Myocardial Perfusion Imaging: Dual-Energy Approaches

  • Domenico De Santis
  • Marwen Eid
  • Taylor M. DuguayEmail author
  • Carlo N. De Cecco
Part of the Contemporary Medical Imaging book series (CMI)


Thanks to its power to exclude significant coronary artery stenosis in patients with low and intermediate coronary artery disease (CAD) risk profiles, coronary CT angiography (CCTA) has become an integral part of the non-invasive diagnostic work up for the anatomic evaluation of the coronary arteries in patients with suspected CAD. Nevertheless, CCTA remains a morphological technique and the hemodynamic relevance of coronary stenosis is not adequately predicted by purely anatomical tests. Computed tomography myocardial perfusion imaging (CTMPI) offers the possibility to directly detect the presence of perfusion defects in the myocardium following the administration of pharmacological stressing agent. This emerging technology has the potential to become the stand-alone method for the evaluation of patients with suspected CAD using a single imaging modality, and within a single imaging session. This chapter will provide an overview of dual-energy CTPMI.


Dual-energy CT myocardial perfusion imaging Acquisition technique in CT myocardial perfusion imaging CT myocardial perfusion imaging Pharmacological stress agents in CT myocardial perfusion imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bucher AM, De Cecco CN, Schoepf UJ, Wang R, Meinel FG, Binukrishnan SR, et al. Cardiac CT for myocardial ischaemia detection and characterization–comparative analysis. Br J Radiol. 2014;87:20140159.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    World Health Organization. The top 10 causes of death.
  3. 3.
    Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.Google Scholar
  4. 4.
    American Heart Association. Heart disease and stroke statistics–at-a-glance. 2015.
  5. 5.
    Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2010;122:e525–55.PubMedGoogle Scholar
  6. 6.
    De Cecco CN, Meinel FG, Chiaramida SA, Costello P, Bamberg F, Schoepf UJ. Coronary artery computed tomography scanning. Circulation. 2014;129:1341–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Ohnesorge BM, Hofmann LK, Flohr TG, Schoepf UJ. CT for imaging coronary artery disease: defining the paradigm for its application. Int J Cardiovasc Imaging. 2005;21:85–104.PubMedCrossRefGoogle Scholar
  8. 8.
    Flohr TG, Schoepf UJ, Ohnesorge BM. Chasing the heart: new developments for cardiac CT. J Thorac Imaging. 2007;22:4–16.PubMedCrossRefGoogle Scholar
  9. 9.
    von Ballmoos MW, Haring B, Juillerat P, Alkadhi H. Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med. 2011;154:413–20.CrossRefGoogle Scholar
  10. 10.
    Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59:1719–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56:177–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55:173–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52:636–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Sarno G, Decraemer I, Vanhoenacker PK, De Bruyne B, Hamilos M, Cuisset T, et al. On the inappropriateness of noninvasive multidetector computed tomography coronary angiography to trigger coronary revascularization: a comparison with invasive angiography. JACC Cardiovasc Interv. 2009;2:550–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Stuijfzand WJ, Danad I, Raijmakers PG, Marcu CB, Heymans MW, van Kuijk CC, et al. Additional value of transluminal attenuation gradient in CT angiography to predict hemodynamic significance of coronary artery stenosis. J Am Coll Cardiol Img. 2014;7:374–86.CrossRefGoogle Scholar
  17. 17.
    De Cecco CN, Varga-Szemes A, Meinel FG, Renker M, Schoepf UJ. Beyond stenosis detection: computed tomography approaches for determining the functional relevance of coronary artery disease. Radiol Clin N Am. 2015;53:317–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang R, Renker M, Schoepf UJ, Wichmann JL, Fuller SR, Rier JD, et al. Diagnostic value of quantitative stenosis predictors with coronary CT angiography compared to invasive fractional flow reserve. Eur J Radiol. 2015;84:1509–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Varga-Szemes A, Meinel FG, De Cecco CN, Fuller SR, Bayer RR 2nd, Schoepf UJ. CT myocardial perfusion imaging. AJR Am J Roentgenol. 2015;204:487–97.PubMedCrossRefGoogle Scholar
  20. 20.
    George RT, Silva C, Cordeiro MA, DiPaula A, Thompson DR, McCarthy WF, et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol. 2006;48:153–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Bischoff B, Bamberg F, Marcus R, Schwarz F, Becker HC, Becker A, et al. Optimal timing for first-pass stress CT myocardial perfusion imaging. Int J Cardiovasc Imaging. 2013;29:435–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Cannao PM, Schoepf UJ, Muscogiuri G, Wichmann JL, Fuller SR, Secchi F, et al. Technical prerequisites and imaging protocols for dynamic and dual energy myocardial perfusion imaging. Eur J Radiol. 2015;84:2401–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Koonce JD, Vliegenthart R, Schoepf UJ, Schmidt B, Wahlquist AE, Nietert PJ, et al. Accuracy of dual-energy computed tomography for the measurement of iodine concentration using cardiac CT protocols: validation in a phantom model. Eur Radiol. 2014;24:512–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Kang DK, Schoepf UJ, Bastarrika G, Nance JW Jr, Abro JA, Ruzsics B. Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR. 2010;31:276–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Siegel MJ, Kaza RK, Bolus DN, Boll DT, Rofsky NM, De Cecco CN, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, part 1: technology and terminology. J Comput Assist Tomogr. 2016;40:841–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259:257–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Gabbai M, Leichter I, Mahgerefteh S, Sosna J. Spectral material characterization with dual-energy CT: comparison of commercial and investigative technologies in phantoms. Acta Radiol. 2015;56:960–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Nance JW Jr, Bastarrika G, Kang DK, Ruzsics B, Vogt S, Schmidt B, et al. High-temporal resolution dual-energy computed tomography of the heart using a novel hybrid image reconstruction algorithm: initial experience. J Comput Assist Tomogr. 2011;35:119–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Arnoldi E, Lee YS, Ruzsics B, Weininger M, Spears JR, Rowley CP, et al. CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr. 2011;5:421–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol. 2009;54:1072–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Ko SM, Choi JW, Song MG, Shin JK, Chee HK, Chung HW, et al. Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol. 2011;21:26–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer M, Nance JW Jr, Schoepf UJ, Moscariello A, Weininger M, Rowe GW, et al. Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease. Eur J Radiol. 2012;81:3719–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Ruzsics B, Schwarz F, Schoepf UJ, Lee YS, Bastarrika G, Chiaramida SA, et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol. 2009;104:318–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Ruzsics B, Lee H, Powers ER, Flohr TG, Costello P, Schoepf UJ. Images in cardiovascular medicine. Myocardial ischemia diagnosed by dual-energy computed tomography: correlation with single-photon emission computed tomography. Circulation. 2008;117:1244–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Fahmi R, Eck BL, Levi J, Fares A, Dhanantwari A, Vembar M, et al. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system. Phys Med Biol. 2016;61:2407–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Meinel FG, Canstein C, Schoepf UJ, Sedlmaier M, Schmidt B, Harris BS, et al. Image quality and radiation dose of low tube voltage 3rd generation dual-source coronary CT angiography in obese patients: a phantom study. Eur Radiol. 2014;24:1643–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Vliegenthart R, Pelgrim GJ, Ebersberger U, Rowe GW, Oudkerk M, Schoepf UJ. Dual-energy CT of the heart. AJR Am J Roentgenol. 2012;199:S54–63.PubMedCrossRefGoogle Scholar
  38. 38.
    George RT, Arbab-Zadeh A, Miller JM, Vavere AL, Bengel FM, Lardo AC, et al. Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging. 2012;5:333–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Habis M, Capderou A, Sigal-Cinqualbre A, Ghostine S, Rahal S, Riou JY, et al. Comparison of delayed enhancement patterns on multislice computed tomography immediately after coronary angiography and cardiac magnetic resonance imaging in acute myocardial infarction. Heart. 2009;95:624–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Deseive S, Bauer RW, Lehmann R, Kettner M, Kaiser C, Korkusuz H, et al. Dual-energy computed tomography for the detection of late enhancement in reperfused chronic infarction: a comparison to magnetic resonance imaging and histopathology in a porcine model. Investig Radiol. 2011;46:450–6.CrossRefGoogle Scholar
  41. 41.
    Meinel FG, De Cecco CN, Schoepf UJ, Nance JW Jr, Silverman JR, Flowers BA, et al. First-arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014;270:708–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Dole WP, Yamada N, Bishop VS, Olsson RA. Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circ Res. 1985;56:517–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34:48–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Sambuceti G, Marzilli M, Marraccini P, Schneider-Eicke J, Gliozheni E, Parodi O, et al. Coronary vasoconstriction during myocardial ischemia induced by rises in metabolic demand in patients with coronary artery disease. Circulation. 1997;95:2652–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Kurata A, Mochizuki T, Koyama Y, Haraikawa T, Suzuki J, Shigematsu Y, et al. Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: alternative to stress myocardial perfusion scintigraphy. Circ J. 2005;69:550–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Rumberger JA, Feiring AJ, Lipton MJ, Higgins CB, Ell SR, Marcus ML. Use of ultrafast computed tomography to quantitate regional myocardial perfusion: a preliminary report. J Am Coll Cardiol. 1987;9:59–69.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mahmarian JJ, Cerqueira MD, Iskandrian AE, Bateman TM, Thomas GS, Hendel RC, et al. Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the ADVANCE MPI 2 trial. JACC Cardiovasc Imaging. 2009;2:959–68.PubMedCrossRefGoogle Scholar
  48. 48.
    Salgado Garcia C, Jimenez Heffernan A, Sanchez de Mora E, Ramos Font C, Lopez Martin J, Rivera de los Santos F, et al. Comparative study of the safety of regadenoson between patients with mild/moderate chronic obstructive pulmonary disease and asthma. Eur J Nucl Med Mol Imaging. 2014;41:119–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Becker A, Becker C. CT imaging of myocardial perfusion: possibilities and perspectives. J Nucl Cardiol. 2013;20:289–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, et al. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol. 2007;14:645–58.PubMedCrossRefGoogle Scholar
  51. 51.
    Luu JM, Filipchuk NG, Friedrich MG. Indications, safety and image quality of cardiovascular magnetic resonance: experience in >5,000 North American patients. Int J Cardiol. 2013;168:3807–11.Google Scholar
  52. 52.
    Shah S, Parra D, Rosenstein RS. Acute myocardial infarction during regadenoson myocardial perfusion imaging. Pharmacotherapy. 2013;33:e90–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Hsi DH, Marreddy R, Moshiyakhov M, Luft U. Regadenoson induced acute ST-segment elevation myocardial infarction and multivessel coronary thrombosis. J Nucl Cardiol. 2013;20:481–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Geleijnse ML, Elhendy A, Fioretti PM, Roelandt JR. Dobutamine stress myocardial perfusion imaging. J Am Coll Cardiol. 2000;36:2017–27.PubMedCrossRefGoogle Scholar
  55. 55.
    Jin KN, De Cecco CN, Caruso D, Tesche C, Spandorfer A, Varga-Szemes A, et al. Myocardial perfusion imaging with dual energy CT. Eur J Radiol. 2016;85:1914–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Rochitte CE, George RT, Chen MY, Arbab-Zadeh A, Dewey M, Miller JM, et al. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J. 2014;35:1120–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Dey D, Slomka PJ, Berman DS. Achieving very-low-dose radiation exposure in cardiac computed tomography, single-photon emission computed tomography, and positron emission tomography. Circ Cardiovasc Imaging. 2014;7:723–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW, et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. J Am Coll Cardiol. 2011;58:1414–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Ko SM, Park JH, Hwang HK, Song MG. Direct comparison of stress- and rest-dual-energy computed tomography for detection of myocardial perfusion defect. Int J Cardiovasc Imaging. 2014;30(Suppl 1):41–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Ko SM, Song MG, Chee HK, Hwang HK, Feuchtner GM, Min JK. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI. AJR Am J Roentgenol. 2014;203:W605–13.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yin WH, Lu B, Hou ZH, Li N, Han L, Wu YJ, et al. Detection of coronary artery stenosis with sub-milliSievert radiation dose by prospectively ECG-triggered high-pitch spiral CT angiography and iterative reconstruction. Eur Radiol. 2013;23:2927–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang LJ, Qi L, Wang J, Tang CX, Zhou CS, Ji XM, et al. Feasibility of prospectively ECG-triggered high-pitch coronary CT angiography with 30 mL iodinated contrast agent at 70 kVp: initial experience. Eur Radiol. 2014;24:1537–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang R, Yu W, Wang Y, He Y, Yang L, Bi T, et al. Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging. 2011;27:647–56.PubMedCrossRefGoogle Scholar
  64. 64.
    Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30:1037–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Williams MC, Newby DE. CT myocardial perfusion imaging: current status and future directions. Clin Radiol. 2016;71:739–49.PubMedCrossRefGoogle Scholar
  66. 66.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Donato P, Coelho P, Santos C, Bernardes A, Caseiro-Alves F. Correspondence between left ventricular 17 myocardial segments and coronary anatomy obtained by multi-detector computed tomography: an ex vivo contribution. Surg Radiol Anat. 2012;34:805–10.PubMedCrossRefGoogle Scholar
  68. 68.
    Kim SM, Chang SA, Shin W, Choe YH. Dual-energy CT perfusion during pharmacologic stress for the assessment of myocardial perfusion defects using a second-generation dual-source CT: a comparison with cardiac magnetic resonance imaging. J Comput Assist Tomogr. 2014;38:44–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Ko SM, Choi JW, Hwang HK, Song MG, Shin JK, Chee HK. Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. AJR Am J Roentgenol. 2012;198:512–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Weininger M, Schoepf UJ, Ramachandra A, Fink C, Rowe GW, Costello P, et al. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81:3703–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Delgado C, Vazquez M, Oca R, Vilar M, Trinidad C, Sanmartin M. Myocardial ischemia evaluation with dual-source computed tomography: comparison with magnetic resonance imaging. Rev Esp Cardiol (Engl Ed). 2013;66:864–70.CrossRefGoogle Scholar
  72. 72.
    Delgado Sanchez-Gracian C, Oca Pernas R, Trinidad Lopez C, Santos Armentia E, Vaamonde Liste A, Vazquez Caamano M, et al. Quantitative myocardial perfusion with stress dual-energy CT: iodine concentration differences between normal and ischemic or necrotic myocardium. Initial experience. Eur Radiol. 2016;26:3199–207.PubMedCrossRefGoogle Scholar
  73. 73.
    Rocha-Filho JA, Blankstein R, Shturman LD, Bezerra HG, Okada DR, Rogers IS, et al. Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology. 2010;254:410–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Pelgrim GJ, Dorrius M, Xie X, den Dekker MA, Schoepf UJ, Henzler T, et al. The dream of a one-stop-shop: meta-analysis on myocardial perfusion CT. Eur J Radiol. 2015;84:2411–20.PubMedCrossRefGoogle Scholar
  75. 75.
    De Cecco CN, Harris BS, Schoepf UJ, Silverman JR, McWhite CB, Krazinski AW, et al. Incremental value of pharmacological stress cardiac dual-energy CT over coronary CT angiography alone for the assessment of coronary artery disease in a high-risk population. AJR Am J Roentgenol. 2014;203:W70–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Vliegenthart R, Henzler T, Moscariello A, Ruzsics B, Bastarrika G, Oudkerk M, et al. CT of coronary heart disease: part 1, CT of myocardial infarction, ischemia, and viability. AJR Am J Roentgenol. 2012;198:531–47.PubMedCrossRefGoogle Scholar
  77. 77.
    Thilo C, Hanley M, Bastarrika G, Ruzsics B, Schoepf UJ. Integrative computed tomographic imaging of cardiac structure, function, perfusion, and viability. Cardiol Rev. 2010;18:219–29.PubMedCrossRefGoogle Scholar
  78. 78.
    Pelgrim GJ, van Hamersvelt RW, Willemink MJ, Schmidt BT, Flohr T, Schilham A, et al. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur Radiol. 2017;27(9):3904–12.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Li W, Zhu X, Li J, Peng C, Chen N, Qi Z, et al. Comparison of the sensitivity and specificity of 5 image sets of dual-energy computed tomography for detecting first-pass myocardial perfusion defects compared with positron emission tomography. Medicine. 2014;93:e329.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    So A, Hsieh J, Imai Y, Narayanan S, Kramer J, Procknow K, et al. Prospectively ECG-triggered rapid kV-switching dual-energy CT for quantitative imaging of myocardial perfusion. JACC Cardiovasc Imaging. 2012;5:829–36.PubMedCrossRefGoogle Scholar
  81. 81.
    Carrascosa PM, Cury RC, Deviggiano A, Capunay C, Campisi R, Lopez de Munain M, et al. Comparison of myocardial perfusion evaluation with single versus dual-energy CT and effect of beam-hardening artifacts. Acad Radiol. 2015;22:591–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bucher AM, Wichmann JL, Schoepf UJ, Wolla CD, Canstein C, McQuiston AD, et al. Quantitative evaluation of beam-hardening artefact correction in dual-energy CT myocardial perfusion imaging. Eur Radiol. 2016;26:3215–22.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Truong QA, Knaapen P, Pontone G, Andreini D, Leipsic J, Carrascosa P, et al. Rationale and design of the dual-energy computed tomography for ischemia determination compared to “gold standard” non-invasive and invasive techniques (DECIDE-Gold): a multicenter international efficacy diagnostic study of rest-stress dual-energy computed tomography angiography with perfusion. J Nucl Cardiol. 2015;22:1031–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Nagao M, Matsuoka H, Kawakami H, Higashino H, Mochizuki T, Ohshita A, et al. Detection of myocardial ischemia using 64-slice MDCT. Circ J. 2009;73:905–11.PubMedCrossRefGoogle Scholar
  85. 85.
    Busch JL, Alessio AM, Caldwell JH, Gupta M, Mao S, Kadakia J, et al. Myocardial hypo-enhancement on resting computed tomography angiography images accurately identifies myocardial hypoperfusion. J Cardiovasc Comput Tomogr. 2011;5:412–20.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Stenner P, Schmidt B, Bruder H, Allmendinger T, Haberland U, Flohr T, et al. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT. Med Phys. 2009;36:5683–94.PubMedCrossRefGoogle Scholar
  87. 87.
    Min JK, Kang N, Shaw LJ, Devereux RB, Robinson M, Lin F, et al. Costs and clinical outcomes after coronary multidetector CT angiography in patients without known coronary artery disease: comparison to myocardial perfusion SPECT. Radiology. 2008;249:62–70.PubMedCrossRefGoogle Scholar
  88. 88.
    Min JK, Shaw LJ, Berman DS, Gilmore A, Kang N. Costs and clinical outcomes in individuals without known coronary artery disease undergoing coronary computed tomographic angiography from an analysis of Medicare category III transaction codes. Am J Cardiol. 2008;102:672–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Goodacre S, Thokala P, Carroll C, Stevens JW, Leaviss J, Al Khalaf M, et al. Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome. Health Technol Assess. 2013;17:v-vi, 1–188.CrossRefGoogle Scholar
  90. 90.
    Westwood M, Al M, Burgers L, Redekop K, Lhachimi S, Armstrong N, et al. A systematic review and economic evaluation of new-generation computed tomography scanners for imaging in coronary artery disease and congenital heart disease: Somatom Definition Flash, Aquilion ONE, Brilliance iCT and Discovery CT750 HD. Health Technol Assess. 2013;17:1–243.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Boiselle PM, Choe YH, Leipsic J, Pugliese F, Schoepf UJ, Vliegenthart R. Expert opinion: how and when to perform CT myocardial perfusion imaging. J Thorac Imaging. 2015;30:167–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Bauer RW, Kerl JM, Fischer N, Burkhard T, Larson MC, Ackermann H, et al. Dual-energy CT for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: comparison with 3-T MRI. AJR Am J Roentgenol. 2010;195:639–46.PubMedCrossRefGoogle Scholar
  93. 93.
    Nagao M, Kido T, Watanabe K, Saeki H, Okayama H, Kurata A, et al. Functional assessment of coronary artery flow using adenosine stress dual-energy CT: a preliminary study. Int J Cardiovasc Imaging. 2011;27:471–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Zhao RP, Hao ZR, Song ZJ. Diagnostic value of Flash dual-source CT coronary artery imaging combined with dual-energy myocardial perfusion imaging for coronary heart disease. Exp Ther Med. 2014;7:865–8.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kido T, Watanabe K, Saeki H, Shigemi S, Matsuda T, Yamamoto M, et al. Adenosine triphosphate stress dual-source computed tomography to identify myocardial ischemia: comparison with invasive coronary angiography. Springerplus. 2014;3:75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Domenico De Santis
    • 1
    • 2
  • Marwen Eid
    • 3
  • Taylor M. Duguay
    • 1
    Email author
  • Carlo N. De Cecco
    • 3
  1. 1.Division of Cardiovascular Imaging, Department of Radiology and Radiological ScienceMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Radiological Sciences, Oncological and Pathological SciencesUniversity of Rome “Sapienza”LatinaItaly
  3. 3.Department of Radiology and Radiological ScienceMedical University of South CarolinaCharlestonUSA

Personalised recommendations