Aquatic Realm and Cholera

Chapter

Abstract

Cholera is an ancient disease that can be severe and life threatening. It occurs predominantly in areas of the world where populations lack safe drinking water. Epidemics of cholera are linked with malnutrition, poor sanitation, and conditions resulting from natural disasters such as severe flooding. According to a report published by WHO in 2000 [1], cholera remains a major public health problem and is becoming increasingly important since the number of countries in which cholera is endemic continues to increase. Unfortunately, outbreaks of the disease continue into the twenty-first century with ominous portent in the wake of global climate change [1]. Yet cholera is a preventable disease if people have access to safe drinking water and are properly educated how to protect themselves from the risk of infection with vibrios. Cholera also is an easily treatable disease. Oral rehydration therapy, a solution containing glucose and appropriate salts, has proven to be effective for treatment of most cholera victims [2]. Nevertheless, each year, tens of thousands of people are victims of the disease, bringing this “curse of humankind” to modern civilization. Present understanding of cholera is based on studies conducted over the past three decades and significant new information has been gained concerning environmental factors associated with this disease, especially how to detect the bacterium and where it lives in the natural environment, outside the human gut, and what triggers the annual outbreaks that occur with remarkable regularity. Environmental research on Vibrio cholerae and cholera has provided insights for prediction and prevention of the disease it causes, while the race for effective vaccines against cholera continues.

References

  1. 1.
    World Health Organization. Report on global surveillance of epidemic prone infectious diseases, communicable diseases and surveillance response. WHO; 2000. Report No. WHO/CDS/CSR/ISR/2000.Google Scholar
  2. 2.
    Barua D, Merson, MH. Prevention and control of cholera. In: Barua D, Greenough III, WB, editors. Cholera. New York, NY: Plenum; 1992. pp. 329–49.Google Scholar
  3. 3.
    Barua D, Greenough WB, III, eds. Cholera. New York: Plenum Medical Book Company; 1992.Google Scholar
  4. 4.
    Barua D. Laboratory diagnosis of cholera. In: Barua D, Burrows W, editors. Cholera: W.B. Saunders Company; 1974. pp. 85–126.Google Scholar
  5. 5.
    Pacini F. Observazioni microscopiche e deduzioni patologiche sul cholera asiatico. Tipografia Bencini. 1854;6.Google Scholar
  6. 6.
    Rosenberg CE. The cholera years. Chicago, IL: The University of Chicago Press; 1962.Google Scholar
  7. 7.
    WHO. Cholera, 2006. WHO Weekly Epidemiol Records. 2006;31:273–84.Google Scholar
  8. 8.
    Tauxe R, Seminario L, Tapia R, Libel M. The Latin American epidemic. In: Wachsmuth I, Blake P, Olsvik O, editors. Vibrio cholerae and cholera: molecular to global perspectives. Washington, DC: ASM; 1994. pp. 321–44.Google Scholar
  9. 9.
    Blake P. Endemic cholera in Australia and the United States. In: Wachsmuth I, Blake P, Olsvik O, editors. Vibrio cholerae and cholera: molecular to global perspectives. Washington, DC: American Society for Microbiology; 1994. pp. 309–20.Google Scholar
  10. 10.
    Anonymous. Detection of Vibrio cholerae O1 in the Georges River estuary-New South Wales. Commun Dis Intell Bull. 1981;81:2.Google Scholar
  11. 11.
    Colwell RR, Seidler RJ, Kaper J, Joseph SW, Garges S, Lockman H, Maneval D, Bradford H, Roberts N, Remmers E, Huq I, Huq A. Occurrence of Vibrio cholerae serotype O1 in Maryland and Louisiana estuaries. Appl Environ Micbrobiol. 1981;41:555–8.Google Scholar
  12. 12.
    West PA, Lee JV. Ecology of Vibrio spp. including Vibrio cholerae in natural waters of Kent, England. J Appl Bacteriol. 1982;52:435–48.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee J, Bashford D, Donovan T, Furniss A, West PA. The incidence and distribution of Vibrio cholerae in England. In: Colwell RR, editor. Vibrios in the environment. New York: Wiley; 1984. pp. 427–50.Google Scholar
  14. 14.
    Colwell RR. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol. 1970;104:410–33.PubMedGoogle Scholar
  15. 15.
    Citarella R, Colwell RR. Polyphasic taxonomy of the genus Vibrio: polynucleotide sequence relationships among selected Vibrio species. J Bacteriol. 1970;104:434–42.PubMedGoogle Scholar
  16. 16.
    Colwell RR, Huq A, Chowdhury M, Brayton P, Xu B. Serogroup conversion of Vibrio cholerae. Can J Microbiol. 1995;41:946–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Waldor M, Mekalanos J. ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immunol. 1994;62:72–8.Google Scholar
  18. 18.
    Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:1910–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Glass RI, Becker S, Huq MI, Stoll BJ, Khan MU, Merson MH, Lee JV, Black RE. Endemic cholera in rural Bangladesh, 1966–1980. Am J Epidemiol. 1982;116:959–70.PubMedGoogle Scholar
  20. 20.
    Siddique AK, Zaman K, Baqui AH, Akram K, Mutsuddy P, Eusof A, Haider K, Islam S, Sack RB. Cholera epidemics in Bangladesh: 1985–1991. J Diarrhoeal Dis Res. 1992;10:79–86.PubMedGoogle Scholar
  21. 21.
    Swerdlow DL, Mintz ED, Rodriguez M, Tejada E, Ocampo C, Espejo L, Greene KD, Saldana W, Seminario L, Tauxe RV, et al. Waterborne transmission of epidemic cholera in Trujillo, Peru: lessons for a continent at risk. Lancet. 1992;340:28–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Morris JG Jr, Khan MN, Siddique AK, Yunus M, Albert MJ, Sack DA, Colwell RR. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol. 2005;71:4645–54.PubMedCrossRefGoogle Scholar
  23. 23.
    World Health Organization. Cholera, 2005. Weekly Epidemiol Record. 2006;31:297–308.Google Scholar
  24. 24.
    World Health Organization. Cholera factsheet No. 107. World Health Organization; 2007.Google Scholar
  25. 25.
    An introductory overview of climate change. (Accessed at http://www.dec.ny.gov/docs/remediation_hudson_pdf/hvcc0930ad.pdf.)
  26. 26.
    Griffith DC, Kelly-Hope LA, Miller MA. Review of reported cholera outbreaks worldwide, 1995–2005. Am J Trop Med Hyg. 2006;75:973–7.PubMedGoogle Scholar
  27. 27.
    Colwell RR. Global climate and infectious disease: the cholera paradigm. Science. 1996;274:2025–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque AS, Colwell RR. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci. 2000;97:1438–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Glass RI, Black RE. The epidemiology of cholera. In: Barua D, Greenough WB, editors. Cholera. New York: Plenum Medical Book Company; 1992. pp. 129–54.Google Scholar
  30. 30.
    Ramamurthy T, Garg S, Sharma R, Bhattacharya SK, Nair GB, Shimada T, Takeda T, Karasawa T, Kurazano H, Pal A, Takeda Y. Emergence of novel strains of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993;341:703–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Cholera Working Group I, B. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Lancet. 1993;342:387–90.CrossRefGoogle Scholar
  32. 32.
    Colwell RR, Kaper J, Joseph SW. Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science. 1977;198:394–6.PubMedGoogle Scholar
  33. 33.
    Singleton FL, Attwell R, Jangi S, Colwell RR. Effects of temperature and salinity on Vibrio cholerae growth. Appl Environ Microbiol. 1982;44:1047–58.PubMedGoogle Scholar
  34. 34.
    Singleton FL, Attwell RW, Jangi MS, Colwell RR. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio cholerae in aquatic microcosms. Appl Environ Microbiol. 1982;43:1080–5.PubMedGoogle Scholar
  35. 35.
    Hood MA, Ness GE, Rodrick GE, Blake NJ. Distribution of Vibrio cholerae in two Florida estuaries. Microb Ecol. 1983;9:65–75.CrossRefGoogle Scholar
  36. 36.
    Miller CJ, Drasar BS, Feachem RG. Response of toxigenic Vibrio cholerae O1 to physico-chemical stresses in aquatic environments. J Hyg (Lond). 1984;93:475–95.CrossRefGoogle Scholar
  37. 37.
    Colwell RR, Spira WM. The ecology of Vibrio cholerae. In: Barua D, Greenough III, WB, editors. Cholera. New York, NY: Plenum; 1992. pp. 107–27.Google Scholar
  38. 38.
    Heidelberg JF, Eisen JA, Nelson WC Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2000;406:477–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Roszak DB, Colwell RR. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987;51:365–79.PubMedGoogle Scholar
  40. 40.
    Huq A, Rivera I, Colwell RR. Epidemiological Significance of Viable but non-culturable microorganisms. In: Colwell RR, Grimes D, editors. Non-culturable microorganisms in the environment. Washington, DC: ASM Press; 2000. pp. 301–23.CrossRefGoogle Scholar
  41. 41.
    Chaiyanan S, Grim C, Maugel T, Huq A, Colwell RR. Ultrastructure of coccoid viable but non-culturable Vibrio cholerae. Environ Microbiol. 2007;9:393–402.PubMedCrossRefGoogle Scholar
  42. 42.
    Novitsky JA, Morita RY. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine Vibrio. Appl Environ Microbiol. 1976;32:617–22.PubMedGoogle Scholar
  43. 43.
    Novitsky JA, Morita RY. Survival of a psychrophilic marine Vibrio under long-term nutrient starvation. Appl Environ Microbiol. 1977;33:635–41.PubMedGoogle Scholar
  44. 44.
