Advertisement

Dual Energy and Spectral CT Techniques in Cardiovascular Imaging

  • B. KraussEmail author
  • C. H. McCollough
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

More and more clinical CT scanners have Dual Energy CT capabilities, and routine usage of this technique, as well as the number of scientific publications on this topic, is increasing rapidly. At the moment, several technical approaches are commercially available that have different strengths and weaknesses. Also, post-processing features differ considerably between different software products. However, the need for a certain degree of standardization has already been recognized by the community. For cardiovascular imaging, the main focus of Dual Energy CT is on the visualization and quantification of iodinated contrast media in vessels. Virtual monoenergetic images allow for an interactive optimization of iodine contrast relative to soft tissue, calcium, or stent material. Virtual monoenergetic CT number values are independent of the patient or the prefiltration of the used scanner; they are in this way more objective and reproducible. Additional diagnostic information is available through the calculation of iodine maps for the heart and lungs. While some of the discussed applications are at the very early stage of feasibility studies, others, such as bone removal, virtual monoenergetic imaging, or visualization of iodine uptake in the lung parenchyma, are already now widely used.

Keywords

Dual Energy CT Spectral CT Spectral imaging Cardiovascular imaging Image noise in Dual Energy CT Vascular imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015;276(3):637–53.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Siegel MJ, Kaza RK, Bolus DN, Boll DT, Rofsky NM, De Cecco CN, Foley WD, Morgan DE, Schoepf UJ, Sahani DV, Shuman WP, Vrtiska TJ, Yeh BM, Berland LL. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, part 1: technology and terminology. J Comput Assist Tomogr. 2016;40(6):841–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol. 2012;199(5 Suppl):S3–8.PubMedCrossRefGoogle Scholar
  4. 4.
    De Cecco CN, Darnell A, Rengo M, Muscogiuri G, Bellini D, Ayuso C, Laghi A. Dual-energy CT: oncologic applications. AJR Am J Roentgenol. 2012;199(5Suppl):S98–S105.PubMedCrossRefGoogle Scholar
  5. 5.
    Koonce JD, Vliegenthart R, Schoepf UJ, Schmidt B, Wahlquist AE, Nietert PJ, Bastarrika G, Flohr TG, Meinel FG. Accuracy of dual-energy computed tomography for the measurement of iodine concentration using cardiac CT protocols: validation in a phantom model. Eur Radiol. 2014;24(2):512–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Caruso D, De Cecco CN, Schoepf UJ, Schaefer AR, Leland PW, Johnson D, Laghi A, Hardie AD. Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Clin Imaging. 2016;41:118–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 1976;21(5):733–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Hünemohr N, Krauss B, Tremmel C, Ackermann B, Jäkel O, Greilich S. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates. Phys Med Biol. 2014;59(1):83–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Goodsitt MM, Christodoulou EG, Larson SC. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys. 2011;38(4):2222–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Kalender WA, Klotz E, Suess C. Vertebral bone mineral analysis: an integrated approach with CT. Radiology. 1987;164(2):419–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Küttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16(2):256–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Stolzmann P, Kozomara M, Chuck N, Müntener M, Leschka S, Scheffel H, Alkadhi H. In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging. 2010;35(5):629–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Choi HK, Burns LC, Shojania K, Koenig N, Reid G, Abufayyah M, Law G, Kydd AS, Ouellette H, Nicolaou S. Dual energy CT in gout: a prospective validation study. Ann Rheum Dis. 2012;71(9):1466–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffman EA, Lynch DA, Barr RG, van Beek EJ, Parraga G. IWPFI investigators. Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes. J Magn Reson Imaging. 2016;43(3):544–57.Google Scholar
  15. 15.
    Kerl JM, Bauer RW, Renker M, Weber E, Weisser P, Korkusuz H, Schell B, Larson MC, Kromen W, Jacobi V, Vogl TJ. Triphasic contrast injection improves evaluation of dual energy lung perfusion in pulmonary CT angiography. Eur J Radiol. 2011;80(3):e483–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Leng S, Shiung M, Ai S, Qu M, Vrtiska TJ, Grant KL, Krauss B, Schmidt B, Lieske JC, McCollough CH. Feasibility of discriminating uric acid from non-uric acid renal stones using consecutive spatially registered low- and high-energy scans obtained on a conventional CT scanner. AJR Am J Roentgenol. 2015;204(1):92–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Tomandl BF, Hammen T, Klotz E, Ditt H, Stemper B, Lell M. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. AJNR Am J Neuroradiol. 2006;27(1):55–9.PubMedGoogle Scholar
  18. 18.
    Diekhoff T, Ziegeler K, Feist E, Kiefer T, Mews J, Hamm B, Hermann KG. First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference. Skelet Radiol. 2015;44(11):1573–7.CrossRefGoogle Scholar
  19. 19.
    Euler A, Parakh A, Falkowski AL, Manneck S, Dashti D, Krauss B, Szucs-Farkas Z, Schindera ST. Initial results of a single-source dual-energy computed tomography technique using a split-filter: assessment of image quality, radiation dose, and accuracy of dual-energy applications in an in vitro and in vivo study. Investig Radiol. 2016;51(8):491–8.CrossRefGoogle Scholar
  20. 20.
    Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Trans Med Imaging. 2013;32(7):1153–90.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kaemmerer N, Brand M, Hammon M, May M, Wuest W, Krauss B, Uder M, Lell MM. Dual-energy computed tomography angiography of the head and neck with single-source computed tomography: a new technical (split filter) approach for bone removal. Investig Radiol. 2016;51(10):618–23.CrossRefGoogle Scholar
  22. 22.
    Cai XR, Feng YZ, Qiu L, Xian ZH, Yang WC, Mo XK, Wang XB. Iodine distribution map in dual-energy computed tomography pulmonary artery imaging with rapid kVp switching for the diagnostic analysis and quantitative evaluation of acute pulmonary embolism. Acad Radiol. 2015;22(6):743–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang D, Li X, Liu B. Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys. 2011;38(3):1178–88.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hidas G, Eliahou R, Duvdevani M, Coulon P, Lemaitre L, Gofrit ON, Pode D, Sosna J. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with x-ray diffraction. Radiology. 2010;257(2):394–401.PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, Fink C, Weckbach S, Lenhard M, Schmidt B, Flohr T, Reiser MF, Becker CR. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer HP, Lell M, Kachelrieß M. Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys. 2015;42(7):4349–66.PubMedCrossRefGoogle Scholar
  27. 27.
    Siegel MJ, Curtis WA, Ramirez-Giraldo JC. Effects of dual-energy technique on radiation exposure and image quality in pediatric body CT. AJR Am J Roentgenol. 2016;4:1–10. [Epub ahead of print].Google Scholar
  28. 28.
    Ulrich A, Burg MC, Raupach R, Bunck A, Schuelke C, Maintz D, Heindel W, Seifarth H. Coronary stent imaging with dual-source CT: assessment of lumen visibility using different convolution kernels and postprocessing filters. Acta Radiol. 2015;56(1):42–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH. Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys. 2005;32(8):2536–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Gassenmaier T, Petri N, Allmendinger T, Flohr T, Weng AM, Kunz AS, Petritsch B, Voelker W, Bley TA. In vitro comparison of second- and third-generation dual-source CT for coronary stent visualization at different tube potentials. Acad Radiol. 2016;23(8):961–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Horiguchi J, Fujioka C, Kiguchi M, Shen Y, Althoff CE, Yamamoto H, Ito K. Soft and intermediate plaques in coronary arteries: how accurately can we measure CT attenuation using 64-MDCT? AJR Am J Roentgenol. 2007;189(4):981–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Krauss B, Grant KL, Schmidt BT, Flohr TG. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Investig Radiol. 2015;50(2):114–8.CrossRefGoogle Scholar
  33. 33.
    Kalisz K, Buethe J, Saboo SS, Abbara S, Halliburton S, Rajiah P. Artifacts at cardiac CT: physics and solutions. Radiographics. 2016;36(7):2064–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Stenner P, Schmidt B, Bruder H, Allmendinger T, Haberland U, Flohr T, Kachelriess M. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT. Med Phys. 2009;36(12):5683–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Ohnesorge B, Flohr T, Klingenbeck-Regn K. Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur Radiol. 1999;9(3):563–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Carrascosa PM, Cury RC, Deviggiano A, Capunay C, Campisi R, López de Munain M, Vallejos J, Tajer C, Rodriguez-Granillo GA. Comparison of myocardial perfusion evaluation with single versus dual-energy CT and effect of beam-hardening artifacts. Acad Radiol. 2015;22(5):591–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Bucher AM, Wichmann JL, Schoepf UJ, Wolla CD, Canstein C, McQuiston AD, Krazinski AW, De Cecco CN, Meinel FG, Vogl TJ, Geyer LL. Quantitative evaluation of beam-hardening artefact correction in dual-energy CT myocardial perfusion imaging. Eur Radiol. 2016;26(9):3215–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Birnbaum BA, Hindman N, Lee J, Babb JS. Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology. 2007;242(1):109–19.PubMedCrossRefGoogle Scholar
  39. 39.
    Kalender WA, Klotz E, Kostaridou L. An algorithm for noise suppression in dual energy CT material density images. IEEE Trans Med Imaging. 1988;7(3):218–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Dong X, Niu T, Zhu L. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization. Med Phys. 2014;41(5):051909.PubMedCrossRefGoogle Scholar
  41. 41.
    Leng S, Yu L, Fletcher JG, McCollough CH. Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual monoenergetic dual-energy CT. Radiology. 2015;276(2):562–70.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Investig Radiol. 2014;49(9):586–92.CrossRefGoogle Scholar
  43. 43.
    Foley WD, Shuman WP, Siegel MJ, Sahani DV, Boll DT, Bolus DN, De Cecco CN, Kaza RK, Morgan DE, Schoepf UJ, Vrtiska TJ, Yeh BM, Berland LL. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, part 2: radiation dose and iodine sensitivity. J Comput Assist Tomogr. 2016;40(6):846–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199(5 Suppl):S9–S15.PubMedCrossRefGoogle Scholar
  45. 45.
    Alvarez R, Seppi E. A comparison of noise and dose in conventional and energy selective computed tomography. IEEE Trans Nucl Sci. 1979;NS-26:2853–6.CrossRefGoogle Scholar
  46. 46.
    Christe A, Heverhagen J, Ozdoba C, Weisstanner C, Ulzheimer S, Ebner L. CT dose and image quality in the last three scanner generations. World J Radiol. 2013;5(11):421–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Primak AN, Giraldo JC, Eusemann CD, Schmidt B, Kantor B, Fletcher JG, McCollough CH. Dual-source dual-energy CT with additional tin filtration: dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol. 2010;195(5):1164–74.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Uhrig M, Simons D, Kachelrieß M, Pisana F, Kuchenbecker S, Schlemmer HP. Advanced abdominal imaging with dual energy CT is feasible without increasing radiation dose. Cancer Imaging. 2016;16(1):15.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gutjahr R, Halaweish AF, Yu Z, Leng S, Yu L, Li Z, Jorgensen SM, Ritman EL, Kappler S, McCollough CH. Human imaging with photon counting-based computed tomography at clinical dose levels: contrast-to-noise ratio and cadaver studies. Investig Radiol. 2016;51(7):421–9.CrossRefGoogle Scholar
  50. 50.
    Ohana M, Labani A, Jeung MY, El Ghannudi S, Gaertner S, Roy C. Iterative reconstruction in single source dual-energy CT pulmonary angiography: is it sufficient to achieve a radiation dose as low as state-of-the-art single-energy CTPA? Eur J Radiol. 2015;84(11):2314–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Kofler JM, Yu L, Leng S, Zhang Y, Li Z, Carter RE, McCollough CH. Assessment of low-contrast resolution for the American College of Radiology Computed Tomographic Accreditation Program: what is the impact of iterative reconstruction? J Comput Assist Tomogr. 2015;39(4):619–23.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Schick D, Pratap J. Radiation dose efficiency of dual-energy CT benchmarked against single-source, kilovoltage-optimized scans. Br J Radiol. 2016;89(1058):20150486.PubMedCrossRefGoogle Scholar
  53. 53.
    Purysko AS, Primak AN, Baker ME, Obuchowski NA, Remer EM, John B, Herts BR. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol. 2014;69(12):e538–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Dubourg B, Caudron J, Lestrat JP, Bubenheim M, Lefebvre V, Godin M, Tron C, Eltchaninoff H, Bauer F, Dacher JN. Single-source dual-energy CT angiography with reduced iodine load in patients referred for aortoiliofemoral evaluation before transcatheter aortic valve implantation: impact on image quality and radiation dose. Eur Radiol. 2014;24(11):2659–68.PubMedCrossRefGoogle Scholar
  55. 55.
    Takrouri HS, Alnassar MM, Amirabadi A, Babyn PS, Moineddin R, Padfield NL, BenDavid G, Doria AS. Metal artifact reduction: added value of rapid-kilovoltage-switching dual-energy CT in relation to single-energy CT in a piglet animal model. AJR Am J Roentgenol. 2015;205(3):W352–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Cody DD, Kim HJ, Cagnon CH, Larke FJ, McNitt-Gray MM, Kruger RL, Flynn MJ, Seibert JA, Judy PF, Wu X. Normalized CT dose index of the CT scanners used in the National Lung Screening Trial. AJR Am J Roentgenol. 2010;194(6):1539–46.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Machida H, Tanaka I, Fukui R, Shen Y, Ishikawa T, Tate E, Ueno E. Dual-energy spectral CT: various clinical vascular applications. Radiographics. 2016;36(4):1215–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Watanabe Y, Uotani K, Nakazawa T, Higashi M, Yamada N, Hori Y, Kanzaki S, Fukuda T, Itoh T, Naito H. Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur Radiol. 2009;19(4):1019–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Andreini D, Pontone G, Mushtaq S, Bertella E, Conte E, Segurini C, Giovannardi M, Baggiano A, Annoni A, Formenti A, Petullà M, Beltrama V, Volpato V, Bartorelli AL, Trabattoni D, Fiorentini C, Pepi M. Diagnostic accuracy of rapid kilovolt peak-switching dual-energy CT coronary angiography in patients with a high calcium score. JACC Cardiovasc Imaging. 2015;8(6):746–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Mannelli L, MacDonald L, Mancini M, Ferguson M, Shuman WP, Ragucci M, Monti S, Xu D, Yuan C, Mitsumori LM. Dual energy computed tomography quantification of carotid plaques calcification: comparison between monochromatic and polychromatic energies with pathology correlation. Eur Radiol. 2015;25(5):1238–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Mangold S, De Cecco CN, Schoepf UJ, Yamada RT, Varga-Szemes A, Stubenrauch AC, Caruso D, Fuller SR, Vogl TJ, Nikolaou K, Todoran TM, Wichmann JL. A noise-optimized virtual monochromatic reconstruction algorithm improves stent visualization and diagnostic accuracy for detection of in-stent re-stenosis in lower extremity run-off CT angiography. Eur Radiol. 2016;26(12):4380–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Beeres M, Trommer J, Frellesen C, Nour-Eldin NE, Scholtz JE, Herrmann E, Vogl TJ, Wichmann JL. Evaluation of different keV-settings in dual-energy CT angiography of the aorta using advanced image-based virtual monoenergetic imaging. Int J Cardiovasc Imaging. 2016;32(1):137–44.PubMedCrossRefGoogle Scholar
  63. 63.
    Apel A, Fletcher JG, Fidler JL, Hough DM, Yu L, Guimaraes LS, Bellemann ME, McCollough CH, Holmes DR 3rd, Eusemann CD. Pilot multi-reader study demonstrating potential for dose reduction in dual energy hepatic CT using non-linear blending of mixed kV image datasets. Eur Radiol. 2011;21(3):644–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Li S, Wang C, Jiang X, Xu G. Effects of dual-energy CT with non-linear blending on abdominal CT angiography. Korean J Radiol. 2014;15(4):430–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Paul J, Tan MM, Farhang M, Beeres M, Vogl TJ. Dual-energy CT spectral and energy weighted data sets: carotid stenosis and plaque detection. Acad Radiol. 2013;20(9):1144–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Jorgensen SM, Korinek MJ, Vercnocke AJ, Anderson JL, Halaweish A, Leng S, McCollough CH, Ritman EL. Arterial wall perfusion measured with photon counting spectral X-ray CT. Proc SPIE Int Soc Opt Eng. 2016;28:9967.Google Scholar
  67. 67.
    Lemos AA, Pezzullo JC, Fasani P, Gullo M, Giannitto C, Lo Gullo R, Biondetti PR. Can the unenhanced phase be eliminated from dual-phase CT angiography for chest pain? Implications for diagnostic accuracy in acute aortic intramural hematoma. AJR Am J Roentgenol. 2014;203(6):1171–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Toepker M, Moritz T, Krauss B, Weber M, Euller G, Mang T, Wolf F, Herold CJ, Ringl H. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values. Eur J Radiol. 2012;81(3):e398–405.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang J, Garg N, Duan X, Liu Y, Leng S, Yu L, Ritman EL, Kantor B, McCollough CH. Quantification of iron in the presence of calcium with dual-energy computed tomography (DECT) in an ex vivo porcine plaque model. Phys Med Biol. 2011;56(22):7305–16.PubMedCrossRefGoogle Scholar
  70. 70.
