Structural and Mechanistic Studies of Anticancer Platinum Drugs: Uptake, Activation, and the Cellular Response to DNA Binding

  • Shanta Dhar
  • Stephen J. Lippard
Part of the Cancer Drug Discovery and Development book series (CDD&D)


The action of platinum anticancer drugs is a multistep process involving uptake, activation, DNA binding, and cellular responses. Our research investigates these early stages of action of platinum complexes. We demonstrated that the effectiveness of oxaliplatin and cis-diammine(pyridine)chloroplatinum(II) (cDPCP) is a consequence of their selective delivery to cells containing organic cation transporters OCT1 and OCT2. This work inspired us to devise strategies for novel cell-targeting modalities, which include tethering receptor-binding moieties like estrogen or conjugated peptide motifs to a cis-diammineplatinum(II) unit, and the use of single walled carbon nanotubes as “longboat” delivery systems. Structural studies of DNA containing bound platinum complexes resulted in two significant findings. First, an X-ray structure of a site-specific monofunctional platinum-DNA dodecamer duplex containing a guanosine modified by cis-{Pt(NH3)2(py)}2+ resembles that of B-DNA, differing from structures containing a 1,2- or 1,3- intrastrand cross-link. Nevertheless, certain features resemble that of the 1,2-cross-link. Second, 1,3-GTG-intrastrand cis-diammineplatinum(II) cross-links determine and override the natural positioning of DNA on the nucleo-some core particle. Close examination of cellular responses associated with cis-[Pt(NH3)2(py)Cl]Cl, cDPCP, revealed the potency of this compound to be a consequence of a competition between transcription inhibition and excision repair. Photo-cross-linking studies of platinated DNA to proteins in cancer cell nuclear extracts reveal the panoply of factors that process the platinum adducts at the early stage of recognition.


Cisplatin Uptake Platinum(IV) compounds Receptors DNA binding Cellular responses 



Our work has been supported by the National Cancer Institute under grant CA034992.


  1. 1.
    Jamieson ER, Lippard SJ. Structure, recognition, and processing of Cisplatin–DNA adducts. Chem Rev 1999;99:2467–98.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosenberg B, VanCamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature 1969;222:385–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Galanski M, Jakupec MA, Keppler BK. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 2005;12:2075–94.PubMedCrossRefGoogle Scholar
  4. 4.
    Gately DP, Howell SB. Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 1993;67:1171–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang S, Lovejoy KS, Shima JE, et al. Organic cation transporters are determinants of oxali-platin cytotoxiCity. Cancer Res 2006;66:8847–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Lovejoy KS, Todd RC, Zhang S, et al. cis-(Diammine(pyridine)chloroplatinum(II), a mono-functional platinum(II) antitumor agent: uptake, structure, function, and prospects. Proc Natl Acad Sci USA 2008;105:8902–07.PubMedCrossRefGoogle Scholar
  7. 7.
    Hollis LS, Amundsen AR, Stern EW. Chemical and biological properties of a new series of cis-diammineplatinum(II) antitumor agents containing three nitrogen donors: cis-[Pt(NH3)2-(N-donor)Cl]+. J Med Chem 1989;32:128–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Feigelson HS, Henderson BE. Estrogens and breast cancer. Carcinogenesis 1996;17: 2279–84.PubMedCrossRefGoogle Scholar
  9. 9.
    He Q, Liang CH, Lippard SJ. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA 2000;97:5768–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Barnes KR, Kutikov A, Lippard SJ. Synthesis, characterization, and cytotoxiCity of a series of estrogen-tethered platinum(IV) complexes. Chem Bio 2004;11:557–64.CrossRefGoogle Scholar
  11. 11.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1: 27–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Hart SL, Knight AM, Harbottle RP, et al. Cell binding and internalization by filamentous phage displaying a cyclic arg-gly-asp-containing peptide. J Biol Chem 1994;269:12468–74.PubMedGoogle Scholar
  13. 13.
    Mukhopadhyay S, Barnes CM, Haskel A, Short SM, Barnes KR, Lippard SJ. Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjugate Chem 2008;19:39–49.CrossRefGoogle Scholar
  14. 14.
    Kam NWS, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: inter-nalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004;126:6850–1.CrossRefGoogle Scholar
  15. 15.
    Bottini M, Cerignoli F, Dawson MI, Magrini A, Rosato N, Mustelin T. Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intra-cellular fluorescent nanoprobes. Biomacromolecules 2006;7:2259–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu Y, Wu D-C, Zhang W-D, et al. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed 2005;44:4782–5.CrossRefGoogle Scholar
  17. 17.
    Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 2005;127:6021–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. Soluble single-walled carbon nano-tubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 2007;129:8438–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Hambley TW, Battle AR, Deacon GB, et al. Modifying the properties of platinum(IV) complexes in order to increase biological effectiveness. J Inorg Biochem 1999;77:3–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen GL, Ledner JA, Bauer WR, Ushay HM, Caravana C, Lippard SJ. Sequence dependent binding of cis-dichlorodiammineplatinum(II) to DNA. J Am Chem Soc 1980;102:2487–8.CrossRefGoogle Scholar
  21. 21.
    Takahara PM, Frederick CA, Lippard SJ. Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J Am Chem Soc 1996;118:12309–21.CrossRefGoogle Scholar
  22. 22.
    Wong E, Giandomenico CM. Current status of platinum-based antitumor drugs. Chem Rev 1999;99:2451–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999;98:285–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Lippard SJ, Hoeschele JD. Binding of cis- and trans-dichlorodiammineplatinum(II) to the nucleosome core. Proc Natl Acad Sci USA 1979;76:6091–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Ober M, Lippard SJ. Cisplatin damage overrides the predefined rotational setting of positioned nucleosomes. J Am Chem Soc 2007;129:6278–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Ober M, Lippard SJ. A 1,2-d(GpG) Cisplatin intrastrand cross-link influences the rotational and translational setting of DNA in nucleosomes. J Am Chem Soc 2008;130:2851–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Pinto AL, Lippard SJ. Sequence-dependent termination of in vitro DNA synthesis by cis- and trans-diamminedichloroplatinum(II). Proc Natl Acad Sci USA 1985;82:4616–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Cobo M, Isla D, Massuti B, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol 2007;25:2747–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Rosell R, Cecere F, Santarpia M, Reguart N, Taron M. Predicting the outcome of chemotherapy for lung cancer. Curr Opin Pharmacol 2006;6:323–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang CX, Chang PV, Lippard SJ. Identification of nuclear proteins that interact with platinum-modified DNA by photoaffinity labeling. J Am Chem Soc 2004;126:6536–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Guggenheim ER, Xu D, Zhang CX, Chang P V, Lippard SJ. Photo-affinity isolation and identification of proteins in cancer cell extracts that bind to platinum-modified DNA. 2008 ChemBioChem [in press].Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shanta Dhar
    • 1
  • Stephen J. Lippard
    • 1
  1. 1.Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations