Advertisement

Cardiac CT Radiomics

  • Márton Kolossváry
  • Pál Maurovich-Horvat
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

Radiology has undergone remarkable technical developments over the past years. State-of-the-art scanners can depict anatomical structures at previously unimaginable detail, while also providing functional information regarding pathologies. No matter how sophisticated our imaging techniques might be, our interpretation of results is still based predominantly on visual inspection. Radiomics is the process of extracting numerous quantitative image-based features from radiological examinations, to create large datasets where each abnormality is characterized by hundreds of different parameters. These parameters are used to create “big data” datasets, which can be analyzed using machine learning machine learning techniques to find new meaningful patterns and relationships in the data.

Keywords

Radiomics Cardiovascular disease Heterogeneity analysis Cardiac CT radiomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones BK, Buckwalter AJ, McCarthy FE, DeYoung RB, El-Khoury YG, Dolan L, Gannon HF, Inwards YC, Klein JM, Kyriakos M, McCarthy FE, Rosenberg EA, Siegal PG, Unni KK, Fayad L, Kransdorf JM, Murphey DM, Panicek MD, Rubin AD, Sundaram M, Vanel D. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg Am. 2007;89(10):2113–23.  https://doi.org/10.2106/JBJS.F.01530.CrossRefGoogle Scholar
  2. 2.
    Rutkow IM. Surgical decision making. The reproducibility of clinical judgement. Arch Surg. 1982;117(3):337–40.CrossRefGoogle Scholar
  3. 3.
    Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.  https://doi.org/10.1038/nrg2918.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278(2):563–77.  https://doi.org/10.1148/radiol.2015151169.CrossRefPubMedGoogle Scholar
  5. 5.
    Kolossvary M, Kellermayer M, Merkely B, Maurovich-Horvat P. Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging. 2017;33(1):26–34.  https://doi.org/10.1097/RTI.0000000000000268.CrossRefGoogle Scholar
  6. 6.
    Feuchtner G, Kerber J, Burghard P, Dichtl W, Friedrich G, Bonaros N, Plank F. The high-risk criteria low-attenuation plaque <60 HU and the napkin-ring sign are the most powerful predictors of MACE: a long-term follow-up study. Eur Heart J Cardiovasc Imaging. 2016.  https://doi.org/10.1093/ehjci/jew167.
  7. 7.
    Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, Shimada K, Yoshiyama M. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging. 2013;6(4):448–57.  https://doi.org/10.1016/j.jcmg.2012.09.016.CrossRefPubMedGoogle Scholar
  8. 8.
    Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379–423.  https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.CrossRefGoogle Scholar
  9. 9.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.CrossRefGoogle Scholar
  10. 10.
    McClelland RL, Jorgensen NW, Budoff M, Blaha MJ, Post WS, Kronmal RA, Bild DE, Shea S, Liu K, Watson KE, Folsom AR, Khera A, Ayers C, Mahabadi AA, Lehmann N, Jockel KH, Moebus S, Carr JJ, Erbel R, Burke GL. 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–53.  https://doi.org/10.1016/j.jacc.2015.08.035.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Polonsky TS, McClelland RL, Jorgensen NW, Bild DE, Burke GL, Guerci AD, Greenland P. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303(16):1610–6.  https://doi.org/10.1001/jama.2010.461.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brodoefel H, Reimann A, Heuschmid M, Tsiflikas I, Kopp AF, Schroeder S, Claussen CD, Clouse ME, Burgstahler C. Characterization of coronary atherosclerosis by dual-source computed tomography and HU-based color mapping: a pilot study. Eur Radiol. 2008;18(11):2466–74.  https://doi.org/10.1007/s00330-008-1019-5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Versteylen MO, Kietselaer BL, Dagnelie PC, Joosen IA, Dedic A, Raaijmakers RH, Wildberger JE, Nieman K, Crijns HJ, Niessen WJ, Daemen MJ, Hofstra L. Additive value of semiautomated quantification of coronary artery disease using cardiac computed tomographic angiography to predict future acute coronary syndrome. J Am Coll Cardiol. 2013;61(22):2296–305.  https://doi.org/10.1016/j.jacc.2013.02.065.CrossRefPubMedGoogle Scholar
  14. 14.
    Willemink MJ, Vliegenthart R, Takx RA, Leiner T, Budde RP, Bleys RL, Das M, Wildberger JE, Prokop M, Buls N, de Mey J, Schilham AM, de Jong PA. Coronary artery calcification scoring with state-of-the-art CT scanners from different vendors has substantial effect on risk classification. Radiology. 2014;273(3):695–702.  https://doi.org/10.1148/radiol.14140066.CrossRefPubMedGoogle Scholar
  15. 15.
    Szilveszter B, Elzomor H, Karolyi M, Kolossvary M, Raaijmakers R, Benke K, Celeng C, Bartykowszki A, Bagyura Z, Lux A, Merkely B, Maurovich-Horvat P. The effect of iterative model reconstruction on coronary artery calcium quantification. Int J Cardiovasc Imaging. 2016;32(1):153–60.  https://doi.org/10.1007/s10554-015-0740-9.CrossRefPubMedGoogle Scholar
  16. 16.
    Symons R, Morris JZ, Wu CO, Pourmorteza A, Ahlman MA, Lima JA, Chen MY, Mallek M, Sandfort V, Bluemke DA. Coronary CT angiography: variability of CT scanners and readers in measurement of plaque volume. Radiology. 2016:161670.  https://doi.org/10.1148/radiol.2016161670.
  17. 17.
    Precht H, Kitslaar PH, Broersen A, Dijkstra J, Gerke O, Thygesen J, Egstrup K, Lambrechtsen J. Influence of adaptive statistical iterative reconstruction on coronary plaque analysis in coronary computed tomography angiography. J Cardiovasc Comput Tomogr. 2016.  https://doi.org/10.1016/j.jcct.2016.09.006.
  18. 18.
    Fuchs TA, Fiechter M, Gebhard C, Stehli J, Ghadri JR, Kazakauskaite E, Herzog BA, Husmann L, Gaemperli O, Kaufmann PA. CT coronary angiography: impact of adapted statistical iterative reconstruction (ASIR) on coronary stenosis and plaque composition analysis. Int J Cardiovasc Imaging. 2013;29(3):719–24.  https://doi.org/10.1007/s10554-012-0134-1.CrossRefPubMedGoogle Scholar
  19. 19.
    Pohle K, Achenbach S, Macneill B, Ropers D, Ferencik M, Moselewski F, Hoffmann U, Brady TJ, Jang IK, Daniel WG. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 2007;190(1):174–80.  https://doi.org/10.1016/j.atherosclerosis.2006.01.013.CrossRefPubMedGoogle Scholar
  20. 20.
    Sun J, Zhang Z, Lu B, Yu W, Yang Y, Zhou Y, Wang Y, Fan Z. Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. AJR Am J Roentgenol. 2008;190(3):748–54.  https://doi.org/10.2214/AJR.07.2763.CrossRefPubMedGoogle Scholar
  21. 21.
    Takahashi S, Kawasaki M, Miyata S, Suzuki K, Yamaura M, Ido T, Aoyama T, Fujiwara H, Minatoguchi S. Feasibility of tissue characterization of coronary plaques using 320-detector row computed tomography: comparison with integrated backscatter intravascular ultrasound. Heart Vessel. 2016;31(1):29–37.  https://doi.org/10.1007/s00380-014-0577-5.CrossRefGoogle Scholar
  22. 22.
    Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3(6):610–21.  https://doi.org/10.1109/TSMC.1973.4309314.CrossRefGoogle Scholar
  23. 23.
    Kolossváry M, Karády J, Szilveszter B, Kitslaar P, Hoffmann U, Merkely B, Maurovich-Horvat P. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circ Cardiovasc Imaging. 2017;10(12):e006843.Google Scholar
  24. 24.
    Galloway MM. Texture analysis using gray level run lengths. Comput Graphics Image Process. 1975;4(2):172–9.  https://doi.org/10.1016/S0146-664X(75)80008-6.CrossRefGoogle Scholar
  25. 25.
    Xinli W, Albregtsen F, Foyn B. Texture analysis using gray level gap length matrix. Paper presented at the Selected papers from the 9th Scandinavian conference on Image analysis: theory and applications of image analysis II: theory and applications of image analysis II, Uppsala, Sweden; 1995.Google Scholar
  26. 26.
    Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, Sequeira J, Mari J-L. Shape and texture indexes application to cell nuclei classification. Int J Pattern Recognit Artif Intell. 2013;27(01):1357002.  https://doi.org/10.1142/s0218001413570024.CrossRefGoogle Scholar
  27. 27.
    Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264–74.  https://doi.org/10.1109/21.44046.CrossRefGoogle Scholar
  28. 28.
    Thibault G, Angulo J, Meyer F. Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng. 2014;61(3):630–7.  https://doi.org/10.1109/TBME.2013.2284600.CrossRefPubMedGoogle Scholar
  29. 29.
    Laws KI. Textured image segmentation. A Dissertation Presented to the Faculty of the Graduate School. University of Southern California; 1980.Google Scholar
  30. 30.
    O'Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015;21(2):249–57.  https://doi.org/10.1158/1078-0432.CCR-14-0990.CrossRefPubMedGoogle Scholar
  31. 31.
    Minkowski H. Volumen und Oberfläche. Math Ann. 1903;57:447.CrossRefGoogle Scholar
  32. 32.
    Larkin TJ, Canuto HC, Kettunen MI, Booth TC, Hu DE, Krishnan AS, Bohndiek SE, Neves AA, McLachlan C, Hobson MP, Brindle KM. Analysis of image heterogeneity using 2D Minkowski functionals detects tumor responses to treatment. Magn Reson Med. 2014;71(1):402–10.  https://doi.org/10.1002/mrm.24644.CrossRefPubMedGoogle Scholar
  33. 33.
    Mandelbrot B. How long is the coast of Britain? statistical self-similarity and fractional dimension. Science. 1967;156:636–8.CrossRefGoogle Scholar
  34. 34.
    Rose CJ, Mills SJ, O'Connor JP, Buonaccorsi GA, Roberts C, Watson Y, Cheung S, Zhao S, Whitcher B, Jackson A, Parker GJ. Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med. 2009;62(2):488–99.  https://doi.org/10.1002/mrm.22003.CrossRefPubMedGoogle Scholar
  35. 35.
    Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal. 2009;13(4):634–49.  https://doi.org/10.1016/j.media.2009.05.003.CrossRefPubMedGoogle Scholar
  36. 36.
    Kolossváry M, Szilveszter B, Merkely B, Maurovich-Horvat P. Plaque imaging with CT – a comprehensive review on coronary CT angiography based risk assessment. Cardiovasc Diagn Ther. 2017.  https://doi.org/10.21037/cdt.2016.11.06.
  37. 37.
    Claessen BE, Smits PC, Kereiakes DJ, Parise H, Fahy M, Kedhi E, Serruys PW, Lansky AJ, Cristea E, Sudhir K, Sood P, Simonton CA, Stone GW. Impact of lesion length and vessel size on clinical outcomes after percutaneous coronary intervention with everolimus- versus paclitaxel-eluting stents pooled analysis from the SPIRIT (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System) and COMPARE (Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice) Randomized Trials. JACC Cardiovasc Interv. 2011;4(11):1209–15.  https://doi.org/10.1016/j.jcin.2011.07.016.CrossRefPubMedGoogle Scholar
  38. 38.
    Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50(4):319–26.  https://doi.org/10.1016/j.jacc.2007.03.044.CrossRefPubMedGoogle Scholar
  39. 39.
    Dettori L, Semler L. A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comput Biol Med. 2007;37(4):486–98.  https://doi.org/10.1016/j.compbiomed.2006.08.002.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Márton Kolossváry
    • 1
  • Pál Maurovich-Horvat
    • 1
  1. 1.Cardiovascular Imaging Research Group, Heart and Vascular CenterSemmelweis UniversityBudapestHungary

Personalised recommendations