Advertisement

Comparative Cardiac Anatomy

  • Alexander J. Hill
  • Paul A. Iaizzo
Chapter

Abstract

The need for appropriate animal models to conduct translational research is vital for advancements in the diagnosis and treatment of heart disease. The choice of animal model to be employed must be critically evaluated. In this chapter, we present the comparative cardiac anatomy of several of the commonly employed animal models (dog, pig, and sheep). A general comparison focuses on several specific anatomic features: the atria, the ventricles, the valves, the coronary system, lymphatics, and the conduction system. Finally, we present novel qualitative and quantitative data that we have obtained from perfusion fixed specimens of the most commonly used animal models.

Keywords

Comparative anatomy Human Sheep Dog Pig Heart Cardiac 

References

  1. 1.
    Paul EF, Paul J. Why animal experimentation matters: The use of animals in medical research. New Brunswick, NJ: Social Philosophy and Policy Foundation: Transaction, 2001.Google Scholar
  2. 2.
    Monamy V. Animal experimentation: A guide to the issues. Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2000.Google Scholar
  3. 3.
    Nutton V. Portraits of science. Logic, learning, and experimental medicine. Science 2002;295:800–1.PubMedCrossRefGoogle Scholar
  4. 4.
    Persaud TVN. A history of anatomy: The post-Vesalian era. Springfield, IL: Charles C Thomas Publisher, 1997.Google Scholar
  5. 5.
    Hearse DJ. The elusive coypu: The importance of collateral flow and the search for an alternative to the dog. Cardiovasc Res 2000;45:215–9.CrossRefGoogle Scholar
  6. 6.
    Christensen GC, Campeti FL. Anatomic and functional studies of the coronary circulation in the dog and pig. Am J Vet Res 1959;20:18–26.PubMedGoogle Scholar
  7. 7.
    Hughes HC. Swine in cardiovascular research. Lab Anim Sci 1986;36:348–50.PubMedGoogle Scholar
  8. 8.
    Kong Y, Chen JT, Zeft HJ, et al. Natural history of experimental coronary occlusion in pigs: A serial cineangiographic study. Am Heart J 1969;77:45–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Verdouw PD, van den Doel MA, de Zeeuw S, et al. Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovasc Res 1998;39:121–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Getty R. General heart and blood vessels. In: Getty R, ed. Sisson and Grossman's: The anatomy of the domestic animals. 5th ed. Philadelphia, PA: Saunders, 1975:164–75.Google Scholar
  11. 11.
    Michaëlsson M, Ho SY. Congenital heart malformations in mammals: An illustrated text. London, UK; River Edge, NJ: Imperial College Press, 2000.CrossRefGoogle Scholar
  12. 12.
    Ghoshal NG. Ruminant, carnivore, porcine: Heart and arteries. In: Sisson S, Grossman JD, Getty R, eds. Sisson and Grossman's: The anatomy of the domestic animals. 5th ed. Philadelphia, PA: Saunders, 1975:960–1023, 1594–1651, 1306–42.Google Scholar
  13. 13.
    Crick SJ, Sheppard MN, Ho SY, et al. Anatomy of the pig heart: Comparisons with normal human cardiac structure. J Anat 1998;193:105–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Evans HE. The heart and arteries. In: Miller ME, Evans HE, eds. Miller's anatomy of the dog. 3rd ed. Philadelphia, PA: Saunders, 1993:586–602.Google Scholar
  15. 15.
    Netter FH, Ciba Pharmaceutical Company. Medical Education Division. Heart. West Caldwell, NJ: The Division, 1979.Google Scholar
  16. 16.
    Holt JP, Rhode EA, Kines H. Ventricular volumes and body weight in mammals. Am J Physiol 1968;215:704–15.PubMedGoogle Scholar
  17. 17.
    Lee JC, Taylor FN, Downing SE. A comparison of ventricular weights and geometry in newborn, young, and adult mammals. J Appl Physiol 1975;38:147–50.PubMedGoogle Scholar
  18. 18.
    Holt JP. The normal pericardium. Am J Cardiol 1970;26:455–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Naimark WA, Lee JM, Limeback H, et al. Correlation of structure and viscoelastic properties in the pericardia of four mammalian species. Am J Physiol 1992;263:H1095–106.PubMedGoogle Scholar
  20. 20.
