Advertisement

Autism pp 289-307 | Cite as

Maternal Immune Activation, Cytokines and Autism

  • Paul H. Patterson
  • Wensi Xu
  • Stephen E.P. Smith
  • Benjamin E. Devarman
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Normal pregnancy involves an elevated inflammatory state, both systemically in the mother and in the placenta. However, further increases in inflammation, as with maternal infection, can enhance the risk of autism and schizophrenia in the offspring. Animal studies show that maternal immune activation (MIA) increases inflammatory cytokines in the fetal environment, as well as in the fetal brain. Since the adult autistic brain and cerebrospinal fluid (CSF) exhibit high levels of inflammatory cytokines, we hypothesize that MIA sets in motion a self-perpetuating cycle of subacute inflammation in the brain that not only affects neural development, but also acutely influences ongoing postnatal behavior. Experiments aimed at testing the effects of preventing or interrupting this inflammatory cycle are possible with available animal models.

Keywords

IL-6 TNF IL-10 influenza schizophrenia maternal infection preterm birth LPS poly(I:C) 

References

  1. 1.
    Lemery-Chalfant K, Goldsmith HH, Schmidt NL, Arneson CL, Van Hulle CA. Wisconsin Twin Panel: current directions and findings. Twin Res Hum Genet (2006) 9:1030–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Phelps JA, Davis JO, Schartz KM. Nature, Nurture, and Twin Research Strategies. Curr Dir Psychol Sci (1997) 6:117–31.Google Scholar
  3. 3.
    Ryan BC, Vandenbergh JG. Intrauterine position effects. Neurosci Biobehav Rev(2002) 26:665–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Christianson AL, Chesler N, Kromberg JG. Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol (1994) 36:361–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Stromland K, Nordin V, Miller M, Akerstrom B, Gillberg C. Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol (1994) 36:351–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Chess S, Fernandez P, Korn S. Behavioral consequences of congenital rubella. J Pediatr (1978) 93:699–703.PubMedCrossRefGoogle Scholar
  7. 7.
    Patterson PH. Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol (2002) 12:115–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Sweeten TL, Posey DJ, McDougle CJ. Brief report: autistic disorder in three children with cytomegalovirus infection. J Autism Dev Disord (2004) 34:583–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamashita Y, Fujimoto C, Nakajima E, Isagai T, Matsuishi T. Possible association between congenital cytomegalovirus infection and autistic disorder. J Autism Dev Disord (2003) 33:455–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophr Bull (2006) 32:200–2.PubMedCrossRefGoogle Scholar
  11. 11.
    Brown AS, Begg MD, Gravenstein S, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry (2004) 61:774–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci (2003) 23:297–302.PubMedGoogle Scholar
  13. 13.
    Perry W, Minassian A, Lopez B, Maron L, Lincoln A. Sensorimotor gating deficits in adults with autism. Biol Psychiatry (2007) 61:482–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Meyer U, Feldon J, Schedlowski M, Yee BK. Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev (2005) 29:913–47.PubMedCrossRefGoogle Scholar
  15. 15.
    Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain (2004) 127:2572–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Akshoomoff N, Lord C, Lincoln AJ, et al. Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. J Am Acad Child Adolesc Psychiatry(2004) 43:349–57.PubMedCrossRefGoogle Scholar
  17. 17.
    Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry (2001) 49:655–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry (2003) 160:262–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Kates WR, Burnette CP, Eliez S, et al. Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. Am J Psychiatry (2004) 161:539–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Nowinski CV, Minshew NJ, Luna B, Takarae Y, Sweeney JA. Oculomotor studies of cerebellar function in autism. Psychiatry Res (2005) 137:11–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Takarae Y, Minshew NJ, Luna B, Sweeney JA. Oculomotor abnormalities parallel cerebellar histopathology in autism. J Neurol Neurosurg Psychiatry (2004) 75:1359–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaufmann WE, Cooper KL, Mostofsky SH, et al. Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J Child Neurol (2003) 18:463–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Bottmer C, Bachmann S, Pantel J, et al. Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia. Psychiatry Res (2005) 140:239–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Brown SM, Kieffaber PD, Carroll CA, et al. Eyeblink conditioning deficits indicate timing and cerebellar abnormalities in schizophrenia. Brain Cogn (2005) 58:94–108.PubMedCrossRefGoogle Scholar
  25. 25.
    Ho BC, Mola C, Andreasen NC. Cerebellar dysfunction in neuroleptic naive schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol Psychiatry (2004) 55:1146–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Patterson PH. Pregnancy, immunity, sehizophrenia and autism. Engineering Sci (2006) 69:10–21.Google Scholar
  27. 27.
    Courchesne E, Redcay E, Kennedy DP. The autistic brain: birth through adulthood. Curr Opin Neurol (2004) 17:489–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Fatemi SH, Earle J, Kanodia R, et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol (2002) 22:25–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry (2006) 59:546–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Zuckerman L, Rehavi M, Nachman R, Weiner I. Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology (2003) 28:1778–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Nyffeler M, Meyer U, Yee BK, Feldon J, Knuesel I. Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience (2006) 143:51–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmitz C, van Kooten IA, Hof PR, van Engeland H, Patterson PH, Steinbusch HW. Autism: neuropathology, alterations of the GABAergic system, and animal models. Int Rev Neurobiol (2005) 71:1–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Hagberg H, Mallard C. Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol (2005) 18:117–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C. Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology (2002) 26:204–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Fatemi SH, Araghi-Niknam M, Laurence JA, Stary JM, Sidwell RW, Lee S. Glial fibrillary acidic protein and glutamic acid decarboxylase 65 and 67 kDa proteins are increased in brains of neonatal BALB/c mice following viral infection in utero. Schizophr Res (2004) 69:121–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol (2005) 57:67–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Arion D, Unger T, Lewis DA, Levitt P, Mirnics K. Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry (2007) 62:711–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Bobetsis YA, Barros SP, Offenbacher S. Exploring the relationship between periodontal disease and pregnancy complications. J Am Dent Assoc (2006) 137:7S–13S.PubMedGoogle Scholar
  39. 39.
    Han YW, Redline RW, Li M, Yin L, Hill GB, McCormick TS. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth. Infect Immun (2004) 72:2272–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Lin D, Smith MA, Elter J, et al. Porphyromonas gingivalis infection in pregnant mice is associated with placental dissemination, an increase in the placental Th1/Th2 cytokine ratio, and fetal growth restriction. Infect Immun (2003) 71:5163–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Patterson P. Modeling Features of Autism n Animals. Boca Raton: Taylor & Francis; 2005.Google Scholar
  42. 42.
    Wang X, Rousset CI, Hagberg H, Mallard C. Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med (2006) 11:343–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Nawa H, Takei N. Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci Res (2006) 56:2–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Pearce B. Modeling the role of infections in the etiology of mental illness. Clin Neurosci Res (2003) 3:271–82.CrossRefGoogle Scholar
  45. 45.
    Urakubo A, Jarskog LF, Lieberman JA, Gilmore JH. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res (2001) 47:27–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Bell MJ, Hallenbeck JM, Gallo V. Determining the fetal inflammatory response in an experimental model of intrauterine inflammation in rats. Pediatr Res (2004) 56:541–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN. The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry (2006) 11:47–55.PubMedCrossRefGoogle Scholar
  48. 48.
    Elovitz MA, Mrinalini C, Sammel MD. Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth. Pediatr Res (2006) 59:50–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Meyer U, Nyffeler M, Engler A, et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci (2006) 26:4752–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Silver RM, Lohner WS, Daynes RA, Mitchell MD, Branch DW. Lipopolysaccharide-induced fetal death: the role of tumor-necrosis factor alpha. Biol Reprod (1994) 50:1108–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Xu DX, Chen YH, Wang H, Zhao L, Wang JP, Wei W. Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice. Toxicol Lett (2006) 163:20–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Wang X, Hagberg H, Mallard C, et al. Disruption of interleukin-18, but not interleukin-1, increases vulnerability to preterm delivery and fetal mortality after intrauterine inflammation. Am J Pathol (2006) 169:967–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Samuelsson AM, Jennische E, Hansson HA, Holmang A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol (2006) 290:R1345–56.Google Scholar
  54. 54.
    Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci (2007) 27:10695–702.PubMedCrossRefGoogle Scholar
  55. 55.
    Fatemi SH, Pearce DA, Brooks AI, Sidwell RW. Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: a potential animal model for schizophrenia and autism. Synapse (2005) 57:91–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci (2007) 8:221–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Dahlgren J, Samuelsson AM, Jansson T, Holmang A. Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation. Pediatr Res (2006) 60:147–51.PubMedCrossRefGoogle Scholar
  58. 58.
    Paul R, Koedel U, Winkler F, et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain (2003) 126:1873–82.PubMedCrossRefGoogle Scholar
  59. 59.
    Sargent IL, Borzychowski AM, Redman CW. NK cells and human pregnancy – an inflammatory view. Trends Immunol (2006) 27:399–404.PubMedCrossRefGoogle Scholar
  60. 60.
    Christiansen OB, Nielsen HS, Kolte AM. Inflammation and miscarriage. Semin Fetal Neonatal Med(2006) 11:302–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Arad M, Atzil S, Shakhar K, Adoni A, Ben-Eliyahu S. Poly I-C induces early embryo loss in f344 rats: a potential role for NK cells. Am J Reprod Immunol (2005) 54:49–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Dalton P, Deacon R, Blamire A, et al. Maternal neuronal antibodies associated with autism and a language disorder. Ann Neurol (2003) 53:533–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol (2007) 36:361–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL. Profound increase in sensitivity to glutamatergic – but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res (2003) 73:176–87.PubMedCrossRefGoogle Scholar
  65. 65.
    Jankowsky JL, Patterson PH. Cytokine and growth factor involvement in long-term potentiation. Mol Cell Neurosci (1999) 14:273–86.Google Scholar
  66. 66.
    Capuron L, Dantzer R. Cytokines and depression: the need for a new paradigm. Brain Behav Immun (2003) 17 Suppl 1:S119–24.Google Scholar
  67. 67.
    Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry (2005) 29:201–17.PubMedCrossRefGoogle Scholar
  68. 68.
    Theoharides TC, Weinkauf C, Conti P. Brain cytokines and neuropsychiatric disorders. J Clin Psychopharmacol (2004) 24:577–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Libbey JE, Sweeten TL, McMahon WM, Fujinami RS. Autistic disorder and viral infections. J Neurovirol (2005) 11:1–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Boris M, Kaiser CC, Goldblatt A, et al. Effect of pioglitazone treatment on behavioral symptoms in autistic children. J Neuroinflammation (2007) 4:3.PubMedCrossRefGoogle Scholar
  71. 71.
    Pang Y, Rodts-Palenik S, Cai Z, Bennett WA, Rhodes PG. Suppression of glial activation is involved in the protection of IL-10 on maternal E. coli induced neonatal white matter injury. Brain Res Dev Brain Res (2005) 157:141–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Robertson SA, Skinner RJ, Care AS. Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice. J Immunol (2006) 177:4888–96.PubMedGoogle Scholar
  73. 73.
    Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry (2008) 13:208–21.PubMedCrossRefGoogle Scholar
  74. 74.
    Rosenblum IY, Johnson RC, Schmahai TJ. Preclinical safety evaluation of recombinant human interleukin-10. Regul Toxicol Pharmacol (2002) 35:56–71.PubMedCrossRefGoogle Scholar
  75. 75.
    Beloosesky R, Gayle DA, Ross MG. Maternal N-acetylcysteine suppresses fetal inflammatory cytokine responses to maternal lipopolysaccharide. Am J Obstet Gynecol (2006) 195:1053–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Paintlia MK, Paintlia AS, Barbosa E, Singh I, Singh AK. N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res (2004) 78:347–61.PubMedCrossRefGoogle Scholar
  77. 77.
    Borzychowski AM, Sargent IL, Redman CW. Inflammation and pre-eclampsia. Semin Fetal Neonatal Med (2006) 11:309–16.PubMedCrossRefGoogle Scholar
  78. 78.
    Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol (1994) 171:158–64.PubMedGoogle Scholar
  79. 79.
    Alexander BT, Cockrell KL, Massey MB, Bennett WA, Granger JP. Tumor necrosis factor-alpha-induced hypertension in pregnant rats results in decreased renal neuronal nitric oxide synthase expression. Am J Hypertens (2002) 15:170–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Pace TW, Hu F, Miller AH. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun (2007) 21:9–19.PubMedCrossRefGoogle Scholar
  81. 81.
    Kofman O. The role of prenatal stress in the etiology of developmental behavioural disorders. Neurosci Biobehav Rev (2002) 26:457–70.PubMedCrossRefGoogle Scholar
  82. 82.
    Elovitz MA. Anti-inflammatory interventions in pregnancy: now and the future. Semin Fetal Neonatal Med (2006) 11:327–32.PubMedCrossRefGoogle Scholar
  83. 83.
    Zuckerman L, Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res (2005) 39:311–23.PubMedCrossRefGoogle Scholar
  84. 84.
    Meyer U, Feldon J, Schedlowski M, Yee BK. Immunological stress at the maternal–foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun (2006) 20:378–88.PubMedCrossRefGoogle Scholar
  85. 85.
    Wolff AR CK, Bilkey DK. Hippocampal dysfunction in an animal model of schizophrenia. Int Brain Res Org (2007) SYM-25-04.Google Scholar
  86. 86.
    Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res (2000) 47:64–72.PubMedCrossRefGoogle Scholar
  87. 87.
    Ling Z, Chang QA, Tong CW, Leurgans SE, Lipton JW, Carvey PM. Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally. Exp Neurol (2004) 190:373–83.PubMedCrossRefGoogle Scholar
  88. 88.
    Bell MJ, Hallenbeck JM. Effects of intrauterine inflammation on developing rat brain. J Neurosci Res (2002) 70:570–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Bakos J, Duncko R, Makatsori A, Pirnik Z, Kiss A, Jezova D. Prenatal immune challenge affects growth, behavior, and brain dopamine in offspring. Ann N Y Acad Sci (2004) 1018:281–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Fortier ME, Joober R, Luheshi GN, Boksa P. Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res (2004) 38:335–45.PubMedCrossRefGoogle Scholar
  91. 91.
    Golan H, Lev V, Mazar Y. Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy. Dev Psychobiol (2006) 48:162–8.CrossRefGoogle Scholar
  92. 92.
    Golan H, Levav T, Mendelsohn A, Huleihel M. Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex (2004) 14:97–105.PubMedCrossRefGoogle Scholar
  93. 93.
    Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M. Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology (2005) 48:903–17.PubMedCrossRefGoogle Scholar
  94. 94.
    Poggi SH, Park J, Toso L, et al. No phenotype associated with established lipopolysaccharide model for cerebral palsy. Am J Obstet Gynecol (2005) 192:727–33.PubMedCrossRefGoogle Scholar
  95. 95.
    Rousset CI, Chalon S, Cantagrel S, et al. Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatr Res (2006) 59:428–33.PubMedCrossRefGoogle Scholar
  96. 96.
    Wang X, Hagberg H, Zhu C, Jacobsson B, Mallard C. Effects of intrauterine inflammation on the developing mouse brain. Brain Res (2007) 1144:180–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Nitsos I, Rees SM, Duncan J, et al. Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig(2006) 13:239–47.PubMedCrossRefGoogle Scholar
  98. 98.
    Fidel PL Jr., Romero R, Wolf N, et al. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol (1994) 170:1467–75.Google Scholar
  99. 99.
    Kramer BW, Moss TJ, Willet KE, et al. Dose and time response after intraamniotic endotoxin in preterm lambs. Am J Respir Crit Care Med (2001) 164:982–8.PubMedGoogle Scholar
  100. 100.
    Rounioja S, Rasanen J, Glumoff V, Ojaniemi M, Makikallio K, Hallman M. Intra-amniotic lipopolysaccharide leads to fetal cardiac dysfunction. A mouse model for fetal inflammatory response. Cardiovasc Res (2003) 60:156–64.PubMedCrossRefGoogle Scholar
  101. 101.
    Gayle DA, Beloosesky R, Desai M, Amidi F, Nunez SE, Ross MG. Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain. Am J Physiol Regul Integr Comp Physiol (2004) 286:R1024–9.Google Scholar
  102. 102.
    Beloosesky R, Gayle DA, Amidi F, et al. N-Acetyl-cysteine suppresses amniotic fluid and placenta inflammatory cytokine responses to lipopolysaccharide in rats. Am J Obstet Gynecol (2006) 194:268–73.PubMedCrossRefGoogle Scholar
  103. 103.
    Gilmore JH, Jarskog LF, Vadlamudi S. Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol (2005) 159:106–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Liverman CS, Kaftan HA, Cui L Hersperger SG, Taboada E. Klein RM, Berman NEJ. Altered expression of pro-inflammatory and developmental genes in the fetal brain in a mouse model of maternal infection. Neurosci Lett (2006) 399:220–5.Google Scholar
  105. 105.
    Garbett K. Ebert PJ, Mitchell A, Lintas C, Manzi B, Mlrnics K. Persico AM Immune transcriptome alterations in the temporal cortex of subjects with autism Neurobiol Dis (2008) 30:303–11.Google Scholar
  106. 106.
    Curran LK, Newschaffer CJ, Lee L-C, Crawford SO, Johnston MV, Zimmerman AW. Behaviors associated with fever in children with autism spectrum disorders. Pediatrics (2007) 120:e1386–92.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul H. Patterson
    • 1
  • Wensi Xu
  • Stephen E.P. Smith
  • Benjamin E. Devarman
  1. 1.Biology DivisionCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations