Advertisement

Parthenogenetic Embryonic Stem Cells in Nonhuman Primates

  • Neli Petrova Ragina
  • Jose Bernardo Cibelli
Chapter

Abstract

Parthenogenesis is a naturally occurring process where an oocyte is activated without sperm contribution. In mammals, parthenogenetic (PG) embryos cannot develop to term. The most commonly used method of artificially making diploid PG embryos is using via chemical activation of the egg and by preventing extrusion of the second polar body. Parthenogenetic embryonic stem (PGES) cells are derived from the inner cell mass of PG embryo at the blastocyst stage. They are pluripotent, i.e., they can differentiate into all three germ layers: ecto-, meso-, and endoderm, and can be propagated as stem cells in culture for prolonged periods of time. PGES cells offer an easily obtainable pool of stem cells that can be used as a source for derivation of autologous tissues, albeit limited to females in reproductive age. PGES cells derivation does not require destruction of a viable embryo and therefore bypasses the ethical debates surrounding the use of naturally fertilized embryos. Nonhuman primates are the closest species to human in the tree of evolution and therefore are excellent models for studying human development and diseases. PGES cells from nonhuman primate and human parthenogenetically activated oocyte have recently been derived (1, 2, 3). These cells offer a valuable tool for studying the developmental, differentiation, and functional potential of the PGES cells in the context of their clinical application in organ and tissue transplantations in humans.

Keywords

Parthenogenesis Stem cells Imprinting 

References

  1. 1.
    Matsuda T, Wake N. Genetics and molecular markers in gestational trophoblastic disease with special reference to their clinical application. Best Pract Res Clin Obstet Gynaecol 2003;17:827–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Mutter GL. Role of imprinting in abnormal human development. Mutat Res 1997;396:141–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Surti U, Hoffner L, Chakravarti A, Ferrell RE. Genetics and biology of human ovarian teratomas. I. Cytogenetic analysis and mechanism of origin. Am J Hum Genet 1990;47:635–43.PubMedGoogle Scholar
  4. 4.
    Mai Q, Yu Y, Li T, et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 2007;17:1008–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Revazova ES, Turovts NA, Kochetkova OD, et al HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 2008 10:11–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Revazova ES, Turovts NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 2007;9:432–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Strain L, Warner JP, Johnston T, Bonthron DT. A human parthenogenetic chimaera. Nat Genet 1995;11:164–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Surani MA. Parthenogenesis in man. Nat Genet 1995;11:111–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Mitalipov SM, Nusser KD, Wolf DP. Parthenogenetic activation of rhesus monkey oocytes and reconstructed embryos. Biol Reprod 2001;65:253–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Sotomaru Y, Katsusava Y, Hatada I, Obata Y, Sasaki H, Kono T. Unregulated expression of the imprinted genes H19 and Igf2r in mouse uniparental fetuses. J Biol Chem 2002;277:12474–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Ogawa H, Wu Q, Komiyama J, et al Disruption of parental-specific expression of imprinted genes in uniparental fetuses. FEBS Lett 2006;580;5377–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Lyle R. Gametic imprinting in development and disease. J Endocrinol 1997;155:1–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Zvetkova I, Apedaile A, Ramsahoye B, et al. Global hypomethylation of the genome in XX embryonic stem cells. Nat Genet 2005;37:1274–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 2005;85:635–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Cibelli JB, Grant KA, Pahapman KB, et al. Parthenogenetic stem cells in nonhuman primates. Science 2002;295:819.PubMedCrossRefGoogle Scholar
  16. 16.
    Vrana KE, Hipp JD, Goss AM, et al. Nonhuman primate parthenogenetic stem cells. Proc Natl Acad Sci U S A 2003;100 Suppl 1:11911–6.CrossRefGoogle Scholar
  17. 17.
    Sanchez-Pernaute, R, Stder L, Ferrari D, et al Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (Cyno-1) after transplantation. Stem Cells 2005;23:914–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Ferrari D, Sanchez-Pernaute R, Lee H, Studer L, Isacson O. Transplanted dopamine neurons derived from primate ES cells preferentially innervate DARPP-32 striatal progenitors within the graft. Eur J Neurosci 2006;24:1885–96.PubMedCrossRefGoogle Scholar
  19. 19.
    Dighe V, Clepper L, Pedersen D, et al. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 2008;26:756–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng L. More new lines of human parthenogenetic embryonic stem cells. Cell Res 2008;18:215–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Sapienza C. Parental imprinting of genes. Sci Am 1990;263:52–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Tang Wy, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 2007;8:173–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Swales AK, Spears N. Genomic imprinting and reproduction. Reproduction 2005;130:389–99.PubMedCrossRefGoogle Scholar
  24. 24.
    Fujimoto A, Mitalipov SM, Kuo HC, Wolf DP. Aberrant genomic imprinting in rhesus monkey embryonic stem cells. Stem Cells 2006;24:595–603.PubMedCrossRefGoogle Scholar
  25. 25.
    Newman-Smith ED, Werb Z. Stem cell defects in parthenogenetic peri-implantation embryos. Development 1995;121:2069–77.PubMedGoogle Scholar
  26. 26.
    Horii T, Kimura M, Morita S, Nagao Y, Hatada I. Loss of genomic imprinting in mouse parthenogenetic embryonic stem cells. Stem Cells 2008;26:79–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Kono T, Obata Y, Wu Q, et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004;428:860–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Kono T, Sotomaru Y, Katsuzawa Y, Dandolo L. Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 17.5 of gestation. Dev Biol 2002;243;294–300.PubMedCrossRefGoogle Scholar
  29. 29.
    Mitalipov S, Clepper L, Sritanaudomchai H, Fujimoto A, Wolf D. Methylation status of imprinting centers for H19/IGF2 and SNURF/SNRPN in primate embryonic stem cells. Stem Cells 2007;25:581–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Runte M, Kroisel PM, Gillessen-Kaesbach G, et al. SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome. Hum Genet 2004;114:553–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Reik W, Maher ER. Imprinting in clusters: lessons from Beckwith–Wiedemann syndrome. Trends Genet 1997;13:330–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Nicholls RD, Saitoh S, Horsthemke B. Imprinting in Prader–Willi and Angelman syndromes. Trends Genet 1998;14:194–200.PubMedCrossRefGoogle Scholar
  33. 33.
    Hurst LD, McVean GT. Growth effects of uniparental distomes and the conflict theory of genomic imprinting. Trends Genet 1997;13:436–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Sotomaru Y, Kawase Y, Ueda T, et al Disruption of imprinted expression of U2afbp-rs/U2af1-rs1 gene in mouse parthenogenetic fetuses. J Biol Chem 2001;276:26694–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 1991;113:1105–14.PubMedGoogle Scholar
  36. 36.
    Han VKM, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta 2000;21:289–305.PubMedCrossRefGoogle Scholar
  37. 37.
    Pringle KG, Roberts CT. New light on early post-implantation pregnancy in the mouse: roles for insulin-like growth factor-II (IGF-II)? Placenta 2007;28:286–97.PubMedCrossRefGoogle Scholar
  38. 38.
    Minniti CP, Luan D, O’Grady C, Rosenfeld RG, Oh Y, Helman LJ. Insulin-like growth factor II overexpression in myoblasts induces phenotypic changes typical of the malignant phenotype. Cell Growth Differ 1995;6:263–9.PubMedGoogle Scholar
  39. 39.
    Pacher M, Seewald MJ, Mikula M, et al. Impact of constitutive IGF1/IGF2 stimulation on the transcriptional program of human breast cancer cells. Carcinogenesis 2007;28:49–59.PubMedCrossRefGoogle Scholar
  40. 40.
    Prelle K, Wobus AM, Krebs O, et al. Overexpression of insulin-like growth factor-II in mouse embryonic stem cells promotes myogenic differentiation. Biochem Biophys Res Commun 2000;277:631–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Weber MM, Fottner C, Schmidt P, et al. Postnatal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis. Endocrinology 1999;140:1537–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Moorehead RA, Sanchez OH, Baldwin RM, Khokha R. Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma. Oncogene 2003;22:853–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Petrik J, Pell JM, Arany E, et al. Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia. Endocrinology 1999;140:2353–63.PubMedCrossRefGoogle Scholar
  44. 44.
    Newman-Smith E, Werb Z. Functional analysis of trophoblast giant cells in parthenogenetic mouse embryos. Dev Genet 1997;20:1–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Kawahara M, Wu Q, Takahashi N, et al. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol 2007;25:1045–50.PubMedCrossRefGoogle Scholar
  46. Kono T, Kawahara M, Wu Q, et al. Paternal dual barrier by Ifg2-H19 and Dlk1-Gtl2 to parthenogenesis in mice. Ernst Schering Res Found Workshop 2006;23–33.Google Scholar
  47. 47.
    Sheehy E, Conrad SL, Brigham LE, Hiura H, Obata Y. Estimating the number of potential organ donors in the United States. N Engl J Med 2003;349;667–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Coombes JM, Trotter JF. Development of the allocation system for deceased donor liver transplantation. Clin Med Res 2005;3:87–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Nagy A, Gocza E, Diaz EM, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 1990;110:815–21.PubMedGoogle Scholar
  50. 50.
    Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 1993;90:8424–8.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Cellular Reprogramming Laboratory,Michigan State UniversityUSA

Personalised recommendations