    Spodick DH. The pericardium: A comprehensive textbook. New York, NY: M. Dekker, 1997.Google Scholar
  21. 21.
    Moore T, Shumacker HJ. Congenital and experimentally produced pericardial defects. Angiology 1953;4:1–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Elias H, Boyd L. Notes on the anatomy, embryology and histology of the pericardium. J New York Med Coll 1960;2:50–75.Google Scholar
  23. 23.
    Hurst JW. Atlas of the heart. New York, NY: McGraw-Hill: Gower Medical Pub, 1988.Google Scholar
  24. 24.
    Montagna W. Comparative anatomy. New York, NY: Wiley, 1959.Google Scholar
  25. 25.
    Kent GC, Carr RK. Comparative anatomy of the vertebrates. 9th ed. Boston, MA: McGraw Hill, 2001.Google Scholar
  26. 26.
    Truex RC, Warshaw LJ. The incidence and size of the moderator band in man and mammals. Anat Rec 1942;82:361–72.CrossRefGoogle Scholar
  27. 27.
    Gerlis LM, Wright HM, Wilson N, et al. Left ventricular bands. A normal anatomical feature. Br Heart J 1984;52:641–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Walmsley R. Anatomy of human mitral valve in adult cadaver and comparative anatomy of the valve. Br Heart J 1978;40:351–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Sands MP, Rittenhouse EA, Mohri H, et al. An anatomical comparison of human pig, calf, and sheep aortic valves. Ann Thorac Surg 1969;8:407–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Ansari A. Anatomy and clinical significance of ventricular Thebesian veins. Clin Anat 2001;14:102–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Pina JAE, Correia M, O'Neill JG. Morphological study on the Thebesian veins of the right cavities of the heart in the dog. Acta Anat 1975;92:310–20.CrossRefGoogle Scholar
  32. 32.
    Ruengsakulrach P, Buxton BF. Anatomic and hemodynamic considerations influencing the efficiency of retrograde cardioplegia. Ann Thorac Surg 2001;71:1389–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Weaver ME, Pantely GA, Bristow JD, et al. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res 1986;20:907–17.PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson RH, Becker AE. The heart: Structure in health and disease. London, UK; New York, NY: Gower Medical Pub, 1992.Google Scholar
  35. 35.
    Kloner RA, Ganote CE, Reimer KA, et al. Distribution of coronary arterial flow in acute myocardial ischemia. Arch Pathol 1975;99:86–94.PubMedGoogle Scholar
  36. 36.
    Koke JR, Bittar N. Functional role of collateral flow in the ischaemic dog heart. Cardiovasc Res 1978;12:309–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Redding VJ, Rees JR. Early changes in collateral flow following coronary artery ligation: The role of the sympathetic nervous system. Cardiovasc Res 1968;2:219–25.PubMedCrossRefGoogle Scholar
  38. 38.
    Weisse AB, Kearney K, Narang RM, et al. Comparison of the coronary collateral circulation in dogs and baboons after coronary occlusion. Am Heart J 1976;92:193–200.PubMedCrossRefGoogle Scholar
  39. 39.
    Schaper W, Flameng W, De Brabander M. Comparative aspects of coronary collateral circulation. Adv Exp Med Biol 1972;22:267–76.PubMedGoogle Scholar
  40. 40.
    Gregg D, Shipley R. Studies of the venous drainage of the heart. Am J Physiol 1947;151:13–25.PubMedGoogle Scholar
  41. 41.
    Patek PP. The morphology of the lymphatics of the mammalian heart. Am J Anat 1939;64:203–49.CrossRefGoogle Scholar
  42. 42.
    Johnson RA, Blake TM. Lymphatics of the heart. Circulation 1966;33:137–42.PubMedGoogle Scholar
  43. 43.
    Symbas PN, Cooper T, Gantner GEJ, et al. Lymphatic drainage of the heart: Effect of experimental interruption of lymphatics. Surg Forum 1963;14:254–6.PubMedGoogle Scholar
  44. 44.
    Anderson RH, Becker AE, Brechenmacher C, et al. The human atrioventricular junctional area. A morphological study of the A-V node and bundle. Eur J Cardiol 1975;3:11–25.PubMedGoogle Scholar
  45. 45.
    Bharati S, Levine M, Huang SK, et al. The conduction system of the swine heart. Chest 1991;100:207–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Frink RJ, Merrick B. The sheep heart: Coronary and conduction system anatomy with special reference to the presence of an os cordis. Anat Rec 1974;179:189–200.PubMedCrossRefGoogle Scholar
  47. 47.
    Ho SY, Kilpatrick L, Kanai T, et al. The architecture of the atrioventricular conduction axis in dog compared to man: Its significance to ablation of the atrioventricular nodal approaches. J Cardiovasc Electrophysiol 1995;6:26–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Hearse DJ, Sutherland FJ. Experimental models for the study of cardiovascular function and disease. Pharmacol Res 2000;41:597–603.PubMedCrossRefGoogle Scholar
  49. 49.
    Macdonald AA, Johnstone M. Comparative anatomy of the cardiac foramen ovale in cats (Felidae), dogs (Canidae), bears (Ursidae) and hyaenas (Hyaenidae). J Anat 1995;186:235–43.PubMedGoogle Scholar
  50. 50.
    Joudinaud TM, Flecher EM, Duran CM. Functional terminology for the tricuspid valve. J Heart Valve Dis 2006;15:382–8.PubMedGoogle Scholar
  51. 51.
    Anderson RH, Cook AC. The structure and components of the atrial chambers. Europace 2007;9:vi3–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Lev M, Rowlatt UF, Rimoldi HJ. Pathologic methods for the study of the congenitally malformed heart. AMA Arch Pathol 1961;72:493–511.Google Scholar
  53. 53.
    Rowlatt UF, Rimoldi HJ, Lev M. The quantitative anatomy of the normal child's heart. Pediatr Clin N Am 1963;10:499–588.Google Scholar
  54. 54.
    Eckner FA, Brown BW, Overll E, et al. Alteration of the gross dimensions of the heart and its structures by formalin fixation. A quantitative study. Virchows Arch A Pathol Pathol Anat 1969;346:318–29.PubMedCrossRefGoogle Scholar
  55. 55.
    Alvarez L, Rodriquez JE, Saucedo R, et al. Swine hearts: Quantitative anatomy of the right ventricle. Anat Histol Embryol 1995;24:25–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Gorman JH, III, Gorman RC, Jackson BM, et al. Distortions of the mitral valve in acute ischemic mitral regurgitation. Ann Thorac Surg 1997;64:1026–31.PubMedCrossRefGoogle Scholar
  57. 57.
    Timek TA, Lai DT, Tibayan F, et al. Atrial contraction and mitral annular dynamics during acute left atrial and ventricular ischemia in sheep. Am J Physiol Heart Circ Physiol 2002;283:H1929–35.PubMedGoogle Scholar
  58. 58.
    Tsakiris AG, Padiyar R, Gordon DA, et al. Left atrial size and geometry in the intact dog. Am J Physiol 1977;232:H167–72.PubMedGoogle Scholar
  59. 59.
    Chandraratna PA, Aronow WS. Mitral valve ring in normal vs dilated left ventricle. Cross-sectional echocardiographic study. Chest 1981;79:151–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Nordblom P, Bech-Hanssen O. Reference values describing the normal mitral valve and the position of the papillary muscles. Echocardiography 2007;24:665–72.PubMedCrossRefGoogle Scholar
  61. 61.
    Lansac E, Lim HS, Shomura Y, et al. A four-dimensional study of the aortic root dynamics. Eur J Cardiothorac Surg 2002;22:497–503.PubMedCrossRefGoogle Scholar
  62. 62.
    Sim EK, Muskawad S, Lim CS, et al. Comparison of human and porcine aortic valves. Clin Anat 2003;16:193–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Swanson M, Clark RE. Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ Res 1974;35:871–82.PubMedGoogle Scholar
  64. 64.
    Jouan J, Pagel MR, Hiro ME, et al. Further information from a sonometric study of the normal tricuspid valve annulus in sheep: Geometric changes during the cardiac cycle. J Heart Valve Dis 2007;16:511–8.PubMedGoogle Scholar
  65. 65.
    Anwar AM, Geleijnse ML, Soliman OI, et al. Assessment of normal tricuspid valve anatomy in adults by real-time three-dimensional echocardiography. Int J Cardiovasc Imaging 2007;23:717–24.PubMedCrossRefGoogle Scholar
  66. 66.
    Maric I, Bobinac D, Ostojic L, et al. Tributaries of the human and canine coronary sinus. Acta Anat (Basel) 1996;156:61–9.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of Minnesota and Medtronic, IncMinneapolisUSA
  2. 2.Department of SurgeryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations