Skip to main content

Role of Telomeres and Telomerase in Cancer

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cancer cells are distinguished from normal cells by two major characteristics: lack of regulation and limitation in their proliferation. The former is essential and represented as “transformed” with anchorage independency and invasive capabilities, while the latter is not a prerequisite but highly associated and represented as “immortal” concomitant with activation of telomerase. Telomerase is activated in around 80% of human cancers but not in usual somatic cells, and it is responsible for the indefinite proliferation capacity of cancer cells. Therefore, it is natural for physicians to expect telomerase to be useful as a diagnostic and therapeutic target in human cancers. In this chapter, we will overview the characteristics of telomeres and telomerase in human cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997;33:787–91.

    Article  CAS  PubMed  Google Scholar 

  2. Shay JW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991;196:33–9.

    Article  CAS  PubMed  Google Scholar 

  3. HarleyCB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res 1991;256:271–82.

    CAS  PubMed  Google Scholar 

  4. Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 2005;26:867–74.

    Article  CAS  PubMed  Google Scholar 

  5. Hastie ND, Dempster M, Dunlop MG, et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990;346:866–8.

    Article  CAS  PubMed  Google Scholar 

  6. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005;19:2100–10.

    Article  PubMed  Google Scholar 

  7. Miyazu YM, Miyazawa T, Hiyama K, et al. Telomerase expression in noncancerous bronchial epithelia is a possible marker of early development of lung cancer. Cancer Res 2005;65:9623–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer 2007;96:1020–4.

    Article  CAS  PubMed  Google Scholar 

  9. Hiyama E, Hiyama K, Yokoyama T, et al. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995;1:249–55.

    Article  CAS  PubMed  Google Scholar 

  10. Hiyama K, Hiyama E, Ishioka S, et al. Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst 1995;87:895–902.

    Article  CAS  PubMed  Google Scholar 

  11. Chumsri S, Matsui W, Burger AM. Therapeutic implications of leukemic stem cell pathways. Clin Cancer Res 2007;13:6549–54.

    Article  CAS  PubMed  Google Scholar 

  12. Cozzio A, Passegue E, Ayton PM, et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003;17:3029–35.

    Article  CAS  PubMed  Google Scholar 

  13. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999;400:464–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ince TA, Richardson AL, Bell GW, et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 2007;12:160–70.

    Article  CAS  PubMed  Google Scholar 

  15. Sato M, Vaughan MB, Girard L, et al. Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res 2006;66:2116–28.

    Article  CAS  PubMed  Google Scholar 

  16. Ramirez RD, Herbert BS, Vaughan MB, et al. Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene 2003;22:433–44.

    Article  CAS  PubMed  Google Scholar 

  17. Ramirez RD, Sheridan S, Girard L, et al. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res 2004;64:9027–34.

    Article  CAS  PubMed  Google Scholar 

  18. Lewis CM, Herbert BS, Bu D, et al. Telomerase immortalization of human mammary epithelial cells derived from a BRCA2 mutation carrier. Breast Cancer Res Treat 2006;99:103–15.

    Article  CAS  PubMed  Google Scholar 

  19. Morales CP, Holt SE, Ouellette M, et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 1999;21:115–18.

    Article  CAS  PubMed  Google Scholar 

  20. Venetsanakos E, Mirza A, Fanton C, et al. Induction of tubulogenesis in telomerase-immor-talized human microvascular endothelial cells by glioblastoma cells. Exp Cell Res 2002;273:21–33.

    Article  CAS  PubMed  Google Scholar 

  21. Hiyama K, Otani K, Ohtaki M, et al. Differentially expressed genes throughout the cellular immortalization processes are quite different between normal human fibroblasts and endothe-lial cells. Int J Oncol 2005;27:87–95.

    CAS  PubMed  Google Scholar 

  22. Olovnikov AM. Principle of marginotomy in template synthesis of polynucleotides (Russian). Dokl Akad Nauk SSSR 1971;201:1496–9.

    CAS  PubMed  Google Scholar 

  23. Watson JD. Origin of concatemeric T7 DNA. Nat New Biol 1972;239:197–201.

    Article  CAS  PubMed  Google Scholar 

  24. Stewart SA, Hahn WC, O'Connor BF, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 2002;99:12606–11.

    Article  CAS  PubMed  Google Scholar 

  25. Chang S, Khoo CM, Naylor ML, et al. Telomere-based crisis: functional differences between telomerase activation and ALT in tumor progression. Genes Dev 2003;17:88–100.

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Rosenberg JE, Donjacour AA, et al. Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res 2004;64:4833–40.

    Article  CAS  PubMed  Google Scholar 

  27. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006;441:1068–74.

    Article  CAS  PubMed  Google Scholar 

  28. Li F, Tiede B, Massague J, et al. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007;17:3–14.

    Article  CAS  PubMed  Google Scholar 

  29. Vermeulen L, Sprick MR, Kemper K, et al. Cancer stem cells — old concepts, new insights. Cell Death Differ 2008;15:947–58.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao YM, Li JY, Lan JP, et al. Cell cycle dependent telomere regulation by telomerase in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2008;369:1114–19.

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  32. Stadtfeld M, Maherali N, Breault DT, et al. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008;2:230–40.

    Article  CAS  PubMed  Google Scholar 

  33. Shay JW, Keith WN. Targeting telomerase for cancer therapeutics. Br J Cancer 2008;98:677–83.

    Article  CAS  PubMed  Google Scholar 

  34. Harley CB. Telomerase and cancer therapeutics. Nat Rev Cancer 2008;8:167–79.

    Article  CAS  PubMed  Google Scholar 

  35. Strahl C, Blackburn EH. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol Cell Biol 1996;16:53–65.

    CAS  PubMed  Google Scholar 

  36. Kanazawa Y, Ohkawa K, Ueda K, et al. Hammerhead ribozyme-mediated inhibition of telomerase activity in extracts of human hepatocellular carcinoma cells. Biochem Biophys Res Commun 1996;225:570–6.

    Article  CAS  PubMed  Google Scholar 

  37. Herbert BS, Gellert GC, Hochreiter A, et al. Lipid modification of GRN163, an N3′→P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 2005;24:5262–8.

    Article  CAS  PubMed  Google Scholar 

  38. Brunsvig PF, Aamdal S, Gjertsen MK, et al. Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother 2006;55:1553–64.

    Article  CAS  PubMed  Google Scholar 

  39. Bernhardt SL, Gjertsen MK, Trachsel S, et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer 2006;95:1474–82.

    Article  CAS  PubMed  Google Scholar 

  40. Kokhaei P, Palma M, Hansson L, et al. Telomerase (hTERT 611–626) serves as a tumor antigen in B-cell chronic lymphocytic leukemia and generates spontaneously antileukemic, cytotoxic T cells. Exp Hematol 2007;35:297–304.

    Article  CAS  PubMed  Google Scholar 

  41. Taki M, Kagawa S, Nishizaki M, et al. Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 (‘Telomelysin-RGD’). Oncogene 2005;24:3130–40.

    Article  CAS  PubMed  Google Scholar 

  42. Agarwal M, Pandita S, Hunt CR, et al. Inhibition of telomerase activity enhances hyperther-mia-mediated radiosensitization. Cancer Res 2008;68:3370–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Hiyama, K., Hiyama, E., Tanimoto, K., Nishiyama, M. (2009). Role of Telomeres and Telomerase in Cancer. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics