Ruthenium Drugs for Cancer Chemotherapy: An Ongoing Challenge to Treat Solid Tumours

  • Gianni Sava
  • Alberta Bergamo
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Ruthenium-based pharmaceuticals have brought some important insights in the chemotherapy of cancer. The knowledge acquired about the chemistry and biological interactions of these inorganic chemicals has allowed us to understand the limits of targeting DNA to achieve selective and innovative drugs. After a number of attempts to copy platinum drugs with a system claimed to be selective because of transferrin transportation and activation to cytotoxic species in tumour cells by a reduction mechanism, new innovative ideas are emerging such as those of using Ruthenium to structure organic ligands to enzyme or receptor targets responsible for tumour cell pathways associated to cell survival. Besides the staurosporine mimetics capable of inhibiting GSKbeta and inducing p53-mediated apoptosis, one example of this new wave is NAMI-A, a compound capable of controlling solid tumour metastases through the modulation of integrins and cell cytoskeleton. These data open up the interesting perspective of achieving potent agents to control tumour malignancy by selectively targeting tumour cells.


Ruthenium Chemotherapy Metastasis 



Work done in the frame of COST D39 action. The financial support of MURST, Regione Autonoma Friuli Venezia Giulia and of Fondazione CRTrieste is gratefully appreciated.


  1. 1.
    Hartinger CG, Zorbas-Seifried S, Jakupec MA, et al. From bench to bedside — preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). J Inorg Biochem 2006;100:891–904.PubMedCrossRefGoogle Scholar
  2. 2.
    Alessio E, Mestroni G, Bergamo A, et al. Ruthenium antimetastatic agents. Curr Topics Med Chem 2004;4:1525–35.CrossRefGoogle Scholar
  3. 3.
    Kapitza S, Pongratz M, Jakupec MA, et al. Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells. J Cancer Res Clin Oncol 2005;131:101–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Kapitza S, Jakupec MA, Uhl M, et al. The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer Lett 2005;226:115–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Sava G, Zorzet S, Turrin C, et al. Dual action of NAMI-A in inhibition of solid tumor metastasis: selective targeting of metastatic cells and binding to collagen. Clin Cancer Res 2003;9:1898–905.PubMedGoogle Scholar
  6. 6.
    Bergamo A, Zorzet S, Gava B, et al. Effects of NAMI-A and some related ruthenium complexes on cell viability after short exposure of tumor cells. Anticancer Drugs 2000;11:665–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Cebrián-Losantos B, Krokhin AA, Stepanenko IN, et al. Osmium NAMI-A analogues: synthesis, structural and spectroscopic characterization, and antiproliferative properties. Inorg Chem 2007;46:5023–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Barca A, Pani B, Tamaro M, et al. Molecular interactions of ruthenium complexes in isolated mammalian nuclei and cytotoxicity on V79 cells in culture. Mutat Res 1999;423:171–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen J, Chen L, Liao S, et al. A theoretical study on the hydrolysis process of the antimeta-static ruthenium(III) complex NAMI-A. J Phys Chem B 2007;111:7862–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Vargiu AV, Robertazzi A, Magistrato A, et al. The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations. J Phys Chem B;112:4401–9.Google Scholar
  11. 11.
    Brouwers EEM, Tibben MM, Rosing H, et al. Determination of ruthenium originating from the investigational anti-cancer drug NAMI-A in human plasma ultrafiltrate, plasma, and urine by inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 2007;21:1521–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Groessl M, Reisner E, Hartinger CG, et al. Structure-activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L(S-dmso)ruthenate(III)] (L = imidazole, indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole): aquation, redox properties, protein binding, and antiproliferative activity. J Med Chem 2007;50:2185–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Mura P, Camalli M, Messori L, et al. Synthesis, structural characterization, solution chemistry, and preliminary biological studies of the ruthenium(III) complexes [TzH][trans-RuCl4(Tz)2] and [TzH][trans-RuCl4(DMSO)(Tz)]∙(DMSO), the thiazole analogues of antitumor ICR and NAMI-A. Inorg Chem 2004;43:3863–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Bergamo A, Messori L, Piccioli F, et al. Biological role of adduct formation of the ruthenium(III) complex NAMI-A with serum albumin and serum transferrin. Invest New Drugs 2003;21:401–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Timerbaev AR, Rudnev AV, Semenova O, et al. Comparative binding of antitumor indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)] to serum transport proteins assayed by capillary zone electrophoresis. Anal Biochem 2005;341:326–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Hartinger CG, Hann S, Koellensperger G, et al. Interactions of a novel ruthenium-based anti-cancer drug (KP1019 or FFC14a) with serum proteins — significance for the patient. Int J Clin Pharmacol Ther 2005;43:583–5.PubMedGoogle Scholar
  17. 17.
    Clarke MJ, Bitler S, Rennert D, et al. Reduction and subsequent binding of ruthenium ions catalyzed by subcellular components. J Inorg Biochem 1980;12:79–87.PubMedCrossRefGoogle Scholar
  18. 18.
    Clarke MJ. Ruthenium metallopharmaceuticals. Coord Chem Rev 2003;236:209–33.CrossRefGoogle Scholar
  19. 19.
    Bacac M, Hotze ACG, van der Schilden K, et al. The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation. J Inorg Biochem 2004;98:402–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Schluga P, Hartinger CG, Egger A, et al. Redox behaviour of tumor-inhibiting ruthenium(III) complexes and effects of physiological reductants on their binding to GMP. Dalton Trans 2006;14:1796–802.PubMedCrossRefGoogle Scholar
  21. 21.
    Arandjelovic S, Tesic Z, Perego P, et al. Cellular sensitivity to beta-diketonato complexes of ruthenium(III), Chromium(III) and rhodium(III). Med Chem 2006;2:227–37PubMedCrossRefGoogle Scholar
  22. 22.
    Vilaplana RA, Delmani F, Manteca C, et al. Synthesis, interaction with double-helical DNA and biological activity of the water soluble complex cis-dichloro-1,2-propylenediamine-N,N,N′,N′-tetraacetato ruthenium (III) (RAP). J Inorg Biochem 2006;100:1834–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Rathinasamy S, Karki SS, Bhattacharya S, et al. Synthesis and anticancer activity of certain mononuclear Ru (II) complexes. J Enzyme Inhib Med Chem 2006;21:501–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Mishra L, Yadaw AK, Bhattacharya S, et al. Mixed-ligand Ru(II) complexes with 2,2′-bipyridine and aryldiazo-ß-diketonato auxillary ligands: synthesis, physico-chemical study and antitumour properties. J Inorg Biochem 2005;99:1113–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Djinovic V, Momcilovic M, Grguric-Sipka S, et al. Novel ruthenium complex K2[Ru(dmgly) Cl4]∙2H2O is toxic to C6 astrocytoma cell line, but not to primary rat astrocytes. J Inorg Biochem 2004;98:2168–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Hotze AC, Bacac M, Velders AH, et al. New cytotoxic and water-soluble bis(2- phenylazopyridine) ruthenium(II) complexes. J Med Chem 2003;46:1743–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Morris RE, Aird RE, Murdoch Pdel S, et al. Inhibition of cancer cell growth by ruthenium(II) arene complexes. J Med Chem 2001;44:3616–1.PubMedCrossRefGoogle Scholar
  28. 28.
    Novakova O, Chen H, Vrana O, et al. DNA interactions of monofunctional organometallic ruthenium(II) antitumor complexes in cell-free media. Biochemistry 2003;42:11544–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen H, Parkinson JA, Parsons S, et al. Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts. J Am Chem Soc 2002;124:3064–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen H, Parkinson JA, Morris RE, et al. Highly selective binding of organometallic ruthenium ethylendiamine complexes to nucleic acids: novel recognition mechanisms. J Am Chem Soc 2003;125:173–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Hayward RL, Schornagel QC, Tente R, et al. Investigation of the role of Bax, p21/Waf1 and p53 as determinants of cellular response in HCT116 colorectal cancer cells exposed to the novel cytotoxic ruthenium(II) organometallic agent, RM175. Cancer Chemother Pharmacol 2005;55:577–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Gaiddon C, Jeannequin P, Bischoff P, et al. Ruthenium (II)-derived organometallic compounds induce cytostatic and cytotoxic effects on mammalian cancer cell lines through p53-dependent and p53-independent mechanisms. J Pharmacol Exp Ther 2005;315:1403–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Scolaro C, Bergamo A, Brescacin L, et al. In vitro and in vivo evaluation of ruthenium(II)-Arene PTA complexes. J Med Chem 2005;48:4161–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Scolaro C, Geldbach TJ, Rochat S, et al. Influence of hydrogen-bonding substituents on the cytotoxicity of RAPTA compounds. Organometallics 2006;25:756–65.CrossRefGoogle Scholar
  35. 35.
    Scolaro C, Chaplin AB, Hartinger CG, et al. Tuning the hydrophobicity of ruthenium(II)-arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy. Dalton Trans 2007;43:5065–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Smalley KS, Contractor R, Haass NK, et al. An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells. Cancer Res 2007;67: 209–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Rademaker-Lakhai JM, van den Bongard D, Pluim D, et al. A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 2004;10:3717–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Brabec V, Novakova O. DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Update 2006;9:111–22.CrossRefGoogle Scholar
  39. 39.
    Brabec V. DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog Nucleic Acid Res Mol Biol 2002;71:1–68.PubMedCrossRefGoogle Scholar
  40. 40.
    Jakupec MA, Reisner E, Eichinger A, et al. Redox-active antineoplastic ruthenium complexes with indazole: correlation of in vitro potency and reduction potential. J Med Chem 2005;48: 2831–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Reisner E, Arion VB, Guedes da Silva MFC, et al. Tuning of redox potentials for the design of ruthenium anticancer drugs — an electrochemical study of [trans-RuCl4L(DMSO)]− and [trans-RuCl4L2]− complexes, where L = imidazole, 1,2,4-triazole, indazole. Inorg Chem 2004; 43:7083–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Frühauf S, Zeller WJ. New platinum, titanium, and ruthenium complexes with different patterns of DNA damage in rat ovarian tumor cells. Cancer Res 1991;51:2943–8.PubMedGoogle Scholar
  43. 43.
    Reedijk J. New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci 2003;100:3611–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Kirchner B, Wennmohs F, Ye S, et al. Theoretical bioinorganic chemistry: the electronic structure makes a difference. Curr Opin Chem Biol 2007;11:134–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Ott I, Gust R. Non platinum metal complexes as anti-cancer drugs. Arch Pharm Chem Life Sci 2007;340:117–26.CrossRefGoogle Scholar
  46. 46.
    Zhang CX, Lippard SJ. New metal complexes as potential therapeutics. Curr Opin Chem Biol 2003;7:481–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Bertini I, Rosato A. Bioinorganic chemistry in the postgenomic era. Proc Natl Acad Sci 2003;100:3601–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Mullin R. Personalized medicine. Chem Eng News 2008;86:17–27.CrossRefGoogle Scholar
  49. 49.
    Workman P. Genomics and the second golden era of cancer drug development. Mol Biosyst 2005;1:17026.CrossRefGoogle Scholar
  50. 50.
    Dollé L, Depypere HT, Bracke ME. Anti-invasive and anti-metastasis strategies: new roads, new tools and new hopes. Curr Cancer Drug Targets 2006;6:729–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Meggers E. Exploring biologically relevant chemical space with metal complexes. Curr Opin Chem Biol 2007;11:287–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Finney LA, O'Halloran TV. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 2003;300:931–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Williams DS, Atilla GE, Bregman H, et al. Switching on a signalling pathway with an orga-noruthenium complex. Angew Chem Int Ed Engl 2005;44:1984–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Bregman H, Williams DS, Atilla GE, et al. An organometallic inhibitor for glycogen synthase kinase 3. J Am Chem Soc 2004;126:13594–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang L, Carroll P, Meggers E. Ruthenium complexes as protein kinase inhibitors. Org Lett 2004;6:521–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Frausin F, Scarcia V, Cocchietto M, et al. Free exchange across cells, and echistatin- sensitive membrane target for the metastasis inhibitor NAMI-A (imidazolium trans-imidazole dimethyl sulfoxide tetrachlororuthenate) on KB tumor cells. J Pharmacol Exp Ther 2005;313:227–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gianni Sava
    • 1
  • Alberta Bergamo
    • 1
  1. 1.Callerio Foundation OnlusTriesteItaly

Personalised recommendations