    Shinohara Y, Sakamoto M, Kuya K, Kishimoto J, Iwata N, Ohta Y, Fujii S, Watanabe T, Ogawa T. Assessment of carotid plaque composition using fast-kV switching dual-energy CT with gemstone detector: comparison with extracorporeal and virtual histology-intravascular ultrasound. Neuroradiology. 2015;57(9):889–95.PubMedCrossRefGoogle Scholar
  71. 71.
    Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, Schmidt B, Marincek B, Alkadhi H, Schertler T. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249(2):682–91.PubMedCrossRefGoogle Scholar
  72. 72.
    Flors L, Leiva-Salinas C, Norton PT, Patrie JT, Hagspiel KD. Endoleak detection after endovascular repair of thoracic aortic aneurysm using dual-source dual-energy CT: suitable scanning protocols and potential radiation dose reduction. AJR Am J Roentgenol. 2013;200(2):451–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Maturen KE, Kaza RK, Liu PS, Quint LE, Khalatbari SH, Platt JF. “Sweet spot” for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT. J Comput Assist Tomogr. 2012;36(1):83–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lee CW, Seo JB, Song JW, Kim MY, Lee HY, Park YS, Chae EJ, Jang YM, Kim N, Krauss B. Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography. Eur Radiol. 2011;21(1):54–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Pontana F, Faivre JB, Remy-Jardin M, Flohr T, Schmidt B, Tacelli N, Pansini V, Remy J. Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol. 2008;15(12):1494–504.PubMedCrossRefGoogle Scholar
  76. 76.
    Apfaltrer P, Bachmann V, Meyer M, Henzler T, Barraza JM, Gruettner J, Walter T, Schoepf UJ, Schoenberg SO, Fink C. Prognostic value of perfusion defect volume at dual energy CTA in patients with pulmonary embolism: correlation with CTA obstruction scores, CT parameters of right ventricular dysfunction and adverse clinical outcome. Eur J Radiol. 2012;81(11):3592–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Yang GF, Yang X, Zhang LJ, Zhu H, Chai X, Hu XB, Hu YX, Lu GM. Pulmonary enhancement imaging with dual energy CT for the detection of pulmonary embolism in a rabbit model: comparison to perfusion planar scintigraphy, SPECT and SPECT-CT modalities. Acad Radiol. 2011;18(5):605–14.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang LJ, Lu L, Bi J, Jin LX, Chai X, Zhao YE, Chen B, Lu GM. Detection of pulmonary embolism comparison between dual energy CT and MR angiography in a rabbit model. Acad Radiol. 2010;17(12):1550–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Danad I, Ó Hartaigh B, Min JK. Dual-energy computed tomography for detection of coronary artery disease. Expert Rev Cardiovasc Ther. 2015;13(12):1345–56.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Raju R, Thompson AG, Lee K, Precious B, Yang TH, Berger A, Taylor C, Heilbron B, Nguyen G, Earls J, Min J, Carrascosa P, Murphy D, Hague C, Leipsic JA. Reduced iodine load with CT coronary angiography using dual-energy imaging: a prospective randomized trial compared with standard coronary CT angiography. J Cardiovasc Comput Tomogr. 2014;8(4):282–8.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mangold S, Cannaó PM, Schoepf UJ, Wichmann JL, Canstein C, Fuller SR, Muscogiuri G, Varga-Szemes A, Nikolaou K, De Cecco CN. Impact of an advanced image-based monoenergetic reconstruction algorithm on coronary stent visualization using third generation dual-source dual-energy CT: a phantom study. Eur Radiol. 2016;26(6):1871–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Halpern EJ, Halpern DJ, Yanof JH, Amin-Spector S, Fischman D, Aviram G, Sosna J. Is coronary stent assessment improved with spectral analysis of dual energy CT? Acad Radiol. 2009;16(10):1241–50.PubMedCrossRefGoogle Scholar
  83. 83.
    Stehli J, Clerc OF, Fuchs TA, Possner M, Gräni C, Benz DC, Buechel RR, Kaufmann PA. Impact of monochromatic coronary computed tomography angiography from single-source dual-energy CT on coronary stenosis quantification. J Cardiovasc Comput Tomogr. 2016;10(2):135–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Secchi F, De Cecco CN, Spearman JV, Silverman JR, Ebersberger U, Sardanelli F, Schoepf UJ. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction. Acta Radiol. 2015;56(4):413–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Geyer LL, Scherr M, Körner M, Wirth S, Deak P, Reiser MF, Linsenmaier U. Imaging of acute pulmonary embolism using a dual energy CT system with rapid kVp switching: initial results. Eur J Radiol. 2012;81(12):3711–8.PubMedCrossRefGoogle Scholar
  86. 86.
    So A, Hsieh J, Imai Y, Narayanan S, Kramer J, Procknow K, Dutta S, Leipsic J, Min JK, Labounty T, Lee TY. Prospectively ECG-triggered rapid kV-switching dual-energy CT for quantitative imaging of myocardial perfusion. JACC Cardiovasc Imaging. 2012;5(8):829–36.PubMedCrossRefGoogle Scholar
  87. 87.
    Vliegenthart R, Pelgrim GJ, Ebersberger U, Rowe GW, Oudkerk M, Schoepf UJ. Dual-energy CT of the heart. AJR Am J Roentgenol. 2012;199(5 Suppl):S54–63.PubMedCrossRefGoogle Scholar
  88. 88.
    Ko SM, Song MG, Chee HK, Hwang HK, Feuchtner GM, Min JK. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI. AJR Am J Roentgenol. 2014;203(6):W605–13.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wichmann JL, Arbaciauskaite R, Kerl JM, Frellesen C, Bodelle B, Lehnert T, Monsefi N, Vogl TJ, Bauer RW. Evaluation of monoenergetic late iodine enhancement dual-energy computed tomography for imaging of chronic myocardial infarction. Eur Radiol. 2014;24(6):1211–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Schwarz F, Nance JW Jr, Ruzsics B, Bastarrika G, Sterzik A, Schoepf UJ. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology. 2012;264(3):700–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Yamada Y, Jinzaki M, Okamura T, Yamada M, Tanami Y, Abe T, Kuribayashi S. Feasibility of coronary artery calcium scoring on virtual unenhanced images derived from single-source fast kVp-switching dual-energy coronary CT angiography. J Cardiovasc Comput Tomogr. 2014;8(5):391–400.PubMedCrossRefGoogle Scholar
  92. 92.
    Sudarski S, Fink C, Sueselbeck T, Kayed H, Schoenberg SO, Borggrefe M, Vliegenthart R, Oudkerk M, Henzler T. Quantitative analysis of coronary plaque composition by dual-source CT in patients with acute non-ST-elevation myocardial infarction compared to patients with stable coronary artery disease correlated with virtual histology intravascular ultrasound. Acad Radiol. 2013;20(8):995–1003.PubMedCrossRefGoogle Scholar
  93. 93.
    Henzler T, Porubsky S, Kayed H, Harder N, Krissak UR, Meyer M, Sueselbeck T, Marx A, Michaely H, Schoepf UJ, Schoenberg SO, Fink C. Attenuation-based characterization of coronary atherosclerotic plaque: comparison of dual source and dual energy CT with single-source CT and histopathology. Eur J Radiol. 2011;80(1):54–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Barreto M, Schoenhagen P, Nair A, Amatangelo S, Milite M, Obuchowski NA, Lieber ML, Halliburton SS. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr. 2008;2(4):234–42.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Hazirolan T, Akpinar B, Unal S, Gümrük F, Haliloglu M, Alibek S. Value of dual energy computed tomography for detection of myocardial iron deposition in Thalassaemia patients: initial experience. Eur J Radiol. 2008;68(3):442–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Suzuki H, Imafuji A, Kato M, Omiya H. Dual energy CT assessment of amiodarone induced liver damage. SOMATOM Sessions Online. 2014. https://health.siemens.com/ct_applications/somatomsessions/index.php/dual-energy-ct-assessment-of-amiodarone-induced-liver-damage/.
  97. 97.
    Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53(15):4031–47.PubMedCrossRefGoogle Scholar
  98. 98.
    Yu Z, Leng S, Jorgensen SM, Li Z, Gutjahr R, Chen B, Halaweish AF, Kappler S, Yu L, Ritman EL, McCollough CH. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol. 2016;61(4):1572–95.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld MK, Henderson G, Jones EC, Malayeri AA, Folio LR, Bluemke DA. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology. 2016;279(1):239–45.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Holmes DR 3rd, Fletcher JG, Apel A, Huprich JE, Siddiki H, Hough DM, Schmidt B, Flohr TG, Robb R, McCollough C, Wittmer M, Eusemann C. Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol. 2008;68(3):409–13.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zatz LM. The effect of the kVp level on EMI values. Radiology. 1976;119:683–8.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Siemens Healthcare GmbHForchheimGermany
  2. 2.Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations