Advertisement

Activation of the Maternal Immune System as a Risk Factor for Neuropsychiatric Disorders

  • Stephen E. P. Smith
  • Elaine Hsiao
  • Paul H. Patterson
Chapter

Abstract

Maternal infection can alter the intrauterine environment, placing the developing fetus at risk. Serious infections of the mother or the fetus can cause severe problems or even miscarriage. The more common and seemingly benign infections, such as influenza, do not appear associated with such severe outcomes. However, recent work has shown that maternal inflammation associated with any infection has the potential to alter the fetal brain development. Epidemiological studies have demonstrated a strong association between maternal infection and subsequent development of neuropsychiatric illness in the offspring. Mouse models of maternal infection have shown long-lasting changes in the brain of offspring following maternal immune activation (MIA), as well as behavioral abnormalities related to human neuropsychiatric illness. Recent work has begun to elucidate the mechanisms through which the activated maternal immune system alters fetal brain development. We review the evidence from human and rodent studies showing that maternal infection is a risk factor for neuropsychiatric illness, and describe initial steps in a molecular mechanism mediating the effects of maternal immune activation on fetal brain development.

Keywords

Schizophrenia Autism Maternal immune activation Poly(I:C) Influenza Prenatal infection 

Notes

Acknowledgments

We thank Wensi Sheng for designing Fig. 7.1. Work from the authors’ laboratory received support from the National Association for Autism Research, the NIMH, and the McKnight Foundation.

References

  1. 1.
    Palomo R, Belinchon M, Ozonoff S (2006) Autism and family home movies: a comprehensive review. J Dev Behav Pediatr 27(2 Suppl):S59–S68.PubMedCrossRefGoogle Scholar
  2. 2.
    Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432.PubMedCrossRefGoogle Scholar
  3. 3.
    Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334.PubMedCrossRefGoogle Scholar
  4. 4.
    Sykes NH, Lamb JA (2007) Autism: the quest for the genes. Expert Rev Mol Med 9(24):1–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Grice DE, Buxbaum JD (2006) The genetics of autism spectrum disorders. Neuromolecular Med 8(4):451–460.PubMedCrossRefGoogle Scholar
  6. 6.
    Cook EH Jr, Scherer SW (2008) Copy-number variations associated with neuropsychiatric conditions. Nature 455(7215):919–923.PubMedCrossRefGoogle Scholar
  7. 7.
    Schanen NC (2006) Epigenetics of autism spectrum disorders. Hum Mol Genet 15(2):138–150.CrossRefGoogle Scholar
  8. 8.
    Trottier G, Srivastava L, Walker CD (1999) Etiology of infantile autism: a review of recent advances in genetic and neurobiological research. J Psychiatry Neurosci 24(2):103–115.PubMedGoogle Scholar
  9. 9.
    Alsdorf R, Wyszynski DF (2005) Teratogenicity of sodium valproate. Expert Opin Drug Saf 4(2):345–353.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown AS (2006) Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 32(2):200–202.PubMedCrossRefGoogle Scholar
  11. 11.
    Patterson PH (2002) Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 12(1):115–118.PubMedCrossRefGoogle Scholar
  12. 12.
    Chess S (1977) Follow-up report on autism in congenital rubella. J Autism Child Schizophr 7(1):69–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45(2):189–192.PubMedCrossRefGoogle Scholar
  14. 14.
    Bagalkote H, Pang D, Jones P (2001) Maternal influenza and schizophrenia in the offspring. Int J Ment Health 39:3–21.Google Scholar
  15. 15.
    Brown AS, Begg MD, Gravenstein S et al (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61(8):774–780.PubMedCrossRefGoogle Scholar
  16. 16.
    Byrne M, Agerbo E, Bennedsen B, Eaton WW, Mortensen PB (2007) Obstetric conditions and risk of first admission with schizophrenia: a Danish national register based study. Schizophr Res 97(1–3):51–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Brown AS, Hooton J, Schaefer CA et al (2004) Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 161(5):889–895.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES (2005) Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 162(4):767–773.PubMedCrossRefGoogle Scholar
  19. 19.
    Mortensen PB, Norgaard-Pedersen B, Waltoft BL, Sorensen TL, Hougaard D, Yolken RH (2007) Early infections of Toxoplasma gondii and the later development of schizophrenia. Schizophr Bull 33(3):741–744.PubMedCrossRefGoogle Scholar
  20. 20.
    Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH (2001) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 58(11):1032–1037.PubMedCrossRefGoogle Scholar
  21. 21.
    Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS (2006) Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry 163(5):927–929.PubMedCrossRefGoogle Scholar
  22. 22.
    Sorensen HJ, Mortensen EL, Reinisch JM, Mednick SA (2009) Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull 35(3):631–637.PubMedCrossRefGoogle Scholar
  23. 23.
    Brown AS, Deicken RF, Vinogradov S et al (2009) Prenatal infection and cavum septum pellucidum in adult schizophrenia. Schizophr Res 108:104–113.CrossRefGoogle Scholar
  24. 24.
    Brown AS. (2009) Prenatal infection and executive dysfunction in adult schizophrenia. Am J Psychiatry 166(6):631–634.Google Scholar
  25. 25.
    Desmond MM, Wilson GS, Melnick JL et al (1967) Congenital rubella encephalitis. Course and early sequelae. J Pediatr 71(3):311–331.PubMedCrossRefGoogle Scholar
  26. 26.
    Ciaranello AL, Ciaranello RD (1995) The neurobiology of infantile autism. Annu Rev Neurosci 18:101–128.PubMedCrossRefGoogle Scholar
  27. 27.
    Brown AS, Susser ES (2002) In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev 8(1):51–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23(1):297–302.PubMedGoogle Scholar
  29. 29.
    Wynn JK, Dawson ME, Schell AM, McGee M, Salveson D, Green MF (2004) Prepulse facilitation and prepulse inhibition in schizophrenia patients and their unaffected siblings. Biol Psychiatry 55(5):518–523.PubMedCrossRefGoogle Scholar
  30. 30.
    Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR (2007) Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 33(1):69–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Perry W, Minassian A, Lopez B, Maron L, Lincoln A (2007) Sensorimotor gating deficits in adults with autism. Biol Psychiatry 61(4):482–486.PubMedCrossRefGoogle Scholar
  32. 32.
    Fatemi SH, Emamian ES, Kist D et al (1999) Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 4(2):145–154.PubMedCrossRefGoogle Scholar
  33. 33.
    Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J (2008) Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun 22(4):469–486.PubMedCrossRefGoogle Scholar
  34. 34.
    Shi L, Smith SE, Malkova N, Tse D, Patterson PH (2008) Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun 23(1):116–123.PubMedCrossRefGoogle Scholar
  35. 35.
    Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31(3):137–145.PubMedCrossRefGoogle Scholar
  36. 36.
    Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499–522.PubMedCrossRefGoogle Scholar
  37. 37.
    Shi L, Tu N, Patterson PH (2005) Maternal influenza infection is likely to alter fetal brain development indirectly: the virus is not detected in the fetus. Int J Dev Neurosci 23(2–3):299–305.PubMedCrossRefGoogle Scholar
  38. 38.
    Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27(40):10695–10702.PubMedCrossRefGoogle Scholar
  39. 39.
    Piontkewitz Y, Weiner I, Assaf Y (2007) Post-pubertal emergence of schizophrenia-like abnormalaties following prenatal immune system activation and thier prevention: modeling the disorder and its prodrome. In: 7th IBRO World Congress of Neuroscience, Melbourne, Australia, 45.Google Scholar
  40. 40.
    Zuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28(10):1778–1789.PubMedCrossRefGoogle Scholar
  41. 41.
    Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59(6):546–554.PubMedCrossRefGoogle Scholar
  42. 42.
    Nyffeler M, Meyer U, Yee BK, Feldon J, Knuesel I (2006) Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience 143(1):51–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Romero R, Gotsch F, Pineles B, Kusanovic JP (2007) Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev 65(12 Pt 2):S194–S202.PubMedCrossRefGoogle Scholar
  44. 44.
    O’Callaghan E, Sham PC, Takei N et al (1994) The relationship of schizophrenic births to 16 infectious diseases. Br J Psychiatry 165(3):353–356.PubMedCrossRefGoogle Scholar
  45. 45.
    Watson CG, Kucala T, Tilleskjor C, Jacobs L (1984) Schizophrenic birth seasonality in relation to the incidence of infectious diseases and temperature extremes. Arch Gen Psychiatry 41(1):85–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26(2):204–215.PubMedCrossRefGoogle Scholar
  47. 47.
    Fortier ME, Kent S, Ashdown H, Poole S, Boksa P, Luheshi GN (2004) The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am J Physiol 287(4):R759–R766.Google Scholar
  48. 48.
    Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M (2005) Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology 48(6):903–917.PubMedCrossRefGoogle Scholar
  49. 49.
    Hava G, Vered L, Yael M, Mordechai H, Mahoud H (2006) Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy. Dev Psychobiol 48(2):162–168.PubMedCrossRefGoogle Scholar
  50. 50.
    Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG (2000) Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res 47(1):64–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Ling Z, Chang QA, Tong CW, Leurgans SE, Lipton JW, Carvey PM (2004) Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally. Exp Neurol 190(2):373–383.PubMedCrossRefGoogle Scholar
  52. 52.
    Paintlia MK, Paintlia AS, Barbosa E, Singh I, Singh AK (2004) N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res 78(3):347–361.PubMedCrossRefGoogle Scholar
  53. 53.
    Bobetsis YA, Barros SP, Offenbacher S (2006) Exploring the relationship between periodontal disease and pregnancy complications. J Am Dent Assoc 137:7S–13S.PubMedGoogle Scholar
  54. 54.
    Wang X, Rousset CI, Hagberg H, Mallard C (2006) Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med 11(5):343–353.PubMedCrossRefGoogle Scholar
  55. 55.
    Beydoun H, Saftlas AF (2008) Physical and mental health outcomes of prenatal maternal stress in human and animal studies: a review of recent evidence. Paediatr Perinat Epidemiol 22(5):438–466.PubMedCrossRefGoogle Scholar
  56. 56.
    Barbazanges A, Piazza PV, Le Moal M, Maccari S (1996) Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci 16(12):3943–3949.PubMedGoogle Scholar
  57. 57.
    Jankowsky JL, Patterson PH (1999) Cytokine and growth factor involvement in long-term potentiation. Mol Cell Neurosci 14(6):273–286.CrossRefGoogle Scholar
  58. 58.
    Gilmore JH, Jarskog LF, Vadlamudi S, Lauder J (2004) Prenatal infection and risk for schizophrenia: IL-I beta, IL-6, and TNF alpha inhibit cortical neuron dendrite development. Neuropsychopharmacology 29(7):1221–1229.PubMedCrossRefGoogle Scholar
  59. 59.
    Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev 8(3):221–232.Google Scholar
  60. 60.
    Dahlgren J, Samuelsson AM, Jansson T, Holmang A (2006) Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation. Pediatr Res 60(2):147–151.PubMedCrossRefGoogle Scholar
  61. 61.
    Ponzio NM, Servatius R, Beck K, Marzouk A, Kreider T (2007) Cytokine levels during pregnancy influence immunological profiles and neurobehavioral patterns of the offspring. Ann N Y Acad Sci 1107:118–128.PubMedCrossRefGoogle Scholar
  62. 62.
    Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J (2007) Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry 13:208–221.PubMedCrossRefGoogle Scholar
  63. 63.
    Pang Y, Rodts-Palenik S, Cai Z, Bennett WA, Rhodes PG (2005) Suppression of glial activation is involved in the protection of IL-10 on maternal E. coli induced neonatal white matter injury. Brain Res Dev Brain Res 157(2):141–149.PubMedCrossRefGoogle Scholar
  64. 64.
    Silver RM, Lohner WS, Daynes RA, Mitchell MD, Branch DW (1994) Lipopolysaccharide-induced fetal death: the role of tumor-necrosis factor alpha. Biol Reprod 50(5):1108–1112.PubMedCrossRefGoogle Scholar
  65. 65.
    Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W (2006) Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice. Toxicol Lett 163(1):20–29.PubMedCrossRefGoogle Scholar
  66. 66.
    Samuelsson AM, Jennische E, Hansson HA, Holmang A (2006) Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol 290(5):R1345–R1356.Google Scholar
  67. 67.
    Balschun D, Wetzel W, Del Rey A et al (2004) Interleukin-6: a cytokine to forget. FASEB J 18(14):1788–1790.PubMedGoogle Scholar
  68. 68.
    Swiergiel AH, Smagin GN, Johnson LJ, Dunn AJ (1997) The role of cytokines in the behavioral responses to endotoxin and influenza virus infection in mice: effects of acute and chronic administration of the interleukin-1-receptor antagonist (IL-1ra). Brain Res 776(1–2):96–104.PubMedCrossRefGoogle Scholar
  69. 69.
    Reichenberg A, Yirmiya R, Schuld A et al (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58(5):445–452.PubMedCrossRefGoogle Scholar
  70. 70.
    Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Yirmiya R (2000) Depression in medical illness: the role of the immune system. West J Med 173(5):333–336.PubMedCrossRefGoogle Scholar
  72. 72.
    Garver DL, Tamas RL, Holcomb JA (2003) Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology 28(8):1515–1520.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang XY, Zhou DF, Cao LY, Wu GY, Shen YC (2005) Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacology 30(8):1532–1538.PubMedCrossRefGoogle Scholar
  74. 74.
    Singh VK, Warren RP, Odell JD, Cole P (1991) Changes of soluble interleukin-2, interleukin-2 receptor, T8 antigen, and interleukin-1 in the serum of autistic children. Clin Immunol Immunopathol 61(3):448–455.PubMedCrossRefGoogle Scholar
  75. 75.
    Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M (2002) Activation of the inflammatory response system in autism. Neuropsychobiology 45(1):1–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Zimmerman AW, Jyonouchi H, Comi AM et al (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33(3):195–201.PubMedCrossRefGoogle Scholar
  77. 77.
    Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 36(6):361–365.PubMedCrossRefGoogle Scholar
  78. 78.
    Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81.PubMedCrossRefGoogle Scholar
  79. 79.
    Drzyzga L, Obuchowicz E, Marcinowska A, Herman ZS (2006) Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav Immun 20(6):532–545.PubMedCrossRefGoogle Scholar
  80. 80.
    Martins-de-Souza D, Gattaz WF, Schmitt A et al (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:151–163.PubMedCrossRefGoogle Scholar
  81. 81.
    Arion D, Unger T, Lewis DA, Levitt P, Mirnics K (2007) Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry 62(7):711–721.PubMedCrossRefGoogle Scholar
  82. 82.
    Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E (2007) Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 7:46.PubMedCrossRefGoogle Scholar
  83. 83.
    Garbett K, Ebert PJ, Mitchell A et al (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30(3):303–311.PubMedCrossRefGoogle Scholar
  84. 84.
    Morgan JT, Chana G, Buckwalter J, Courchesne E, Everall IP (2007) Increased Iba-1 positive microglial cell density in the autistic brain. Society for Neuroscience poster presentation.Google Scholar
  85. 85.
    Curran LK, Newschaffer CJ, Lee LC, Crawford SO, Johnston MV, Zimmerman AW (2007) Behaviors associated with fever in children with autism spectrum disorders. Pediatrics 120(6):e1386–e1392.PubMedCrossRefGoogle Scholar
  86. 86.
    Hinsie LE (1929) Malaria treatment of schizophrenia. Psychiatr Q 3:210–214.CrossRefGoogle Scholar
  87. 87.
    Tempelton WL, Glas CB (1924) The effect of malarial fever upon dementia praecox subjects. J Ment Sci 70:92–95.Google Scholar
  88. 88.
    Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21(2):153–160.PubMedCrossRefGoogle Scholar
  89. 89.
    Hou Y, Wu CF, Yang JY et al (2006) Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells. Prog Neuropsy­chopharmacol Biol Psychiatry 30(8):1523–1528.PubMedCrossRefGoogle Scholar
  90. 90.
    Kato T, Monji A, Hashioka S, Kanba S (2007) Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res 92(1–3):108–115.PubMedCrossRefGoogle Scholar
  91. 91.
    Bian Q, Kato T, Monji A et al (2008) The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry 32(1):42–48.PubMedCrossRefGoogle Scholar
  92. 92.
    Sugino H, Futamura T, Mitsumoto Y, Maeda K, Marunaka Y (2009) Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 33(2):303–307.PubMedCrossRefGoogle Scholar
  93. 93.
    Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B (2007) Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res 90(1–3):179–185.PubMedCrossRefGoogle Scholar
  94. 94.
    Miyaoka T, Yasukawa R, Yasuda H, Hayashida M, Inagaki T, Horiguchi J (2008) Minocycline as adjunctive therapy for schizophrenia: an open-label study. Clin Neuropharmacol 31(5):287–292.PubMedCrossRefGoogle Scholar
  95. 95.
    Boris M, Kaiser CC, Goldblatt A et al (2007) Effect of pioglitazone treatment on behavioral symptoms in autistic children. J Neuroinflammation 4:3.PubMedCrossRefGoogle Scholar
  96. 96.
    Zerrate MC, Pletnikov M, Connors SL et al (2007) Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: implications for autism. J Pharmacol Exp Ther 322(1):16–22.PubMedCrossRefGoogle Scholar
  97. 97.
    Singer HS, Morris C, Gause C, Pollard M, Zimmerman AW, Pletnikov M (2009) Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. J Neuroimmunol 211(1–2):39–48.PubMedCrossRefGoogle Scholar
  98. 98.
    Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J (2007) Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology 32(8):1791–1804.PubMedCrossRefGoogle Scholar
  99. 99.
    Entringer S, Kumsta R, Hellhammer DH, Wadhwa PD, Wust S (2009) Prenatal exposure to maternal psychosocial stress and HPA axis regulation in young adults. Horm Behav 55(2):292–298.PubMedCrossRefGoogle Scholar
  100. 100.
    Meaney MJ, Diorio J, Francis D et al (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocorticAl responses to stress. Dev Neurosci 18(1–2):49–72.PubMedCrossRefGoogle Scholar
  101. 101.
    Levitt NS, Lindsay RS, Holmes MC, Seckl JR (1996) Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 64(6):412–418.PubMedCrossRefGoogle Scholar
  102. 102.
    Weaver IC (2009) Epigenetic effects of glucocorticoids. Semin Fetal Neonatal Med 14(3):143–150.PubMedCrossRefGoogle Scholar
  103. 103.
    Beasley CL, Reynolds GP (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24(3):349–355.PubMedCrossRefGoogle Scholar
  104. 104.
    Hashimoto T, Volk DW, Eggan SM et al (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23(15):6315–6326.PubMedGoogle Scholar
  105. 105.
    Behrens MM, Ali SS, Dugan LL (2008) Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28(51):13957–13966.PubMedCrossRefGoogle Scholar
  106. 106.
    Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev 6(4):312–324.CrossRefGoogle Scholar
  107. 107.
    Behrens MM, Ali SS, Dao DN et al (2007) Ketamine-induced loss of phenotype of ­fast-spiking interneurons is mediated by NADPH-oxidase. Science 318(5856): 1645–1647.PubMedCrossRefGoogle Scholar
  108. 108.
    Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN (2006) The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 11(1):47–55.PubMedCrossRefGoogle Scholar
  109. 109.
    Golan H, Stilman M, Lev V, Huleihel M (2006) Normal aging of offspring mice of mothers with induced inflammation during pregnancy. Neuroscience 141(4):1909–1918.PubMedCrossRefGoogle Scholar
  110. 110.
    Liverman CS, Kaftan HA, Cui L et al (2006) Altered expression of pro-inflammatory and developmental genes in the fetal brain in a mouse model of maternal infection. Neurosci Lett 399(3):220–225.PubMedCrossRefGoogle Scholar
  111. 111.
    Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH (2001) Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res 47(1):27–36.PubMedCrossRefGoogle Scholar
  112. 112.
    Gilmore JH, Jarskog LF, Vadlamudi S (2005) Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol 159(1–2):106–112.PubMedCrossRefGoogle Scholar
  113. 113.
    Meyer U, Nyffeler M, Engler A et al (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26(18):4752–4762.PubMedCrossRefGoogle Scholar
  114. 114.
    Meyer U, Feldon J, Schedlowski M, Yee BK (2006) Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun 20(4):378–388.PubMedCrossRefGoogle Scholar
  115. 115.
    Molloy CA, Morrow AL, Meinzen-Derr J et al (2006) Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 172(1–2):198–205.PubMedCrossRefGoogle Scholar
  116. 116.
    Sweeten TL, Posey DJ, McDougle CJ (2003) High blood monocyte counts and neopterin levels in children with autistic disorder. Am J Psychiatry 160(9):1691–1693.PubMedCrossRefGoogle Scholar
  117. 117.
    Jyonouchi H, Sun S, Le H (2001) Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol 120(1–2):170–179.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stephen E. P. Smith
    • 1
    • 2
  • Elaine Hsiao
  • Paul H. Patterson
  1. 1.Biology DivisionCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Departments of Neurology and Pathology, Harvard Medical SchoolBeth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations