–507.Google Scholar
  96. 96.
    Billington SJ, Jost BH, Songer JG. 2000. Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol Lett 182:197–205.Google Scholar
  97. 97.
    Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW. 1997. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692.Google Scholar
  98. 98.
    Rossjohn J, Polekhina G, Feil SC, Morton CJ, Tweten RK, Parker MW. 2007. Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol 367:1227–1236.Google Scholar
  99. 99.
    Sekiya K, Satoh R, Danbara H, Futaesaku Y. 1993. A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane. J Bacteriol 175:5953–5961.Google Scholar
  100. 100.
    Olofsson A, Hebert H, Thelestam M. 1993. The projection structure of perfringolysin O (Clostridium perfringens theta-toxin). FEBS Lett 319:125–127.Google Scholar
  101. 101.
    Morgan PJ, Hyman SC, Rowe AJ, Mitchell TJ, Andrew PW, Saibil HR. 1995. Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin. FEBS Lett 371:77–80.Google Scholar
  102. 102.
    Bonev BB, Gilbert RJ, Andrew PW, Byron O, Watts A. 2001. Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin. J Biol Chem 276:5714–5719.Google Scholar
  103. 103.
    Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK. 1999. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299.Google Scholar
  104. 104.
    Young JA, Collier RJ. 2007. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265.Google Scholar
  105. 105.
    Escuyer V, Collier RJ. 1991. Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun 59:3381–3386.Google Scholar
  106. 106.
    Klimpel KR, Molloy SS, Thomas G, Leppla SH. 1992. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA 89:10277–10281.ADSGoogle Scholar
  107. 107.
    Blaustein RO, Koehler TM, Collier RJ, Finkelstein A. 1989. Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci USA 86:2209–2213.ADSGoogle Scholar
  108. 108.
    Koehler TM, Collier RJ. 1991. Anthrax toxin protective antigen: low-pH-induced hydrophobicity and channel formation in liposomes. Mol Microbiol 5:1501–1506.Google Scholar
  109. 109.
    Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ. 1994. Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269:20607–20612.Google Scholar
  110. 110.
    Koni PA, Ellar DJ. 1994. Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiology 140(Pt 8):1869–1880.Google Scholar
  111. 111.
    Wilmsen HU, Pattus F, Buckley JT. 1990. Aerolysin, a hemolysin from Aeromonas hydrophila, forms voltagegated channels in planar lipid bilayers. J Membr Biol 115:71–81.Google Scholar
  112. 112.
    Tucker AD, Parker MW, Tsernoglou D, Buckley JT. 1990. Crystallization of a proform of aerolysin, a hole-forming toxin from Aeromonas hydrophila. J Mol Biol 212:561–562.Google Scholar
  113. 113.
    Parker MW, Buckley JT, Postma JP, Tucker AD, Leonard K, Pattus F, Tsernoglou D. 1994. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367:292–295.ADSGoogle Scholar
  114. 114.
    Melton JA, Parker MW, Rossjohn J, Buckley JT, Tweten RK. 2004. The identification and structure of the membrane-spanning domain of the Clostridium septicum alpha toxin. J Biol Chem 279:14315–14322.Google Scholar
  115. 115.
    Tweten RK. 2001. Clostridium perfringens beta toxin and Clostridium septicum alpha toxin: their mechanisms and possible role in pathogenesis. Vet Microbiol 82:1–9.Google Scholar
  116. 116.
    Perelle S, Gibert M, Boquet P, Popoff MR. 1993. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun 61:5147–5156.Google Scholar
  117. 117.
    Sliwinski-Korell A, Engelhardt H, Kampka M, Lutz F. 1999. Oligomerization and structural changes of the pore-forming Pseudomonas aeruginosa cytotoxin. Eur J Biochem 265:221–230.Google Scholar
  118. 118.
    Xiong G, Struckmeier M, Lutz F. 1994. Pore-forming Pseudomonas aeruginosa cytotoxin. Toxicology 87:69–83.Google Scholar
  119. 119.
    Stern HA, Feller SE. 2003. Calculation of the dielectric permittivity profile for a nonuniform system: application to a lipid bilayer simulation. J Chem Phys 118:3401–3412.ADSGoogle Scholar
  120. 120.
    Baumann G, Mueller P. 1974. A molecular model of membrane excitability. J Supramol Struct 2:538–557.Google Scholar
  121. 121.
    Killian JA, von Heijne G. 2000. How proteins adapt to a membrane–water interface. Trends Biochem Sci 25:429–434.Google Scholar
  122. 122.
    Galdiero S, Gouaux E. 2004. High-resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer–lipid head group interactions: implication for understanding protein–lipid interactions. Protein Sci 13:1503–1511.Google Scholar
  123. 123.
    Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. 1996. Membrane pores induced by magainin. Biochemistry 35:13723–13728.Google Scholar
  124. 124.
    Matsuzaki K, Murase O, Fujii N, Miyajima K. 1996. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368.Google Scholar
  125. 125.
    Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485.Google Scholar
  126. 126.
    Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. 2006. Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore. J Biol Chem 281:14408–14416.Google Scholar
  127. 127.
    Epand RF, Martinou JC, Montessuit S, Epand RM. 2003. Transbilayer lipid diffusion promoted by Bax: implications for apoptosis. Biochemistry 42:14576–14582.Google Scholar
  128. 128.
    Valcarcel CA, Dalla Serra M, Potrich C, Bernhart I, Tejuca M, Martinez D, Pazos F, Lanio ME, Menestrina G. 2001. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys J 80:2761–2774.Google Scholar
  129. 129.
    Hinds MG, Zhang W, Anderluh G, Hansen PE, Norton RS. 2002. Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J Mol Biol 315:1219–1229.Google Scholar
  130. 130.
    Gesell J, Zasloff M, Opella SJ. 1997. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 9:127–135.Google Scholar
  131. 131.
    Tsigelny IF, Bar-On P, Sharikov Y, Crews L, Hashimoto M, Miller MA, Keller SH, Platoshyn O, Yuan JX, Masliah E. 2007. Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein. FEBS J 274:1862–1877.Google Scholar
  132. 132.
    Marassi FM, Opella SJ. 1998. NMR structural studies of membrane proteins. Curr Opin Struct Biol 8:640–648.Google Scholar
  133. 133.
    Watts A, Straus SK, Grage SL, Kamihira M, Lam YH, Zhao X. 2004. Membrane protein structure determination using solid-state NMR. Methods Mol Biol 278:403–473.Google Scholar
  134. 134.
    Ketchem RR, Hu W, Cross TA. 1993. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460.ADSGoogle Scholar
  135. 135.
    Bechinger B, Zasloff M, Opella SJ. 1993. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci 2:2077–2084.Google Scholar
  136. 136.
    Bechinger B. 1999. The structure, dynamics and orientation of antimicrobial peptides in membranes by multi-dimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1462:157–183.Google Scholar
  137. 137.
    Muller SA, Aebi U, Engel A. 2008. What transmission electron microscopes can visualize now and in the future. J Struct Biol 163:235–245.Google Scholar
  138. 138.
    Henderson R. 1995. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193.Google Scholar
  139. 139.
    Rubinstein JL. 2007. Structural analysis of membrane protein complexes by single particle electron microscopy. Methods 41:409–416.Google Scholar
  140. 140.
    Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR. 2005. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256.Google Scholar
  141. 141.
    Wilmsen HU, Leonard KR, Tichelaar W, Buckley JT, Pattus F. 1992. The aerolysin membrane channel is formed by heptamerization of the monomer. EMBO J 11:2457–2463.Google Scholar
  142. 142.
    Woodcock CL, Frado LL, Wall JS. 1980. Composition of native and reconstituted chromatin particles: direct mass determination by scanning transmission electron microscopy. Proc Natl Acad Sci USA 77:4818–4822.ADSGoogle Scholar
  143. 143.
    Tzokov SB, Wyborn NR, Stillman TJ, Jamieson S, Czudnochowski N, Artymiuk PJ, Green J, Bullough PA. 2006. Structure of the hemolysin E (HlyE, ClyA, and SheA) channel in its membrane-bound form. J Biol Chem 281:23042–23049.Google Scholar
  144. 144.
    Eifler N, Vetsch M, Gregorini M, Ringler P, Chami M, Philippsen A, Fritz A, Müller SA, Glockshuber R, Engel A, Grauschopf U. 2006. Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore independent of its redox-state. EMBO J 25:2652–2661.Google Scholar
  145. 145.
    Shao Z. 1999. Probing nanometer structures with atomic force microscopy. Newsl Physiol Sci 14:142–149.Google Scholar
  146. 146.
    Fang Y, Cheley S, Bayley H, Yang J. 1997. The heptameric prepore of a staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy. Biochemistry 36:9518–9522.Google Scholar
  147. 147.
    Malghani MS, Fang Y, Cheley S, Bayley H, Yang J. 1999. Heptameric structures of two alpha-hemolysin mutants imaged with in situ atomic force microscopy. Microsc Res Tech 44:353–356.Google Scholar
  148. 148.
    Czajkowsky DM, Sheng S, Shao Z. 1998. Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers. J Mol Biol 276:325–330.Google Scholar
  149. 149.
    Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A. 2008. Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283:10992–1003.Google Scholar
  150. 150.
    Czajkowsky DM, Hotze EM, Shao Z, Tweten RK. 2004. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215.Google Scholar
  151. 151.
    Lakey JH, Baty D, Pattus F. 1991. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants: the membrane insertion of colicin A. J Mol Biol 218:639–653.Google Scholar
  152. 152.
    Lakey JH, Duche D, Gonzalez-Manas JM, Baty D, Pattus F. 1993. Fluorescence energy transfer distance measurements. The hydrophobic helical hairpin of colicin A in the membrane bound state. J Mol Biol 230:1055–1067.Google Scholar
  153. 153.
    Ward RJ, Palmer M, Leonard K, Bhakdi S. 1994. Identification of a putative membrane-inserted segment in the alpha-toxin of Staphylococcus aureus. Biochemistry 33:7477–7484.Google Scholar
  154. 154.
    Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK. 1998. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574.Google Scholar
  155. 155.
    Heuck AP, Johnson AE. 2002. Pore-forming protein structure analysis in membranes using multiple independent fluorescence techniques. Cell Biochem Biophys 36:89–101.Google Scholar
  156. 156.
    Ulbrich MH, Isacoff EY. 2007. Subunit counting in membrane-bound proteins. Nat Methods 4:319–321.Google Scholar
  157. 157.
    Somes K. Das MD, Cheley S, Wallace MI, Bayley H. 2007. Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits. ChemBioChem 8:994–999.Google Scholar
  158. 158.
    Chen Y, Muller JD, So PT, Gratton E. 1999. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567.Google Scholar
  159. 159.
    Kask P, Palo K, Ullmann D, Gall K. 1999. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci USA 96:13756–13761.ADSGoogle Scholar
  160. 160.
    Chen Y, Wei LN, Muller JD. 2003. Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy. Proc Natl Acad Sci USA 100:15492–15497.ADSGoogle Scholar
  161. 161.
    Saffarian S, Li Y, Elson EL, Pike LJ. 2007. Oligomerization of the EGF receptor investigated by live cell fluorescence intensity distribution analysis. Biophys J 93:1021–1031.Google Scholar
  162. 162.
    Satsoura D, Griffiths C, Leber B, Andrews DW, Fradin C. Activated Bax forms oligomers of varying size to permeabilize lipid membranes. In preparation.Google Scholar
  163. 163.
    Epand RF, Savage PB, Epand RM. 2007. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta 1768:2500–2509.Google Scholar
  164. 164.
    van Meer G. 1989. Lipid traffic in animal cells. Annu Rev Cell Biol 5:247–275.Google Scholar
  165. 165.
    Daum G, Vance JE. 1997. Import of lipids into mitochondria. Prog Lipid Res 36:103–130.Google Scholar
  166. 166.
    Ohno-Iwashita Y, Iwamoto M, Ando S, Iwashita S. 1992. Effect of lipidic factors on membrane cholesterol topology—mode of binding of theta-toxin to cholesterol in liposomes. Biochim Biophys Acta 1109:81–90.Google Scholar
  167. 167.
    Ohno-Iwashita Y, Iwamoto M, Mitsui K, Ando S, Iwashita S. 1991. A cytolysin, theta-toxin, preferentially binds to membrane cholesterol surrounded by phospholipids with 18-carbon hydrocarbon chains in cholesterolrich region. J Biochem 110:369–375.Google Scholar
  168. 168.
    Waheed AA, Shimada Y, Heijnen HF, Nakamura M, Inomata M, Hayashi M, Iwashita S, Slot JW, Ohno-Iwashita Y. 2001. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc Natl Acad Sci USA 98:4926–4931.ADSGoogle Scholar
  169. 169.
    Zitzer A, Bittman R, Verbicky CA, Erukulla RK, Bhakdi S, Weis S, Valeva A, Palmer M. 2001. Coupling of cholesterol and cone-shaped lipids in bilayers augments membrane permeabilization by the cholesterol-specific toxins streptolysin O and Vibrio cholerae cytolysin. J Biol Chem 276:14628–14633.Google Scholar
  170. 170.
    Johnson MK, Geoffroy C, Alouf JE. 1980. Binding of cholesterol by sulfhydryl-activated cytolysins. Infect Immun 27:97–101.Google Scholar
  171. 171.
    Shimada Y, Maruya M, Iwashita S, Ohno-Iwashita Y. 2002. The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269:6195–6203.Google Scholar
  172. 172.
    Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X. 2000. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761.Google Scholar
  173. 173.
    Thomas WE, Ellar DJ. 1983. Mechanism of action of Bacillus thuringiensis var israelensis insecticidal delta-endotoxin. FEBS Lett 154:362–368.Google Scholar
  174. 174.
    Esposti MD, Erler JT, Hickman JA, Dive C. 2001. Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity. Mol Cell Biol 21:7268–7276.Google Scholar
  175. 175.
    Oh KJ, Barbuto S, Meyer N, Kim RS, Collier RJ, Korsmeyer SJ. 2005. Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding: a site-directed spin labeling study. J Biol Chem 280:753–767.Google Scholar
  176. 176.
    Papini E, Colonna R, Schiavo G, Cusinato F, Tomasi M, Rappuoli R, Montecucco C. 1987. Diphtheria toxin and its mutant crm 197 differ in their interaction with lipids. FEBS Lett 215:73–78.Google Scholar
  177. 177.
    Seelig J. 2004. Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 1666:40–50.Google Scholar
  178. 178.
    McLaughlin S. 1989. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem 18:113–136.Google Scholar
  179. 179.
    Beschiaschvili G, Seelig J. 1990. Peptide binding to lipid bilayers: binding isotherms and zeta-potential of a cyclic somatostatin analogue. Biochemistry 29:10995–11000.Google Scholar
  180. 180.
    Wenk MR, Seelig J. 1998. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry 37:3909–3916.Google Scholar
  181. 181.
    Kim J, Mosior M, Chung LA, Wu H, McLaughlin S. 1991. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J 60:135–148.Google Scholar
  182. 182.
    McMahon HT, Gallop JL. 2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596.ADSGoogle Scholar
  183. 183.
    Drin G, Casella JF, Gautier R, Boehmer T, Schwartz TU, Antonny B. 2007. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14:138–146.Google Scholar
  184. 184.
    Nuscher B, Kamp F, Mehnert T, Odoy S, Haass C, Kahle PJ, Beyer K. 2004. Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study. J Biol Chem 279:21966–21975.Google Scholar
  185. 185.
    Lakey JH, Parker MW, Gonzalez-Manas JM, Duché D, Vriend G, Baty D, Pattus F. 1994. The role of electrostatic charge in the membrane insertion of colicin A: calculation and mutation. Eur J Biochem 220:155–163.Google Scholar
  186. 186.
    van der Goot FG, Gonzalez-Manas JM, Lakey JH, Pattus F. 1991. A “molten-globule” membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 354:408–410.ADSGoogle Scholar
  187. 187.
    Ulmschneider MB, Sansom MS. 2001. Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512:1–14.Google Scholar
  188. 188.
    White SH, Wimley WC. 1998. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta 1376:339–352.Google Scholar
  189. 189.
    Scarlata S, Gruner SM. 1997. Role of phosphatidylethanolamine lipids in the stabilization of protein–lipid contacts. Biophys Chem 67:269–279.Google Scholar
  190. 190.
    Scarlata S, McBath H, Haspel HC. 1995. Effect of lipid packing on the conformational states of purified GLUT-1 hexose transporter. Biochemistry 34:7703–7711.Google Scholar
  191. 191.
    Nyholm TK, Ozdirekcan S, Killian JA. 2007. How protein transmembrane segments sense the lipid environment. Biochemistry 46:1457–1465.Google Scholar
  192. 192.
    Killian JA. 1998. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta 1376:401–415.Google Scholar
  193. 193.
    Kooijman EE, Chupin V, Fuller NL, Kozlov MM, de Kruijff B, Burger KN, Rand PR. 2005. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44:2097–2102.Google Scholar
  194. 194.
    Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM. 1998. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37:11856–11863.Google Scholar
  195. 195.
    Malev VV, Schagina LV, Gurnev PA, Takemoto JY, Nestorovich EM, Bezrukov SM. 2002. Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys J 82:1985–1994.Google Scholar
  196. 196.
    Epand RF, Martinou JC, Montessuit S, Epand RM. 2002. Membrane perturbations induced by the apoptotic Bax protein. Biochem J 367:849–855.Google Scholar
  197. 197.
    Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. 2004. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Lett 576:205–210.Google Scholar
  198. 198.
    Li H, Zhu H, Xu CJ, Yuan J. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501.Google Scholar
  199. 199.
    Howard SP, Buckley JT. 1985. Activation of the hole-forming toxin aerolysin by extracellular processing. J Bacteriol 163:336–340.Google Scholar
  200. 200.
    Li J, Koni PA, Ellar DJ. 1996. Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 257:129–152.Google Scholar
  201. 201.
    Milne JC, Collier RJ. 1993. pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol 10:647–653.Google Scholar
  202. 202.
    van der Goot FG, Lakey JH, Pattus F. 1992. The molten globule intermediate for protein insertion or translocation through membranes. Trends Cell Biol 2:343–348.Google Scholar
  203. 203.
    Mel SF, Stroud RM. 1993. Colicin Ia inserts into negatively charged membranes at low pH with a tertiary but little secondary structural change. Biochemistry 32:2082–2089.Google Scholar
  204. 204.
    Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. 2000. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173.Google Scholar
  205. 205.
    Palmer M, Valeva A, Kehoe M, Bhakdi S. 1995. Kinetics of streptolysin O self-assembly. Eur J Biochem 231:388–395.Google Scholar
  206. 206.
    Berg HC, Purcell EM. 1977. Physics of chemoreception. Biophys J 20:193–219.Google Scholar
  207. 207.
    London E. 1992. How bacterial protein toxins enter cells; the role of partial unfolding in membrane translocation. Mol Microbiol 6:3277–3282.Google Scholar
  208. 208.
    Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW. 2003. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278:48935–48941.Google Scholar
  209. 209.
    Zhan H, Choe S, Huynh PD, Finkelstein A, Eisenberg D, Collier RJ. 1994. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies. Biochemistry 33:11254–11263.Google Scholar
  210. 210.
    Silverman JA, Mindell JA, Finkelstein A, Shen WH, Collier RJ. 1994. Mutational analysis of the helical hairpin region of diphtheria toxin transmembrane domain. J Biol Chem 269:22524–22532.Google Scholar
  211. 211.
    Palmer M, Vulicevic I, Saweljew P, Valeva A, Kehoe M, Bhakdi S. 1998. Streptolysin O: a proposed model of allosteric interaction between a pore-forming protein and its target lipid bilayer. Biochemistry 37:2378–2383.Google Scholar
  212. 212.
    Parker MW, Tucker AD, Tsernoglou D, Pattus F. 1990. Insights into membrane insertion based on studies of colicins. Trends Biochem Sci 15:126–129.Google Scholar
  213. 213.
    Massotte D, Yamamoto M, Scianimanico S, Sorokine O, van Dorsselaer A, Nakatani Y, Ourisson G, Pattus F. 1993. Structure of the membrane-bound form of the pore-forming domain of colicin A: a partial proteolysis and mass spectrometry study. Biochemistry 32:13787–13794.Google Scholar
  214. 214.
    Kienker PK, Qiu X, Slatin SL, Finkelstein A, Jakes KS. 1997. Transmembrane insertion of the colicin Ia hydrophobic hairpin. J Membr Biol 157:27–37.Google Scholar
  215. 215.
    Valeva A, Palmer M, Bhakdi S. 1997. Staphylococcal alpha-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. Biochemistry 36:13298–13304.Google Scholar
  216. 216.
    Fink AL. 2006. The aggregation and fibrillation of alpha-synuclein. Acc Chem Res 39:628–634.Google Scholar
  217. 217.
    Jarrett JT, Berger EP, Lansbury Jr PT. 1993. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697.Google Scholar
  218. 218.
    Come JH, Fraser PE, Lansbury Jr PT. 1993. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci USA 90:5959–5963.ADSGoogle Scholar
  219. 219.
    Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S. 1998. Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605.Google Scholar
  220. 220.
    Bhakdi S, Tranum-Jensen J, Sziegoleit A. 1985. Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60.Google Scholar
  221. 221.
    Saito M, Korsmeyer SJ, Schlesinger PH. 2000. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2:553–555.Google Scholar
  222. 222.
    Huang HW, Chen FY, Lee MT. 2004. Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett 92:198304.ADSGoogle Scholar
  223. 223.
    Thelestam M, Olofsson A, Blomqvist L, Hebert H. 1991. Oligomerisation of cell-bound staphylococcal alphatoxin in relation to membrane permeabilisation. Biochim Biophys Acta 1062:245–254.Google Scholar
  224. 224.
    Walker B, Krishnasastry M, Zorn L, Bayley H. 1992. Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. J Biol Chem 267:21782–21786.Google Scholar
  225. 225.
    Vecsey-Semjen B, Lesieur C, Mollby R, van der Goot FG. 1997. Conformational changes due to membrane binding and channel formation by staphylococcal alpha-toxin. J Biol Chem 272:5709–5717.Google Scholar
  226. 226.
    Vecsey-Semjen B, Mollby R, van der Goot FG. 1996. Partial C-terminal unfolding is required for channel formation by staphylococcal alpha-toxin. J Biol Chem 271:8655–8660.Google Scholar
  227. 227.
    Valeva A, Palmer M, Hilgert K, Kehoe M, Bhakdi S. 1995. Correct oligomerization is a prerequisite for insertion of the central molecular domain of staphylococcal alpha-toxin into the lipid bilayer. Biochim Biophys Acta 1236:213–218.Google Scholar
  228. 228.
    Wimley WC, Hristova K, Ladokhin AS, Silvestro L, Axelsen PH, White SH. 1998. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. J Mol Biol 277:1091–1110.Google Scholar
  229. 229.
    Shepard LA, Shatursky O, Johnson AE, Tweten RK. 2000. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39:10284–10293.Google Scholar
  230. 230.
    Krasilnikov OV, Da Cruz JB, Yuldasheva LN, Varanda WA, Nogueira RA. 1998. A novel approach to study the geometry of the water lumen of ion channels: colicin Ia channels in planar lipid bilayers. J Membr Biol 161:83–92.Google Scholar
  231. 231.
    Athanasiadis A, Anderluh G, Macek P, Turk D. 2001. Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 9:341–346.Google Scholar
  232. 232.
    Gouaux E. 1998. α-Hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins. J Struct Biol 121:110–122.Google Scholar
  233. 233.
    Sandre O, Moreaux L, Brochard-Wyart F. 1999. Dynamics of transient pores in stretched vesicles. Proc Natl Acad Sci USA 96:10591–10596.ADSGoogle Scholar
  234. 234.
    Evans E, Heinrich V, Ludwig F, Rawicz W. 2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85:2342–2350.Google Scholar
  235. 235.
    Zhelev DV, Needham D. 1993. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta 1147:89–104.Google Scholar
  236. 236.
    Malinin VS, Frederik P, Lentz BR. 2002. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophys J 82:2090–2100.Google Scholar
  237. 237.
    Weaver JC, Chizmadzhev YA. 1996. Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160.Google Scholar
  238. 238.
    Moroz JD, Nelson P. 1997. Dynamically stabilized pores in bilayer membranes. Biophys J 72:2211–2216.Google Scholar
  239. 239.
    Brochard-Wyart F, de Gennes PG, Sandre O. 2000. Transient pores in stretched vesicles: role of leak-out. Physica A 278:32–51.ADSGoogle Scholar
  240. 240.
    Loi S, Sun G, Franz V, Butt HJ. 2002. Rupture of molecular thin films observed in atomic force microscopy, II: experiment. Phys Rev E Stat Nonlin Soft Matter Phys 66:031602.ADSGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Cécile Fradin
    • 1
    • 2
    Email author
  • Dmitri Satsoura
    • 1
  • David W. Andrews
    • 1
  1. 1.Department of Physics & AstronomyMcMaster UniversityOntarioCanada
  2. 2.Department of Physics and AstronomyMcMaster UniversityOntarioCanada

Personalised recommendations