Therapeutic Targets and Drugs II: G-Quadruplex and G-Quadruplex Inhibitors

  • Chandanamali Punchihewa
  • Danzhou Yang
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG) and can form G-quadruplex DNA secondary structures. Compounds that can stabilize the intramolecular DNA G-quadruplexes formed in the human telomeric sequence have been shown to inhibit the activity of telomerase and telomere maintenance, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. This review will give an overview of the current understanding of structures and biology of G-quadruplex secondary structures formed in human telomere, and of the current progress in the development of anticancer drugs targeting the telomeric G-quadruplexes.


Human telomere G-quadruplex Anticancer drug target G-quadruplex ligands Telomeric G-quadruplex structure polymorphism 


  1. 1.
    Hud NV, Plavec J. The role of cations in determining quadruplex structure and stability. In: Neidle S, ed. Quadruplex Nucleic Acids: Royal Society of Chemistry, RSCPublishing, Cambridge, 2006:100–30.Google Scholar
  2. 2.
    Gellert M, Lipsett MN, Davies DR. Helix formation by guanylic acid. Proc Natl Acad Sci USA 1962; 48:2013–8.PubMedGoogle Scholar
  3. 3.
    Arnott S, Chandrasekaran R, Marttila CM. Structures for polyinosinic acid and polyguanylic acid. Biochem J 1974; 141:537–43.PubMedGoogle Scholar
  4. 4.
    Zimmerman SB, Cohen GH, Davies DR. X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J Mol Biol 1975; 92:181–92.PubMedGoogle Scholar
  5. 5.
    Henderson E, Hardin CC, Walk SK, Tinoco I, Jr., Blackburn EH. Telomeric DNA oligonu-cleotides form novel intramolecular structures containing guanine—guanine base pairs. Cell 1987; 51:899–908.PubMedGoogle Scholar
  6. 6.
    Sundquist WI, Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 1989; 342:825–9.PubMedGoogle Scholar
  7. 7.
    Williamson JR, Raghuraman MK, Cech TR. Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell 1989; 59:871–80.PubMedGoogle Scholar
  8. 8.
    Dexheimer TS, Sun D, Fry M, Hurley LH. DNA quadruplexes and gene regulation. In: Neidle S, ed. Quadruplex Nucleic Acids: Royal Society of Chemistry, RSCPublishing, Cambridge, 2006:180–207.Google Scholar
  9. 9.
    Maizels N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol 2006; 13:1055–9.PubMedGoogle Scholar
  10. 10.
    Fry M. Tetraplex DNA and its interacting proteins. Front Biosci 2007; 12:4336–51.PubMedGoogle Scholar
  11. 11.
    Oganesian L, Bryan TM. Physiological relevance of telomeric G-quadruplex formation: A potential drug target. Bioessays 2007; 29:155–65.PubMedGoogle Scholar
  12. 12.
    Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 1978; 120:33–53.PubMedGoogle Scholar
  13. 13.
    Allshire RC, Dempster M, Hastie ND. Human telomeres contain at least 3 types of G-Rich repeat distributed non-randomly. Nucleic Acids Res 1989; 17:4611–27.PubMedGoogle Scholar
  14. 14.
    de Lange T, Shiue L, Myers RM, et al. Structure and variability of human chromosome ends. Mol Cell Biol 1990; 10:518–27.PubMedGoogle Scholar
  15. 15.
    Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988; 85:6622–6.PubMedGoogle Scholar
  16. 16.
    Makarov VL, Hirose Y, Langmore JP. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 1997; 88:657–66.PubMedGoogle Scholar
  17. 17.
    Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 1997; 11:28019.Google Scholar
  18. 18.
    Colgin LM, Reddel RR. Telomere maintenance mechanisms and cellular immortalization. Curr Opinion Genet Dev 1999; 9:97–103.Google Scholar
  19. 19.
    Zahler AM, Williamson JR, Cech TR, Prescott DM. Inhibition of telomerase by G-quartet DNA structures. Nature 1991; 350:718–20.PubMedGoogle Scholar
  20. 20.
    Neidle S, Parkinson G. Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 2002; 1:383–93.PubMedGoogle Scholar
  21. 21.
    Salazar M, Thompson BD, Kerwin SM, Hurley LH. Thermally induced DNA:RNA hybrid to G-quadruplex transitions: Possible implications for telomere synthesis by telomerase. Biochemistry 1996; 35:16110–5.PubMedGoogle Scholar
  22. 22.
    Blackburn EH. Telomere states and cell fates. Nature 2000; 408:53–6.PubMedGoogle Scholar
  23. 23.
    van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92:401–3.PubMedGoogle Scholar
  24. 24.
    Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability. Cell 2001; 106:275–86.PubMedGoogle Scholar
  25. 25.
    de Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19:2100–10.PubMedGoogle Scholar
  26. 26.
    Court R, Chapman L, Fairall L, Rhodes D. How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: A view from high-resolution crystal structures. EMBO Rep 2005; 6:39–45.PubMedGoogle Scholar
  27. 27.
    Xin H, Liu D, Wan M, et al. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 2007; 445:559–62.PubMedGoogle Scholar
  28. 28.
    Wang F, Podell ER, Zaug AJ, et al. The POT1—TPP1 telomere complex is a telomerase processivity factor. Nature 2007; 445:506–10.PubMedGoogle Scholar
  29. 29.
    Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 2001; 292:1171–5.PubMedGoogle Scholar
  30. 30.
    Lei M, Podell ER, Baumann P, Cech TR. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 2003; 426:198–203.PubMedGoogle Scholar
  31. 31.
    Lei M, Podell ER, Cech TR. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 2004; 11:1223–9.PubMedGoogle Scholar
  32. 32.
    Mergny JL, Helene C. G-quadruplex DNA: A target for drug design. Nat Med 1998; 4: 1366–7.PubMedGoogle Scholar
  33. 33.
    Sun DY, Hurley LH. Targeting telomeres and telomerase. In: Chaires JB, Waring MJ, eds. Methods in Enzymology, Drug—Nucleic Acid Interactions (vol. 340), Academic, San Diego, CA, 2001:573–92.Google Scholar
  34. 34.
    Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2002; 2:188–200.PubMedGoogle Scholar
  35. 35.
    Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279:349–52.PubMedGoogle Scholar
  36. 36.
    Harley CB. Telomere loss: Mitotic clock or genetic time bomb? Mutat Res 1991; 256: 271–82.PubMedGoogle Scholar
  37. 37.
    Sun H, Karow JK, Hickson ID, Maizels N. The Bloom's Syndrome helicase unwinds G4 DNA. J. Biol. Chem. 1998; 273:27587–92.PubMedGoogle Scholar
  38. 38.
    Sun H, Bennett RJ, Maizels N. The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res 1999; 27:1978–84.PubMedGoogle Scholar
  39. 39.
    Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345:458–60.PubMedGoogle Scholar
  40. 40.
    Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43:405–13.PubMedGoogle Scholar
  41. 41.
    Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266:2011–5.PubMedGoogle Scholar
  42. 42.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57–70.PubMedGoogle Scholar
  43. 43.
    Hurley LH. Secondary DNA structures as molecular targets for cancer therapeutics. Biochem Soc Trans 2001; 29:692–6.PubMedGoogle Scholar
  44. 44.
    Hurley LH, Wheelhouse RT, Sun D, et al. G-quadruplexes as targets for drug design. Pharmacol Ther 2000; 85:141–58.PubMedGoogle Scholar
  45. 45.
    Neidle S, Read MA. G-quadruplexes as therapeutic targets. Biopolymers 2000; 56:195–208.PubMedGoogle Scholar
  46. 46.
    Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295:2446–9.PubMedGoogle Scholar
  47. 47.
    Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106:661–73.PubMedGoogle Scholar
  48. 48.
    Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283:1321–5.PubMedGoogle Scholar
  49. 49.
    Guiducci C, Cerone MA, Bacchetti S. Expression of mutant telomerase in immortal telomerase-negative human cells results in cell cycle deregulation, nuclear and chromosomal abnormalities and rapid loss of viability. Oncogene 2001; 20:714–25.PubMedGoogle Scholar
  50. 50.
    De Cian A, Lacroix L, Douarre C, et al. Targeting telomeres and telomerase. Biochimie 2007.Google Scholar
  51. 51.
    Riou JF, GuittatL,Mailliet P,et al. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc Natl Acad Sci USA 2002; 99:2672–7.PubMedGoogle Scholar
  52. 52.
    Gowan SM, Heald R, Stevens MF, Kelland LR. Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. Mol Pharmacol 2001; 60:981–8.PubMedGoogle Scholar
  53. 53.
    Incles CM, Schultes CM, Kempski H, Koehler H, Kelland LR, Neidle S. A G-quadruplex telomere targeting agent produces p16-associated senescence and chromosomal fusions in human prostate cancer cells. Mol Cancer Ther 2004; 3:1201–6.PubMedGoogle Scholar
  54. 54.
    Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995; 14:4240–8.PubMedGoogle Scholar
  55. 55.
    Ambrus A, Chen D, Dai JX, Jones RA, Yang DZ. Solution structure of the biologically relevant g-quadruplex element in the human c-MYC promoter. Implications for g-quadru-plex stabilization. Biochemistry 2005; 44:2048–58.PubMedGoogle Scholar
  56. 56.
    Dai J, Dexheimer TS, Chen D, et al. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc 2006; 128:1096–8.PubMedGoogle Scholar
  57. 57.
    Dai JX, Chen D, Jones RA, Hurley LH, Yang DZ. NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res 2006; 34:5133–44.PubMedGoogle Scholar
  58. 58.
    Dai JX, Punchihewa C, Ambrus A, Chen D, Jones RA, Yang DZ. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: A novel adenine triple formation. Nucleic Acids Res 2007; 35:2440–50.PubMedGoogle Scholar
  59. 59.
    Dai JX, Carver M, Punchihewa C, Jones RA, Yang DZ. Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: Insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 2007; 35:4927–40.PubMedGoogle Scholar
  60. 60.
    Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 2001; 98:8572–7.PubMedGoogle Scholar
  61. 61.
    Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 2005; 12:847–54.PubMedGoogle Scholar
  62. 62.
    Granotier C, Pennarun G, Riou L, et al. Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res 2005; 33:4182–90.PubMedGoogle Scholar
  63. 63.
    Chang CC, Kuo IC, Ling IF, et al. Detection of quadruplex DNA structures in human telomeres by a fluorescent carbazole derivative. Anal Chem 2004; 76:4490–4.PubMedGoogle Scholar
  64. 64.
    Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 2004; 18:1618–29.PubMedGoogle Scholar
  65. 65.
    Fang GW, Cech TR. The beta-subunit of oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 1993; 74:875–85.PubMedGoogle Scholar
  66. 66.
    Giraldo R, Rhodes D. The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J 1994; 13:2411–20.PubMedGoogle Scholar
  67. 67.
    Arimondo PB, Riou JF, Mergny JL, et al. Interaction of human DNA topoisomerase I with G-quartet structures. Nucleic Acids Res 2000; 28:4832–8.PubMedGoogle Scholar
  68. 68.
    Marchand C, Pourquier P, Laco GS, Jing N, Pommier Y. Interaction of human nuclear topoisomerase I with guanosine quartet-forming and guanosine-rich single-stranded DNA and RNA oligonucleotides. J Biol Chem 2002; 277:8906–11.PubMedGoogle Scholar
  69. 69.
    Hanakahi LA, Sun H, Maizels N. High affinity interactions of nucleolin with G—G-paired rDNA. J Biol Chem 1999; 274:15908–12.PubMedGoogle Scholar
  70. 70.
    Zaug AJ, Podell ER, Cech TR. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci USA 2005; 102:10864–9.PubMedGoogle Scholar
  71. 71.
    Opresko PL, Mason PA, Podell ER, et al. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 2005; 280:32069–80.PubMedGoogle Scholar
  72. 72.
    Smith J, Zou H, Rothstein R. Characterization of genetic interactions with RFA1: The role of RPA in DNA replication and telomere maintenance. Biochimie 2000; 82:71–8.PubMedGoogle Scholar
  73. 73.
    Schramke V, Luciano P, Brevet V, et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat Genet 2004; 36:46–54.PubMedGoogle Scholar
  74. 74.
    Cohen S, Jacob E, Manor H. Effects of single-stranded DNA binding proteins on primer extension by telomerase. Biochim Biophys Acta 2004; 1679:129–40.PubMedGoogle Scholar
  75. 75.
    Salas TR, Petruseva I, Lavrik O, et al. Human replication protein A unfolds telomeric G-quadruplexes. Nucleic Acids Res 2006; 34:4857–65.PubMedGoogle Scholar
  76. 76.
    Zhang QS, Manche L, Xu RM, Krainer AR. hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA 2006; 12:1116–28.PubMedGoogle Scholar
  77. 77.
    Fukuda H, Katahira M, Tsuchiya N, et al. Unfolding of quadruplex structure in the G-rich strand of the minisatellite repeat by the binding protein UP1. Proc Natl Acad Sci USA 2002; 99:12685–90.PubMedGoogle Scholar
  78. 78.
    Enokizono Y, Konishi Y, Nagata K, et al. Structure of hnRNP D complexed with single-stranded telomere DNA and unfolding of the quadruplex by heterogeneous nuclear ribonu-cleoprotein D. J Biol Chem 2005; 280:18862–70.PubMedGoogle Scholar
  79. 79.
    Han HY, Bennett RJ, Hurley LH. Inhibition of unwinding of G-quadruplex structures by Sgs1 helicase in the presence of N,N′-bis[2-(1-piperidino)ethyl]-3,4,9,10-perylenetetracar-boxylic diimide, a G-quadruplex-interactive ligand. Biochemistry 2000; 39:9311–6.PubMedGoogle Scholar
  80. 80.
    Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L. The Saccharo-myces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 2001; 20:905–13.PubMedGoogle Scholar
  81. 81.
    Cohen H, Sinclair DA. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc Natl Acad Sci USA 2001; 98:3174–9.PubMedGoogle Scholar
  82. 82.
    Huang PH, Pryde FE, Lester D, et al. SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 2001; 11:125–9.PubMedGoogle Scholar
  83. 83.
    Lin Y-C, Shih J-W, Hsu C-L, Lin J-J. Binding and partial denaturing of G-quartet DNA by Cdc13p of Saccharomyces cerevisiae. J Biol Chem 2002; 276:47671–4.Google Scholar
  84. 84.
    Ellis NA, Groden J, Ye TZ, et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 1995; 83:655–66.PubMedGoogle Scholar
  85. 85.
    Karow JK, Chakraverty RK, Hickson ID. The Bloom's syndrome gene product is a 3′–5′ DNA helicase. J Biol Chem 1997; 272:30611–4.PubMedGoogle Scholar
  86. 86.
    Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner's syndrome gene. Science 1996; 272:258–62.PubMedGoogle Scholar
  87. 87.
    Suzuki N, Shimamoto A, Imamura O, et al. DNA helicase activity in Werner's syndrome gene product synthesized in a baculovirus system. Nucleic Acids Res 1997; 25:2973–8.PubMedGoogle Scholar
  88. 88.
    Orren DK, Theodore S, Machwe A. The Werner syndrome helicase/exonuclease (WRN) disrupts and degrades D-loops in vitro. Biochemistry 2002; 41:13483–8.PubMedGoogle Scholar
  89. 89.
    Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 2002; 277:41110–9.PubMedGoogle Scholar
  90. 90.
    Li JL, Harrison RJ, Reszka AP, et al. Inhibition of the Bloom's and Werner's syndrome helicases by G-quadruplex interacting ligands. Biochemistry 2001; 40:15194–202.PubMedGoogle Scholar
  91. 91.
    Liu Z, Frantz JD, Gilbert W, Tye BK. Identification and characterization of a nuclease activity specific for G4 tetrastranded DNA. Proc Natl Acad Sci USA 1993; 90:3157–61.PubMedGoogle Scholar
  92. 92.
    Sun H, Yabuki A, Maizels N. A human nuclease specific for G4 DNA. Proc Natl Acad Sci USA 2001; 98:12444–9.PubMedGoogle Scholar
  93. 93.
    Ghosal G, Muniyappa K. Saccharomyces cerevisiae Mre11 is a high-affinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease: Implications for replication of telomeric DNA. Nucleic Acids Res 2005; 33:4692–703.PubMedGoogle Scholar
  94. 94.
    Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97:503–14.PubMedGoogle Scholar
  95. 95.
    Stansel RM, de Lange T, Griffith JD. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 2001; 20:5532–40.PubMedGoogle Scholar
  96. 96.
    Han H, Hurley LH. G-quadruplex DNA: A potential target for anti-cancer drug design. Trends Pharmacol Sci 2000; 21:136–42.Google Scholar
  97. 97.
    Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 1988; 334:364–6.PubMedGoogle Scholar
  98. 98.
    Muniyappa K, Anuradha S, Byers B. Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 2000; 20:1361–9.PubMedGoogle Scholar
  99. 99.
    Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. Prog Nucleic Acid Res Mol Biol 2005; 79:49–132.PubMedGoogle Scholar
  100. 100.
    Shukla AK, Roy KB. Rec A-independent homologous recombination induced by a putative fold-back tetraplex DNA. Biol Chem 2006; 387:251–6.PubMedGoogle Scholar
  101. 101.
    Balagurumoorthy P, Brahmachari SK. Structure and stability of human telomeric sequence. J Biol Chem 1994; 269:21858–69.PubMedGoogle Scholar
  102. 102.
    Ying LM, Green JJ, Li HT, Klenerman D, Balasubramanian S. Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proc Natl Acad Sci USA 2003; 100:14629–34.PubMedGoogle Scholar
  103. 103.
    Redon S, Bombard S, Elizondo-Riojas MA, Chottard JC. Platinum cross-linking of adenines and guanines on the quadruplex structures of the AG3(T2AG3)3 and (T2AG3)4 human telomere sequences in Na+ and K+ solutions. Nucleic Acids Res 2003; 31:1605–13.PubMedGoogle Scholar
  104. 104.
    Phan AT, Patel DJ. Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: Distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc 2003; 125: 15021–7.PubMedGoogle Scholar
  105. 105.
    He YJ, Neumann RD, Panyutin IG. Intramolecular quadruplex conformation of human telomeric DNA assessed with I-125-radioprobing. Nucleic Acids Res 2004; 32:5359–67.PubMedGoogle Scholar
  106. 106.
    Rezler EM, Seenisamy J, Bashyam S, et al. Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure. J Am Chem Soc 2005; 127:9439–47.PubMedGoogle Scholar
  107. 107.
    Li J, Correia JJ, Wang L, Trent JO, Chaires JB. Not so crystal clear: The structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res 2005; 33:4649–59.PubMedGoogle Scholar
  108. 108.
    Wlodarczyk A, Grzybowski P, Patkowski A, Dobek A. Effect of ions on the polymorphism, effective charge, and stability of human telomeric DNA. Photon correlation spectroscopy and circular dichroism studies. J Phys Chem B 2005; 109:3594–605.PubMedGoogle Scholar
  109. 109.
    Qi JY, Shafer RH. Covalent ligation studies on the human telomere quadruplex. Nucleic Acids Res 2005; 33:3185–92.PubMedGoogle Scholar
  110. 110.
    Vorlickova M, Chladkova J, Kejnovska I, Fialova M, Kypr J. Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res 2005; 33:5851–60.PubMedGoogle Scholar
  111. 111.
    Rujan IN, Meleney JC, Bolton PH. Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium. Nucleic Acids Res 2005; 33:2022–31.PubMedGoogle Scholar
  112. 112.
    Risitano A, Fox KR. Inosine substitutions demonstrate that intramolecular DNA quadru-plexes adopt different conformations in the presence of sodium and potassium. Bioorg Med Chem Lett 2005; 15:2047–50.PubMedGoogle Scholar
  113. 113.
    Ourliac-Garnier I, Elizondo-Riojas MA, Redon S, Farrell NP, Bombard S. Cross-links of quadruplex structures from human telomeric DNA by dinuclear platinum complexes show the flexibility of both structures. Biochemistry 2005; 44:10620–34.PubMedGoogle Scholar
  114. 114.
    Lee JY, Okumus B, Kim DS, Ha TJ. Extreme conformational diversity in human telomeric DNA. Proc Natl Acad Sci USA 2005; 102:18938–43.PubMedGoogle Scholar
  115. 115.
    Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1993; 1:263–82.PubMedGoogle Scholar
  116. 116.
    Parkinson GN, Lee MPH, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002; 417:876–80.PubMedGoogle Scholar
  117. 117.
    Ambrus A, Chen D, Dai JX, Bialis T, Jones RA, Yang DZ. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 2006; 34:2723–35.PubMedGoogle Scholar
  118. 118.
    Xu Y, Noguchi Y, Sugiyama H. The new models of the human telomere d[AGGG (TTAGGG)(3)] in K+ solution. Bioorg Med Chem 2006; 14:5584–91.PubMedGoogle Scholar
  119. 119.
    Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ. Structure of the human telomere in K+ solution: Anintramolecular(3 + 1)G-quadruplex scaffold. J AmChem Soc 2006; 128:9963–70.Google Scholar
  120. 120.
    Phan AT, Luu KN, Patel DJ. Different loop arrangements of intramolecular human telomeric (3 + 1) G-quadruplexes in K+ solution. Nucleic Acids Res 2006; 34:5715–9.PubMedGoogle Scholar
  121. 121.
    Phan AT, Kuryavyi V, Luu KN, Patel DJ. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 2007; 35:6517–25.PubMedGoogle Scholar
  122. 122.
    Dai J, Carver M, Yang D. Polymorphism of human telomere quadruplex structures. Biochi-mie Special Issue “Targeting DNA” 2008; 90:1172–83.Google Scholar
  123. 123.
    Seenisamy J, Rezler EM, Powell TJ, et al. The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4. J Am Chem Soc 2004; 126:8702–9.PubMedGoogle Scholar
  124. 124.
    Phan AT, Modi YS, Patel DJ. Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc 2004; 126:8710–6.PubMedGoogle Scholar
  125. 125.
    Sun DY, Guo KX, Rusche JJ, Hurley LH. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res 2005; 33:6070–80.PubMedGoogle Scholar
  126. 126.
    Phan AT, Kuryavyi V, Burge S, Neidle S, Patel DJ. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J Am Chem Soc. 2007; 129:4386–92. Epub 2007 Mar 16.PubMedGoogle Scholar
  127. 127.
    Antonacci C, Chaires JB, Sheardy RD. Biophysical characterization of the human telomeric (TTAGGG)(4) repeat in a potassium solution. Biochemistry 2007; 46:4654–60.PubMedGoogle Scholar
  128. 128.
    Li J, Trent JO, Bishop GR, Chaires JB. Uncovering the Energetic Basis of G-Quadruplex Stability, First International Meeting on Quadruplex DNA, Louiville, KY, USA, 2007.Google Scholar
  129. 129.
    De Armond R, Wood S, Sun DY, Hurley LH, Ebbinghaus SW. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1 alpha promoter. Biochemistry 2005; 44:16341–50.PubMedGoogle Scholar
  130. 130.
    Rankin S, Reszka AP, Huppert J, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc 2005; 127:10584–9.PubMedGoogle Scholar
  131. 131.
    Hurley LH, Von Hoff DD, Siddiqui-Jain A, Yang DZ. Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element. Semin Oncol 2006; 33:498–512.PubMedGoogle Scholar
  132. 132.
    Yang DZ, Hurley LH. Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Nucleosides Nucleotides Nucleic Acids 2006; 25:951–68.PubMedGoogle Scholar
  133. 133.
    Sun D, Thompson B, Cathers BE, Salazar M, Kerwin SM, Trent JO, Jenkins T, Neidle S, Hurley LH. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 1997; 40:2113–6.PubMedGoogle Scholar
  134. 134.
    Han HY, Cliff CL, Hurley LH. Accelerated assembly of G-quadruplex structures by a small molecule. Biochemistry 1999; 38:6981–6.PubMedGoogle Scholar
  135. 135.
    Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003; 13:1549–56.PubMedGoogle Scholar
  136. 136.
    d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426:194–8.PubMedGoogle Scholar
  137. 137.
    Kim SH, Beausejour C, Davalos AR, Kaminker P, Heo SJ, Campisi J. TIN2 mediates functions of TRF2 at human telomeres. J Biol Chem 2004; 279:43799–804.PubMedGoogle Scholar
  138. 138.
    Hockemeyer D, Sfeir AJ, Shay JW, Wright WE, de Lange T. POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 2005; 24:2667–78.PubMedGoogle Scholar
  139. 139.
    Tauchi T, Shin-ya K, Sashida G, et al. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: Involvement of ATM-dependent DNA damage response pathways. Oncogene 2003; 22:5338–47.PubMedGoogle Scholar
  140. 140.
    Gomez D, O'Donohue MF, Wenner T, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res 2006; 66:6908–12.PubMedGoogle Scholar
  141. 141.
    Tahara H, Shin-Ya K, Seimiya H, Yamada H, Tsuruo T, Ide T. G-Quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3′ telomeric overhang in cancer cells. Oncogene 2006; 25:1955–66.PubMedGoogle Scholar
  142. 142.
    Leonetti C, Amodei S, D'Angelo C, et al. Biological activity of the G-quadruplex ligand RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate) is associated with telomere capping alteration. Mol Pharmacol 2004; 66:1138–46.PubMedGoogle Scholar
  143. 143.
    Shin-ya K, Wierzba K, Matsuo K, et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc 2001; 123:1262–3.PubMedGoogle Scholar
  144. 144.
    Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc 2002; 124:2098–9.PubMedGoogle Scholar
  145. 145.
    Kim MY, Gleason-Guzman M, Izbicka E, Nishioka D, Hurley LH. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res 2003; 63:3247–56.PubMedGoogle Scholar
  146. 146.
    Shammas MA, Reis RJS, Li C, et al. Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin Cancer Res 2004; 10:770–6.PubMedGoogle Scholar
  147. 147.
    Nakajima A, Tauchi T, Sashida G, et al. Telomerase inhibition enhances apoptosis in human acute leukemia cells: Possibility of antitelomerase therapy. Leukemia 2003; 17:560–7.PubMedGoogle Scholar
  148. 148.
    Sumi M, Tauchi T, Sashida G, et al. A G-quadruplex-interactive agent, telomestatin (SOT-095), induces telomere shortening with apoptosis and enhances chemosensitivity in acute myeloid leukemia. Int J Oncol 2004; 24:1481–7.PubMedGoogle Scholar
  149. 149.
    Tauchi T, Shin-ya K, Sashida G, et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: In vitro and in vivo studies in acute leukemia. Oncogene 2006; 25:5719–25.PubMedGoogle Scholar
  150. 150.
    Read M, Cuesta J, Basra I, et al. Rational design approaches to increase the potency of G-quadruplex-mediated telomerase inhibitors. Clin Cancer Res 2001; 7:3797S.Google Scholar
  151. 151.
    Gowan SM, Harrison JR, Patterson L, et al. A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol Pharmacol 2002; 61:1154–62.PubMedGoogle Scholar
  152. 152.
    Burger AM, Dai FP, Schultes CM, et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 2005; 65:1489–96.PubMedGoogle Scholar
  153. 153.
    Kelland LR. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics — current status and future prospects. Eur J Cancer 2005; 41:9719.Google Scholar
  154. 154.
    Taetz S, Baldes C, Murdter TE, et al. Biopharmaceutical characterization of the telomerase inhibitor BRACO19. Pharm Res 2006; 23:1031–7.PubMedGoogle Scholar
  155. 155.
    Cookson JC, Dai F, Smith V, et al. Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosul-fate (RHPS4) in vitro: Activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents. Mol Pharmacol 2005; 68:1551–8.PubMedGoogle Scholar
  156. 156.
    Phatak P, Cookson JC, Dai F, et al. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br J Cancer 2007; 96:1223–33.PubMedGoogle Scholar
  157. 157.
    Kelland L. Targeting the limitless replicative potential of cancer: The telomerase/telomere pathway. Clin Cancer Res 2007; 13:4960–3.PubMedGoogle Scholar
  158. 158.
    Wheelhouse RT, Han FX, Han H, Sun D, Hurley LH. The interaction of telomerase-inhibitory porphyrins with G-quadruplex DNA. Proc Am Assoc Cancer Res 1998; 39:430.Google Scholar
  159. 159.
    Han FXG, Wheelhouse RT, Hurley LH. Interactions of TMPyP4 and TMPyP2 with quad-ruplex DNA. Structural basis for the differential effects on telomerase inhibition. J Am Chem Soc 1999; 121:3561–70.Google Scholar
  160. 160.
    Izbicka E, Nishioka D, Marcell V, et al. Telomere-interactive agents affect proliferation rates and induce chromosomal destabilization in sea urchin embryos. Anti-Cancer Drug Design 1999; 14:355–65.PubMedGoogle Scholar
  161. 161.
    Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 2002; 99:11593–8.PubMedGoogle Scholar
  162. 162.
    Grand CL, Han H, Munoz RM, et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther 2002; 1:565–73.PubMedGoogle Scholar
  163. 163.
    Guliaev AB, Leontis NB. Cationic 5,10,15,20-Tetrakis(N-methylpyridinium-4-yl)porphyrin fully intercalates at 5′-CG-3′ steps of duplex DNA in solution. Biochemistry 1999; 38:15425–37.PubMedGoogle Scholar
  164. 164.
    Uno T, Hamasaki K, Tanigawa M, Shimabayashi S. Binding of meso-Tetrakis(N-methylpyr-idinium-4-yl)porphyrin to Double Helical RNA and DNA·RNA Hybrids. Inorg Chem 1997; 36:1676–83.PubMedGoogle Scholar
  165. 165.
    Lee YA, Kim JO, Cho TS, Song R, Kim SK. Binding of meso-Tetrakis(N-methylpyridium-4-yl)porphyrin to triplex oligonucleotides: Evidence for the porphyrin stacking in the major groove. J Am Chem Soc 2003; 125:8106–7.PubMedGoogle Scholar
  166. 166.
    Dixon IM, Lopez F, Tejera AM, et al. A G-quadruplex ligand with 10000-fold selectivity over duplex DNA. J Am Chem Soc 2007; 129:1502–3.PubMedGoogle Scholar
  167. 167.
    Gomez D, Aouali N, Londono-Vallejo A, et al. Resistance to the short term antiproliferative activity of the G-quadruplex ligand 12459 is associated with telomerase overexpression and telomere capping alteration. J Biol Chem 2003; 278:50554–62.PubMedGoogle Scholar
  168. 168.
    Douarre C, Gomez D, Morjani H, et al. Overexpression of Bcl-2 is associated with apoptotic resistance to the G-quadruplex ligand 12459 but is not sufficient to confer resistance to long-term senescence. Nucleic Acids Res 2005; 33:2192–203.PubMedGoogle Scholar
  169. 169.
    Gomez D, Lemarteleur T, Lacroix L, Mailliet P, Mergny J-L, Riou J-F. Telomerase down-regulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res 2004; 32:371–79.PubMedGoogle Scholar
  170. 170.
    Lemarteleur T, Gomez D, Paterski R, Mandine E, Mailliet P, Riou J-F. Stabilization of the c-myc gene promoter quadruplex by specific ligands' inhibitors of telomerase. Biochem Biophys Res Commun 2004; 323:802–8.PubMedGoogle Scholar
  171. 171.
    Pennarun G, Granotier C, Gauthier LR, Gomez D, Boussin FD. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene 2005; 24:2917–28.PubMedGoogle Scholar
  172. 172.
    De Cian A, Mergny JL. Quadruplex ligands may act as molecular chaperones for tetramo-lecular quadruplex formation. Nucleic Acids Res 2007; 35:2483–93.PubMedGoogle Scholar
  173. 173.
    Sun D, Thompson B, Cathers BE, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 1997; 40:2113–16.PubMedGoogle Scholar
  174. 174.
    Duan WH, Rangan A, Vankayalapati H, et al. Design and synthesis of fluoroquinophenox-azines that interact with human telomeric G-quadruplexes and their biological effects. Mol Cancer Ther 2001; 1:103–20.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Chandanamali Punchihewa
    • 1
  • Danzhou Yang
    • 1
  1. 1.College of PharmacyThe University of ArizonaTucsonUSA

Personalised recommendations