    Colwell RR, Huq, A. Vibrios in the environment: viable but non-culturable Vibrio cholerae. In: Wachsmuth IK, Blake PA, Olsvik O, editors. Vibrio cholerae and cholera: molecular to global perspectives. Washington, DC: ASM Press; 1994.Google Scholar
  45. 45.
    Rollins DM, Colwell RR. Viable but non-culturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol. 1986;52:531–8.PubMedGoogle Scholar
  46. 46.
    Linder K, Oliver JD. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl Environ Microbiol. 1989;55:2837–42.PubMedGoogle Scholar
  47. 47.
    Colwell RR. Bacterial death revisited. In: Colwell RR, Grimes D, editors. Nonculturable microorganisms in the environment. Washington, DC: ASM Press; 2000.CrossRefGoogle Scholar
  48. 48.
    Asakura H, Ishiwa A, Arakawa E, Makino S, Okada Y, Yamamoto S, Igimi S. Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ Microbiol. 2006;9:869–79.CrossRefGoogle Scholar
  49. 49.
    Oliver JD. Formation of viable but nonculturable cells. In: Kjelleberg S, editor. Starvation in bacteria. New York, NY: Plenum Press; 1993. pp. 239–72.Google Scholar
  50. 50.
    Wai SN, Moriya T, Kondo K, Misumi H, Amako K. Resuscitation of Vibrio cholerae O1 strain TSI-4 from a viable but nonculturable state by heat shock. FEMS Microbiol Lett. 1996;136:187–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Weichart D, Oliver JD, Kjelleberg S. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiol Lett. 1992;79:205–10.PubMedGoogle Scholar
  52. 52.
    Ravel J, Knight IT, Monahan CE, Hill RT, Colwell RR. Temperature-induced recovery of Vibrio cholerae from the viable but nonculturable state: growth or resuscitation? Microbiology. 1995;141(Pt 2):377–83.PubMedCrossRefGoogle Scholar
  53. 53.
    Colwell RR, Brayton PR, Grimes DJ, Roszak DR, Huq SA, Palmer LM. Viable, but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio-Technology. 1985;3:817–20.Google Scholar
  54. 54.
    Huq A, Hasan JA, Losonsky G, Diomin V, Colwell RR. Colonization of professional divers by toxigenic Vibrio cholerae O1 and V. cholerae non-O1 at dive sites in the United States, Ukraine and Russia. FEMS Microbiol Lett. 1994;120:137–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Stewart PS, Roe F, Rayner J, Elkins JG, Lewandowski Z, Ochsner UA, Hassett DJ. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2000;66:836–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR. Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol. 1999;65:4594–600.PubMedGoogle Scholar
  58. 58.
    Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H. Metal resistance in Candida biofilms. FEMS Microbiol Ecol. 2006;55:479–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol. 2003;69:2313–20.PubMedCrossRefGoogle Scholar
  60. 60.
    Schembri MA, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol. 2003;48:253–67.PubMedCrossRefGoogle Scholar
  61. 61.
    Vorachit M, Lam K, Jayanetra P, Costerton JW. Resistance of Pseudomonas pseudomallei growing as a biofilm on silastic discs to ceftazidime and co-trimoxazole. Antimicrob Agents Chemother. 1993;37:2000–2.PubMedCrossRefGoogle Scholar
  62. 62.
    Hoyle BD, Costerton JW. Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res. 1991;37:91–105.PubMedGoogle Scholar
  63. 63.
    Nichols WW, Evans MJ, Slack MP, Walmsley HL. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol. 1989;135:1291–303.PubMedGoogle Scholar
  64. 64.
    Nickel JC, Wright JB, Ruseska I, Marrie TJ, Whitfield C, Costerton JW. Antibiotic resistance of Pseudomonas aeruginosa colonizing a urinary catheter in vitro. Eur J Clin Microbiol. 1985;4:213–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Ketyi I. Resistance of Escherichia coli to some antibiotics and biocides in the intestinal biofilm of mice. Acta Microbiol Hung. 1991;38:33–41.PubMedGoogle Scholar
  66. 66.
    Espeland EM, Wetzel RG. Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb Ecol. 2001;42:572–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci USA. 2005;102:16819–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol. 1983;45:275–83.PubMedGoogle Scholar
  69. 69.
    Spira WM, Huq A, Ahmed QS, Saeed YA. Uptake of Vibrio cholerae biotype El Tor from contaminated water by water hyacinth (Eichornia crassipes). Appl Environ Microbiol. 1981;42:550–3.PubMedGoogle Scholar
  70. 70.
    Shukla BN, Singh DV, Sanyal SC. Attachment of non-culturable toxigenic Vibrio cholerae O1 and non-O1 and Aeromonas spp. to the aquatic arthropod Gerris spinolae and plants in the River Ganga, Varanasi. FEMS Immunol Med Microbiol. 1995;12:113–20.PubMedCrossRefGoogle Scholar
  71. 71.
    Castro-Rosas J, Escartin EF. Adhesion and colonization of Vibrio cholerae O1 on shrimp and crab carapaces. J Food Prot. 2002;65:492–8.PubMedGoogle Scholar
  72. 72.
    Broza M, Halpern M. Pathogen reservoirs. Chironomid egg masses and Vibrio cholerae. Nature. 2001;412:40.PubMedCrossRefGoogle Scholar
  73. 73.
    Halpern M, Broza YB, Mittler S, Arakawa E, Broza M. Chironomid egg masses as a natural reservoir of Vibrio cholerae non-O1 and non-O139 in freshwater habitats. Microb Ecol. 2004;47:341–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Islam MS, Drasar BS, Bradley DJ. Attachment of toxigenic Vibrio cholerae O1 to various freshwater plants and survival with a filamentous green alga, Rhizoclonium fontanum. J Trop Med Hyg. 1989;92:396–401.PubMedGoogle Scholar
  75. 75.
    Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol. 1999;34:586–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.PubMedCrossRefGoogle Scholar
  77. 77.
    Mueller RS, McDougald D, Cusumano D, Sodhi N, Kjelleberg S, Azam F, Bartlett DH. Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J Bacteriol. 2007;189:5348–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Chiavelli DA, Marsh JW, Taylor RK. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol. 2001;67:3220–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Watnick PI, Fullner KJ, Kolter R. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol. 1999;181:3606–9.PubMedGoogle Scholar
  80. 80.
    Finkelstein RA, Mukerjee S. Hemagglutination: a rapid method for differentiating Vibrio cholerae and El Tor vibrios. Proc Soc Exp Biol Med. 1963;112:355–9.Google Scholar
  81. 81.
    Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA. 2004;101:2524–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Reguera G, Kolter R. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol. 2005;187:3551–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Hall-Stoodley L, Stoodley P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 2005;13:7–10.PubMedCrossRefGoogle Scholar
  84. 84.
    Alam M, Sultana M, Nair GB, Siddique AK, Hasan NA, Sack RB, Sack DA, Ahmed KU, Sadique A, Watanabe H, Grim CJ, Huq A, Colwell RR. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci. 2007;104:17801–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A. Host-induced epidemic spread of the cholera bacterium. Nature. 2002;417:642–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Faruque SM, Biswas K, Udden SM, Ahmad QS, Sack DA, Nair GB, Mekalanos JJ. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci. 2006;103:6350–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Nalin DR, Daya V, Reid A, Levine MM, Cisneros L. Adsorption and growth of Vibrio cholerae on chitin. Infect Immunol. 1979;25:768–70.Google Scholar
  88. 88.
    Lankford CE. Factors of virulence of Vibrio cholerae. Ann NY Acad Sci. 1960;88:1203–12.PubMedCrossRefGoogle Scholar
  89. 89.
    Holmes RK, Vasil ML, Finkelstein RA. Studies on toxinogenesis in Vibrio cholerae. III. Characterization of non-toxinogenic mutants in vitro and in experimental animals. J Clin Invest. 1975;55:551–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Finkelstein RA, Boesman-Finkelstein M, Chang Y, Hase CC. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immunol. 1992;60:472–8.Google Scholar
  91. 91.
    Yildiz FH, Schoolnik GK. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci. 1999;96:4028–33.PubMedCrossRefGoogle Scholar
  92. 92.
    Finkelstein RA, Boesman-Finkelstein M, Sengupta DK, Page WJ, Stanley CM, Phillips TE. Colonial opacity variations among the choleragenic vibrios. Microbiology. 1997;143(Pt 1):23–34.PubMedCrossRefGoogle Scholar
  93. 93.
    White BP. The rugose variant of vibrios. J Pathol. 1938;46:1–6.CrossRefGoogle Scholar
  94. 94.
    Morris JG Jr, Sztein MB, Rice EW, Nataro JP, Losonsky GA, Panigrahi P, Tacket CO, Johnson JA. Vibrio cholerae O1 can assume a chlorine-resistant rugose survival form that is virulent for humans. J Infect Dis. 1996;174:1364–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Wai SN, Mizunoe Y, Takade A, Kawabata SI, Yoshida SI. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol. 1998;64:3648–55.PubMedGoogle Scholar
  96. 96.
    Yildiz FH, Liu XS, Heydorn A, Schoolnik GK. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol. 2004;53:497–515.PubMedCrossRefGoogle Scholar
  97. 97.
    Rice EW, Johnson CJ, Clark RM, Fox KR, Reasoner DJ, Dunnigan ME, Panigrahi P, Johnson JA, Morris JG Jr. Chlorine and survival of “rugose” Vibrio cholerae. Lancet. 1992;340(8821):740.PubMedCrossRefGoogle Scholar
  98. 98.
    Beyhan S, Yildiz FH. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol Microbiol. 2007;63:995–1007.PubMedCrossRefGoogle Scholar
  99. 99.
    Yildiz FH, Dolganov NA, Schoolnik GK. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS(ETr)-associated phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol. 2001;183:1716–26.PubMedCrossRefGoogle Scholar
  100. 100.
    Casper-Lindley C, Yildiz FH. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J Bacteriol. 2004;186:1574–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Fong JC, Karplus K, Schoolnik GK, Yildiz FH. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol. 2006;188:1049–59.PubMedCrossRefGoogle Scholar
  102. 102.
    Fong JC, Yildiz FH. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol. 2007;189:2319–30.PubMedCrossRefGoogle Scholar
  103. 103.
    Hastings JW, Greenberg E. Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J Bacteriol. 1999;181:2667–8.PubMedGoogle Scholar
  104. 104.
    Nealson K, Platt T, Hastings J. Cellular control of the synthesis and activity of the bacterial luminescence system. J Bacteriol. 1970;104:313–22.PubMedGoogle Scholar
  105. 105.
    de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immunol. 2000;68:4839–49.CrossRefGoogle Scholar
  106. 106.
    Eberhard A. Inhibition and activation of bacterial luciferase synthesis. J Bacteriol. 1972;109:1101–5.PubMedGoogle Scholar
  107. 107.
    Nealson KH. Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch Microbiol. 1977;112:73–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Kaplan HB, Greenberg EP. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol. 1985;163:1210–4.PubMedGoogle Scholar
  109. 109.
    Bassler BL, Wright M, Silverman MR. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol. 1994;13:273–86.PubMedCrossRefGoogle Scholar
  110. 110.
    Bassler BL, Wright M, Showalter RE, Silverman MR. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol. 1993;9:773–86.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. Structural identification of a bacterial quorum-sensing signal containing boron. Nature. 2002;415:545–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Freeman JA, Bassler BL. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol. 1999;31:665–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Swartzman E, Silverman M, Meighen EA. The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter. J Bacteriol. 1992;174:7490–3.PubMedGoogle Scholar
  114. 114.
    Lin YH, Miyamoto C, Meighen EA. Cloning and functional studies of a luxO regulator LuxT from Vibrio harveyi. Biochim Biophys Acta. 2000;1494:226–35.PubMedCrossRefGoogle Scholar
  115. 115.
    Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol. 1997;179:4043–5.PubMedGoogle Scholar
  116. 116.
    Jobling MG, Holmes RK. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol Microbiol. 1997;26:1023–34.PubMedCrossRefGoogle Scholar
  117. 117.
    Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell. 2002;110:303–14.PubMedCrossRefGoogle Scholar
  118. 118.
    West PA, Brayton PR, Bryant TN, Colwell RR. Numerical taxonomy of vibrios isolated from aquatic environments. Int J Sys Bacteriol. 1986;36:531–43.CrossRefGoogle Scholar
  119. 119.
    Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci. 2002;99:3129–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Joelsson A, Kan B, Zhu J. Quorum sensing enhances the stress response in Vibrio cholerae. Appl Environ Microbiol. 2007;73:3742–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Camara M, Hardman A, Williams P, Milton D. Quorum sensing in Vibrio cholerae. Nat Genet. 2002;32:217–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s manual of determinative bacteriology, 9th ed. Baltimore, MD: Williams & Wilkins; 1994.Google Scholar
  123. 123.
    Colwell RR, Huq A. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann NY Acad Sci. 1994;740:44–54.PubMedCrossRefGoogle Scholar
  124. 124.
    Keyhani NO, Roseman S. Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta. 1999;1473:108–22.PubMedCrossRefGoogle Scholar
  125. 125.
    Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. Chitin induces natural competence in Vibrio cholerae. Science. 2005;310:1824–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Rowbotham TJ. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol. 1980;33:1179–83.PubMedCrossRefGoogle Scholar
  127. 127.
    Rowbotham TJ. Isolation of Legionella pneumophila from clinical specimens via amoebae, and the interaction of those and other isolates with amoebae. J Clin Pathol. 1983;36:978–86.PubMedCrossRefGoogle Scholar
  128. 128.
    Rowbotham TJ. Current views on the relationships between amoebae, legionellae and man. Isr J Med Sci. 1986;22:678–89.PubMedGoogle Scholar
  129. 129.
    Marciano-Cabral F, Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev. 2003;16:273–307.PubMedCrossRefGoogle Scholar
  130. 130.
    Abd H, Weintraub A, Sandstrom G. Intracellular survival and replication of Vibrio cholerae O139 in aquatic free-living amoebae. Environ Microbiol. 2005;7:1003–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Abd H, Saeed A, Weintraub A, Nair GB, Sandstrom G. Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii. FEMS Microbiol Ecol. 2007;60:33–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Thom S, Warhurst D, Drasar BS. Association of Vibrio cholerae with fresh water amoebae. J Med Microbiol. 1992;36:303–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Abd H, Johansson T, Golovliov I, Sandstrom G, Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol. 2003;69:600–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Huq A, Colwell RR, Rahman R, Ali A, Chowdhury MA, Parveen S, Sack DA, Russek-Cohen E. Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent monoclonal antibody and culture method. Appl Environ Microbiol. 1990;56:2370–3.PubMedGoogle Scholar
  135. 135.
    Louis V, Choopun N, Rivera ING, et al. Detection of Vibrio cholerae in the aquatic environment by culture methods, bacterial plate count/hybridization, and direct fluorescence assay to evaluate its ecology and public health risk. In: ASM Annual Conference, Los Angeles, CA; 2000.Google Scholar
  136. 136.
    Louis VR, Russek-Cohen E, Choopun N, Rivera IN, Gangle B, Jiang SC, Rubin A, Patz JA, Huq A, Colwell RR. Predictability of Vibrio cholerae in Chesapeake Bay. Appl Environ Microbiol. 2003;69:2773–85.PubMedCrossRefGoogle Scholar
  137. 137.
    Huq A, Grim C, Colwell RR, Nair GB. Detection, isolation, and identification of Vibrio cholerae from the environment. In: Coico R, Kowalik T, Quarles J, Stevenson B, Taylor R, editors. Current protocols in microbiology. New York: Wiley; 2006.Google Scholar
  138. 138.
    Farmer JJ III, Hickman-Brenner, FW, Kelly, MT. Vibrio. In: Balows A, Hausler WJ Jr., Shadomy HJ, editors. Manual of clinical microbiology. Washington, DC: ASM Press; 1970. pp. 282–301.Google Scholar
  139. 139.
    Monsur KA. A highly selective gelatin–taurocholate–tellurite medium for the isolation of Vibrio cholerae. Trans R Soc Trop Med Hyg. 1961;55:440–2.PubMedCrossRefGoogle Scholar
  140. 140.
    Choopun N, Louis V, Huq A, Colwell RR. Simple procedure for rapid identification of Vibrio cholerae from the aquatic environment. Appl Environ Microbiol. 2002;68:995–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Binsztein N, Costagliola MC, Pichel M, Jurquiza V, Ramírez FC, Akselman R, Vacchino M, Huq A, Colwell RR. Viable but nonculturable Vibrio cholerae O1 in the aquatic environment of Argentina. Appl Environ Microbiol. 2004;70:7481–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Jiang SC, Fu W. Seasonal abundance and distribution of Vibrio cholerae in coastal waters quantified by a 16S–23S intergenic spacer probe. Microb Ecol. 2001;42:540–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Heidelberg JF, Heidelberg KB, Colwell RR. Seasonality of Chesapeake Bay bacterioplankton species. Appl Environ Microbiol. 2002;68:5488–97.PubMedCrossRefGoogle Scholar
  144. 144.
    Heidelberg JF, Heidelberg KB, Colwell RR. Bacteria of the gamma-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Appl Environ Microbiol. 2002;68:5498–507.PubMedCrossRefGoogle Scholar
  145. 145.
    Pal A, Ramamurthy T, Bhadra RK, Takeda T, Shimada T, Takeda Y, Nair GB, Pal SC, Chakrabarti S. Reassessment of the prevalence of heat-stable enterotoxin (NAG-ST) among environmental Vibrio cholerae non-O1 strains isolated from Calcutta, India, by using a NAG-ST DNA probe. Appl Environ Microbiol. 1992;58:2485–9.PubMedGoogle Scholar
  146. 146.
    Franco AA, Fix AD, Prada A, Paredes E, Palomino JC, Wright AC, Johnson JA, McCarter R, Guerra H, Morris JG Jr. Cholera in Lima, Peru, correlates with prior isolation of Vibrio cholerae from the environment. Am J Epidemiol. 1997;146:1067–75.PubMedCrossRefGoogle Scholar
  147. 147.
    Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR. An indirect fluorescent antibody staining procedure for detection of Vibrio cholerae serovar O1 cells in aquatic environmental samples. J Microb Methods. 1984;2:221–31.CrossRefGoogle Scholar
  148. 148.
    Hasan J, Bernstein D, Huq A, Loomis L, Tamplin M, Colwell RR. Cholera DFA: an improved direct fluorescent monoclonal antibody staining kit for rapid detection and enumeration of Vibrio cholerae O1. FEMS Microbiol Lett. 1994;120:143–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Hasan JA, Huq A, Nair GB, Garg S, Mukhopadhyay AK, Loomis L, Bernstein D, Colwell RR. Development and testing of monoclonal antibody-based rapid immunodiagnostic test kits for direct detection of Vibrio cholerae O139 synonym Bengal. J Clin Microbiol. 1995;33:2935–9.PubMedGoogle Scholar
  150. 150.
    Brayton PR, Roszak D, Palmer LM, Huq SA, Grimes DJ, Colwell RR. Fluorescent antibody enumeration of Vibrio cholerae in the marine environment. IFREMER. 1986;3:507–14.Google Scholar
  151. 151.
    Roszak D, Colwell RR. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987;51:365–79.PubMedGoogle Scholar
  152. 152.
    Chowdhury MAR, Hasan JAK, Huq A, Xu B, Montilla R. DVC–DFA: a simplified technique for detection of viable Vibrio cholerae O1 and O139. Can J Microbiol. 1994;42:87–93.Google Scholar
  153. 153.
    Kogure K, Simidu U, Taga N. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol. 1979;25:415–20.PubMedCrossRefGoogle Scholar
  154. 154.
    Hoshino K, Yamasaki S, Mukhopadhyay AK, Chakraborty S, Basu A, Bhattacharya SK, Nair GB, Shimada T, Takeda Y. Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunol Med Microbiol. 1998;20:201–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Nandi B, Nandy RK, Mukhopadhyay S, Nair GB, Shimada T, Ghose AC. Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J Clin Microbiol. 2000;38:4145–51.PubMedGoogle Scholar
  156. 156.
    Hartley DM, Morris JG Jr, Smith DL. Hyperinfectivity: a critical element in the ability of Vibrio cholerae to cause epidemics? PLoS Med. 2006;3(1):e7.PubMedCrossRefGoogle Scholar
  157. 157.
    Cash R, Music S, Libonati J, Snyder M, Wenzel R, Hornick R. Response of man to infection with Vibrio cholerae I. Clinical, serologic, and bacteriologic responses to a known inoculum. J Infect Dis. 1974;129:45–52.PubMedCrossRefGoogle Scholar
  158. 158.
    Huq A. The role of planktonic copepods in the survival and multiplication of Vibrio cholerae in the aquatic environment. College Park, MD: University of Maryland; 1984.Google Scholar
  159. 159.
    Watkins JD, Huq A. Relationship between oceans and human health. In: Koop CE, Pearson CE, Schwarz MR, editors. Critical issues in global health. San Francisco: Jossey-Bass, A Wiley Company; 2001. pp.356–63.Google Scholar
  160. 160.
    Mourino-Perez RR. Oceanography and the seventh cholera pandemic. Epidemiology. 1998;9:355–7.PubMedCrossRefGoogle Scholar
  161. 161.
    Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. Ecological relationship between Vibrio cholerae and planktonic copepods. Appl Environ Microbiol. 1983;45:275–83.PubMedGoogle Scholar
  162. 162.
    Tamplin M, Gauzens A, Huq A, Sack D, Colwell RR. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Miobiol. 1990;56:1977–80.Google Scholar
  163. 163.
    Pascual M, Rodo X, Ellner SP, Colwell RR, Bouma MJ. Cholera dynamics and El Nino–Southern Oscillation. Science. 2000;289:1766–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Colwell RR, Huq A. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. In: Wilson M, Levins R, Spielman A, editors. Disease in evolution: global changes and emergence of infectious diseases. New York: New York Academy of Sciences; 1994. pp. 44–54.Google Scholar
  165. 165.
    Franco AA, Fix AD, Prada A, Paredes E, Palomino JC, Wright AC, Johnson JA, McCarter R, Guerra H, Morris JG Jr. Cholera in Lima, Peru correlates with prior isolation of Vibrio cholerae from the environment. Am J Epidemiol. 1997;146:1067–75.PubMedCrossRefGoogle Scholar
  166. 166.
    Huq A, West PA, Small EB, Huq MI, Colwell RR. Influence of water temperature, salinity and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosm. Appl Environ Microbiol. 1984;48:420–4.PubMedGoogle Scholar
  167. 167.
    Pascual M, Bouma M, Dobson A. Cholera and climate: revisiting the quantitative evidence. Microbes Infect. 2002;4:237–45.PubMedCrossRefGoogle Scholar
  168. 168.
    Huq A, Chowdhury M, Felsenstein A, Colwell RR, Rahman R, Hossain K. Detection of Vibrio cholerae from aquatic environments in Bangladesh. In: Yasuno M, Whitton BA, editors. Biological monitoring of environment pollution. Tokyo: Tokai University; 1988. pp. 259–64.Google Scholar
  169. 169.
    Colwell R, Huq A. Vibrios in the environment: Viable but non-culturable Vibrio cholerae. In: Wachsmuth I, Blake P, Olsvik O, editors. Vibrio cholerae and cholera: molecular to global perspectives. Washington, DC: ASM Press; 1994. pp. 117–33.Google Scholar
  170. 170.
    Lipp EK, Huq A, Colwell RR. Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev. 2002;15:757–70.PubMedCrossRefGoogle Scholar
  171. 171.
    Sochard MR, Wilson DF, Austin B, Colwell RR. Bacteria associated with the surface and gut of marine copepods. Appl Environ Microbiol. 1979;37:750–9.PubMedGoogle Scholar
  172. 172.
    Kaneko T, Colwell RR. Adsorption of Vibrio parahaemolyticus onto chitin and zooplanktonic copepods. Appl Microbiol. 1975;29:269–74.PubMedGoogle Scholar
  173. 173.
    Kiorboe T, Neilson TJ. Regulation of zooplankton biomass and production and production in a temperate coastal ecosystem. 1. Copepods. Limnol Oceanogr. 1994;39.Google Scholar
  174. 174.
    McCarthy SA, Khambaty FM. International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other non-potable waters. Appl Environ Microbiol. 1994;60:2597–601.PubMedGoogle Scholar
  175. 175.
    Sverdrup HV, Johnson MW, Fleming RH. The oceans. Englewood Cliffs, NJ: Prentice Hall; 1947.Google Scholar
  176. 176.
    Colwell RR, Tamplin ML, Brayton PR, et al. Environmental aspects of Vibrio cholerae in transmission of cholera. In: Sack RB, Zinnaka Y, editors. Advances in research on cholera and related diarrhoeas. Tokyo: K.T.K. Scientific Publishers; 1990. pp. 327–43.Google Scholar
  177. 177.
    Huq A, Xu B, Chowdhury M, Islam M, Montilla R, Colwell RR. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl Environ Microbiol. 1996;62:2508–12.PubMedGoogle Scholar
  178. 178.
    WASH. Orientation to Guinea worm disease: a guide for use in pre-service and in-service training. Sponsored by US-AID; 1991.Google Scholar
  179. 179.
    Briscoe J. The role of water supply in improving health in poor countries, with special reference to Bangladesh. Am J Clin Nutr. 1978;31:2100–13.PubMedGoogle Scholar
  180. 180.
    Hughes JM, Boyce JM, Levine RJ, Khan M, Aziz KM, Huq MI, Curlin GT. Epidemiology of El Tor cholera in rural Bangladesh: importance of surface water in transmission. WHO Bull. 1982;60:395–404.Google Scholar
  181. 181.
    Glass RI, Holmgren J, Khan MR, Hossain KMB, Huq MI, Greenough WB. A randomized control trial of the toxin-blocking effects of B submitted in family members of patients with cholera. J Infect Dis. 1984;149:495–500.PubMedCrossRefGoogle Scholar
  182. 182.
    Cabrini M, Fonda Umani S, Honsell G. Mucilaginous aggregates in the Gulf of Trieste (Northern Adriatic Sea) analysis of the phytoplanktonic communities in the period June–August 1989.Sci Total Environ Suppl. 1992:557–68.Google Scholar
  183. 183.
    Islam MS, Draser BS, Bradley DJ. Attachment of toxigenic Vibrio cholerae O1 to various freshwater plants and survival with filamentous green algae Rhizoclonium fontanum. J Trop Med Hyg. 1989;92:396–401.PubMedGoogle Scholar
  184. 184.
    Chun J, Huq A, Colwell RR. Analysis of 16S–23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl Environ Microbiol. 1999;65:2202–8.PubMedGoogle Scholar
  185. 185.
    Fields PI, Popovic T, Wachsmuth K, Olsvik O.. Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae strains from the Latin American cholera epidemic. J Clin Microbiol. 1992;30:2118–21.PubMedGoogle Scholar
  186. 186.
    Rivera ING, Chun J, Huq A, Sack RB, Colwell RR. Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol. 2001;67:2421–9.PubMedCrossRefGoogle Scholar
  187. 187.
    Keasler S, Hall R. Detecting and biotyping Vibrio cholerae O1 with multiplex polymerase chain reaction. Lancet. 1993;341:1661.PubMedCrossRefGoogle Scholar
  188. 188.
    Shirai H, Nishibuchi M, Ramamurthy T, Bhattacharya SK, Pal SC, Takeda Y. Polymerase chain reaction for detection of cholera enterotoxin operon of Vibrio cholerae. J Clin Microbiol. 1991;29:2517–21.PubMedGoogle Scholar
  189. 189.
    Amann R, Ludweg W, Schleifer K. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.PubMedGoogle Scholar
  190. 190.
    Di Pinto A, Ciccarese G, Tantillo G, Catalano D, Forte VT. A collagenase-targeted multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus. J Food Prot. 2005;68:150–3.PubMedGoogle Scholar
  191. 191.
    Huq A, Yunus M, et al. Simple Sari Cloth Filtration of Water is Sustainable and Continues to Protect Villagers from Cholera in Matlab, Bangladesh. mBio. 2010;1(1):1–5.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Maryland Pathogen Research Institute, University of MarylandCollege ParkUSA

Personalised recommendations