Life Extension in the Short-Lived Fish Nothobranchius furzeri

Part of the Aging Medicine book series (AGME)


Genetic and pharmacological research on aging is hampered by the life span of available vertebrate models. We recently initiated studies on Nothobranchius furzeri, a species with a maximum life expectancy in captivity of just 3 months, the shortest documented captive life span for a vertebrate. Further research on N. furzeri has demonstrated the following:
  1. 1.

    Short life span correlates with explosive growth and accelerated sexual maturation.

  2. 2.

    Short life span is correlated with the expression of age-related behavioral and histological changes.

  3. 3.

    Life span and expression of age-related markers can be modulated by water temperature.

  4. 4.

    Resveratrol, a drug characterized by its life-extending action in Caenorhabditis elegans and Drosophila, increases life span and retards expression of age-related markers.

  5. 5.

    Aging-related genes can be easily isolated by homology cloning.

  6. 6.

    Different populations or species of Nothobranchius show large-scale differences in captive life span.


In the last 3 years, N. furzeri has moved from a biological curiosity to a promising model system for drug validation. Furthermore, this species occupies a favorable position in the phylogeny of teleosts. It is close to the Japanese medaka, the puffer fishes, and the sticklebacks, and may represent a useful model for the comparative genomics of aging.


Nothobranchius furzeri resveratrol life span aging 



Body core temperature


Dietary restriction


Gona Re Zhou




Senescence-associated β-galactosidase


  1. 1.
    Kang HL, Benzer S, Min KT. 2002. Life extension in Drosophila by feeding a drug. Proc Natl Acad Sci U S A 99:838–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. 2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Evason K, Huang C, Yamben I, Covey DF, Kornfeld K. 2005. Anticonvulsant medications extend worm life-span. Science 307:258–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Bauer JH, Goupil S, Garber GB, Helfand SL. 2004. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci U S A 101:12980–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Kottelat M, Britz R, Hui TH, Witte KE. 2006. Paedocypris, a new genus of Southeast Asian cyprinid fish with a remarkable sexual dimorphism, comprises the world’s smallest vertebrate. Proc Biol Sci 273:895–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Valdesalici S, Cellerino A. 2003. Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc R Soc Lond B Biol Sci 270(Suppl 2):S189–91.CrossRefGoogle Scholar
  7. 7.
    Depczynski M, Bellwood DR. 2005. Shortest recorded vertebrate lifespan found in a coral reef fish. Curr Biol 15:R288–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Woodhead AD. 1998. Aging, the fishy side: an appreciation of Alex Comfort’s studies. Exp Gerontol 33:39–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu RK, Walford RL. 1970. Observations on the lifespans of several species of annual fishes and of the world’s smallest fishes. Exp Gerontol 5:241–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu RK, Walford RL. 1972. The effect of lowered body temperature on lifespan and immune and non-immune processes. Gerontologia 18:363–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Patnaik BK, Mahapatro N, Jena BS. 1994. Ageing in fishes. Gerontology 40:113–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Gerhard GS, Kauffman EJ, Wang X, Stewart R, Moore JL, Kasales CJ, Demidenko E, Cheng KC. 2002. Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Exp Gerontol 37:1055–68.PubMedCrossRefGoogle Scholar
  13. 13.
    Kishi S, Uchiyama J, Baughman AM, Goto T, Lin MC, Tsai SB. 2003. The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp Gerontol 38:777–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Markofsky J. 1976. Longitudinal and cross-sectional observations of growth and body composition with age in laboratory populations of the male annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol 11:171–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Markofsky J, Milstoc M. 1979a. Aging changes in the liver of the male annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol 14:11–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Markofsky J, Milstoc M. 1979b. Histopathological observations of the kidney during aging of the male annual fish Nothobranchius guentheri. Exp Gerontol 14:149–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Balmer RT. 1982. The effect of age on body energy content of the annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol 17:139–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Cooper EL, Zapata A, Garcia Barrutia M, Ramirez JA. 1983. Aging changes in lymphopoietic and myelopoietic organs of the annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol 18:29–38.PubMedCrossRefGoogle Scholar
  19. 19.
    Murtha JM, Keller ET. 2003. Characterization of the heat shock response in mature zebrafish (Danio rerio). Exp Gerontol 38:683–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu RK, Walford RL. 1975. Mid-life temperature-transfer effects on life-span of annual fish. J Gerontol 30:129–31.PubMedGoogle Scholar
  21. 21.
    Yen K, Mastitis JW, Mobbs CV. 2004. Lifespan is not determined by metabolic rate: evidence from fishes and C. elegans. Exp Gerontol 39:947–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Valenzano D, Terzibasi E, Cattaneo A, Domenici L, Cellerino A. 2006a. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 2006;5(3):275–8.CrossRefGoogle Scholar
  23. 23.
    Cailliet GM, Andrews AH, Burton EJ, Watters DL, Kline DE, Ferry-Graham LA. 2001. Age determination and validation studies of marine fishes: do deep-dwellers live longer? Exp Gerontol 36:739–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Genade T, Benedetti M, Terzibasi E, Roncaglia P, Valenzano D, Cattaneo A, Cellerino A. 2005. Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell 4:223–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Levels PJ, Gubbels RE, Denuce JM. 1986. Oxygen consumption during embryonic development of the annual fish Nothobranchius korthausae with special reference to diapause. Comp Biochem Physiol A 84:767–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Podrabsky JE, Hand SC. 1999. The bioenergetics of embryonic diapause in an annual killifish, Austrofundulus limnaeus. J Exp Biol 202 (Pt 19):2567–80.PubMedGoogle Scholar
  27. 27.
    Podrabsky JE, Hand SC. 2000. Depression of protein synthesis during diapause in embryos of the annual killifish Austrofundulus limnaeus. Physiol Biochem Zool 73:799–808.PubMedCrossRefGoogle Scholar
  28. 28.
    Vaupel JW, Carey JR, Christensen K, Johnson TE, Yashin AI, Holm NV, Iachine IA, Kannisto V, Khazaeli AA, Liedo P, Longo VD, Zeng Y, Manton KG, Curtsinger JW. 1998. Biodemographic trajectories of longevity. Science 280:855–60.CrossRefGoogle Scholar
  29. 29.
    Gavrilov LA, Gavrilova NS. 2004. The reliability-engineering approach to the problem of biological aging. Ann N Y Acad Sci 1019:509–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Reznick DN, Bryant MJ, Roff D, Ghalambor CK, Ghalambor DE. 2004. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431:1095–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Furchtgott E, Wechkin S, Dees JW. 1961. Open-field exploration as a function of age. J Comp Physiol Psychol 54:386–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. 2006b. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300.PubMedCrossRefGoogle Scholar
  33. 33.
    Laudien H, Freyer J, Erb R, Denzer D. 1986. Influence of isolation stress and inhibited protein biosynthesis on learning and memory in goldfish. Physiol Behav 38:621–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Pradel G, Schachner M, Schmidt R. 1999. Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. J Neurobiol 39:197–206.PubMedCrossRefGoogle Scholar
  35. 35.
    Pradel G, Schmidt R, Schachner M. 2000. Involvement of L1.1 in memory consolidation after active avoidance conditioning in zebrafish. J Neurobiol 43:389–403.PubMedCrossRefGoogle Scholar
  36. 36.
    Brunk UT, Jones CB, Sohal RS. 1992. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res 275:395–403.PubMedGoogle Scholar
  37. 37.
    Belichenko PV, Fedorov AA, Dahlstrom AB. 1996. Quantitative analysis of immunofluorescence and lipofuscin distribution in human cortical areas by dual-channel confocal laser scanning microscopy. J Neurosci Methods 69:155–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, Dimaio D, Hwang ES. 2006. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5:187–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. 2006. Cellular senescence in aging primates. Science 311:1257.PubMedCrossRefGoogle Scholar
  41. 41.
    Schmued LC, Albertson C, Slikker W, Jr. 1997. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Maldonado TA, Jones RE, Norris DO. 2002. Timing of neurodegeneration and beta-amyloid (Abeta) peptide deposition in the brain of aging kokanee salmon. J Neurobiol 53:21–35.PubMedCrossRefGoogle Scholar
  43. 43.
    Partridge L, Pletcher SD, Mair W. 2005. Dietary restriction, mortality trajectories, risk and damage. Mech Ageing Dev 126:35–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Viswanathan M, Kim SK, Berdichevsky A, Guarente L. 2005. A role for SIR-2.1 regulation of ER stress response genes in determining Celegans life span.. Dev Cell 9:605–15.CrossRefGoogle Scholar
  45. 45.
    Baur JA, Sinclair DA. 2006. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506.PubMedCrossRefGoogle Scholar
  46. 46.
    Virgili M, Contestabile A. 2000. Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett 281(2–3):123–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Kiziltepe U, Turan NN, Han U, Ulus AT, Akar F. 2004. Resveratrol, a red wine polyphenol, protects spinal cord from ischemia-reperfusion injury. J Vasc Surg 40(1):138–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C. 2005. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37(4):349–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Raval AP, Dave KR, Pérez-Pinzón MA. 2006. Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26(9):1141–7.PubMedGoogle Scholar
  50. 50.
    Zamin LL, Dillenburg-Pilla P, Argenta-Comiran R, Horn AP, Simão F, Nassif M, Gerhardt D, Frozza RL, Salbego C. 2006. Protective effect of resveratrol against oxygen-glucose deprivation in organotypic hippocampal slice cultures: Involvement of PI3-K pathway. Neurobiol Dis 24(1):170–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Araki T, Sasaki Y, Milbrandt J. 2004. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305(5686):1010–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Marambaud P, Zhao H, Davies P. 2005. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides J Biol Chem 280(45):37377–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Rogina B, Helfand SL. 2004. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–6003.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M. 2006. Life span extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5(6):487–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. 2004. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429(6993):771–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Borra MT, Smith BC, Denu JM. 2005. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–95.PubMedCrossRefGoogle Scholar
  57. 57.
    Wenzel E, Somoza V. 2005. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49(5):472–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang J. 2006. Resveratrol inhibits insulin responses in a SirT1-independent pathway. Biochem J 397(3):519–27.PubMedCrossRefGoogle Scholar
  60. 60.
    Muller F. 2005. Comparative aspects of alternative laboratory fish models. Zebrafish 2:47–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M. 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim IC, Lee JS. 2004. The complete mitochondrial genome of the rockfish Sebastes schlegeli (Scorpaeniformes, Scorpaenidae). Mol Cells 17:322–8.PubMedGoogle Scholar
  63. 63.
    Peichel CL, Nereng KS, Ohgi KA, Cole BL, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM. 2001. The genetic architecture of divergence between threespine stickleback species. Nature 414:901–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jonsson B, Schluter D, Kingsley DM. 2004. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428:717–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Jr., Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM. 2005. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:1928–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Kimmel CB, Ullmann B, Walker C, Wilson C, Currey M, Phillips PC, Bell MA, Postlethwait JH, Cresko WA. 2005. Evolution and development of facial bone morphology in threespine sticklebacks. Proc Natl Acad Sci U S A 102:5791–96.PubMedCrossRefGoogle Scholar
  67. 67.
    Dunham RA, Ramboux AC, Duncan PL, Hayat M, Chen TT, Lin CM, Kight K, Gonzalez-Villasenor I, Powers DA. 1992. Transfer, expression, and inheritance of salmonid growth hormone genes in channel catfish, Ictalurus punctatus, and effects on performance traits. Mol Mar Biol Biotechnol 1:380–9.PubMedGoogle Scholar
  68. 68.
    Hew CL, Davies PL, Fletcher G. 1992. Antifreeze protein gene transfer in Atlantic salmon. Mol Mar Biol Biotechnol 1:309–17.PubMedGoogle Scholar
  69. 69.
    Male R, Lorens JB, Nerland AH, Slinde E. 1993. Biotechnology in aquaculture, with special reference to transgenic salmon. Biotechnol Genet Eng Rev 11:31–56.PubMedGoogle Scholar
  70. 70.
    Alam MS, Lavender FL, Iyengar A, Rahman MA, Ayad HH, Lathe R, Morley SD, Maclean N. 1996. Comparison of the activity of carp and rat beta-actin gene regulatory sequences in tilapia and rainbow trout embryos. Mol Reprod Dev 45:117–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Rahman MA, Mak R, Ayad H, Smith A, Maclean N. 1998. Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus). Transgenic Res 7:357–69.PubMedCrossRefGoogle Scholar
  72. 72.
    Krasnov A, Agren JJ, Pitaknen TI, Molsa H. 1999. Transfer of growth hormone (GH) transgenes into Arctic charr. (Salvelinus alpinus L.) II. Nutrient partitioning in rapidly growing fish. Genet Anal 15:99–105.PubMedGoogle Scholar
  73. 73.
    Nam YK, Cho YS, Kim DS. 2000. Isogenic transgenic homozygous fish induced by artificial parthenogenesis. Transgenic Res 9:463–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Nam YK, Noh JK, Cho YS, Cho HJ, Cho KN, Kim CG, Kim DS. 2001. Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Res 10:353–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Zbikowska HM. 2003. Fish can be first – advances in fish transgenesis for commercial applications. Transgenic Res 12:379–89.PubMedCrossRefGoogle Scholar
  76. 76.
    Morita T, Yoshizaki G, Kobayashi M, Watabe S, Takeuchi T. 2004. Fish eggs as bioreactors: the production of bioactive luteinizing hormone in transgenic trout embryos. Transgenic Res 13:551–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Wu B, Sun YH, Wang YP, Wang YW, Zhu ZY. 2004. Sequences of transgene insertion sites in transgenic F4 common carp. Transgenic Res 13:95–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Hosemann KE, Colosimo PF, Summers AT, Kingsley DM. 2004. A simple and efficient microinjection protocol for making transgenic sticklebacks. Behaviour 141:1345–56.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Fritz-Lipmann Institute for Age ResearchJenaGermany

Personalised recommendations