Advertisement

The Use of Cardiovascular CT in Repaired CHD

  • B. Kelly HanEmail author
  • Andrew Crean
  • John R. Lesser
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

Cardiovascular CT is a powerful diagnostic tool for select patients with congenital heart disease (CHD). The improved image quality and decreased radiation dose of newer generation CT scanners have expanded its use in this patient population. This chapter will give a brief overview of the indications, common residual lesions, and proposed scan modifications for the CHD lesions most commonly referred for cardiovascular CT.

Keywords

Congenital heart disease Cardiovascular CT and congenital heart disease Aortic arch evaluation Transposition of the great arteries Atherosclerotic coronary lesions in adult CHD patients Aortic arch imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56(14):1149–57.PubMedGoogle Scholar
  2. 2.
    Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749–56.PubMedGoogle Scholar
  3. 3.
    Tutarel O, Kempny A, Alonso-Gonzalez R, Jabbour R, Li W, Uebing A, et al. Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur Heart J. 2014;35(11):725–32.PubMedGoogle Scholar
  4. 4.
    Baumgartner H. Geriatric congenital heart disease: a new challenge in the care of adults with congenital heart disease? Eur Heart J. 2014;35(11):683–5.PubMedGoogle Scholar
  5. 5.
    Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e143–263.PubMedGoogle Scholar
  6. 6.
    Han BK, Lesser AM, Vezmar M, Rosenthal K, Rutten-Ramos S, Lindberg J, et al. Cardiovascular imaging trends in congenital heart disease: a single center experience. J Cardiovasc Comput Tomogr. 2013;7(6):361–6.PubMedGoogle Scholar
  7. 7.
    Han BK, Rigsby CK, Leipsic J, Bardo D, Abbara S, Ghoshhajra B, et al. Computed tomography imaging in patients with congenital heart disease, part 2: technical recommendations. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):493–513.PubMedGoogle Scholar
  8. 8.
    Han BK, Rigsby CK, Hlavacek A, Leipsic J, Nicol ED, Siegel MJ, et al. Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):475–92.PubMedGoogle Scholar
  9. 9.
    Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology foundation appropriate use criteria task force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr. 2010;4(6):407 e1–33.Google Scholar
  10. 10.
    Gottlieb EA, Andropoulos DB. Anesthesia for the patient with congenital heart disease presenting for noncardiac surgery. Curr Opin Anaesthesiol. 2013;26(3):318–26.PubMedGoogle Scholar
  11. 11.
    Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von Ungern-Sternberg BS, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130(3):e476–85.PubMedGoogle Scholar
  12. 12.
    Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;128(5):e1053–61.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ing CH, DiMaggio CJ, Whitehouse AJ, Hegarty MK, Sun M, von Ungern-Sternberg BS, et al. Neurodevelopmental outcomes after initial childhood anesthetic exposure between ages 3 and 10 years. J Neurosurg Anesthesiol. 2014;26(4):377–86.PubMedGoogle Scholar
  14. 14.
    DiMaggio C, Sun LS, Ing C, Li G. Pediatric anesthesia and neurodevelopmental impairments: a Bayesian meta-analysis. J Neurosurg Anesthesiol. 2012;24(4):376–81.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ramamoorthy C, Haberkern CM, Bhananker SM, Domino KB, Posner KL, Campos JS, et al. Anesthesia-related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) registry. Anesth Analg. 2010;110(5):1376–82.PubMedGoogle Scholar
  16. 16.
    Downing TE, McDonnell A, Zhu X, Dori Y, Gillespie MJ, Rome JJ, et al. Cumulative medical radiation exposure throughout staged palliation of single ventricle congenital heart disease. Pediatr Cardiol. 2015;36(1):190–5.PubMedGoogle Scholar
  17. 17.
    Watson TG, Mah E, Joseph Schoepf U, King L, Huda W, Hlavacek AM. Effective radiation dose in computed tomographic angiography of the chest and diagnostic cardiac catheterization in pediatric patients. Pediatr Cardiol. 2013;34(3):518–24.PubMedGoogle Scholar
  18. 18.
    Johnson JN, Hornik CP, Li JS, Benjamin DK Jr, Yoshizumi TT, Reiman RE, et al. Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation. 2014;130(2):161–7.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Podberesky DJ, Angel E, Yoshizumi TT, Toncheva G, Salisbury SR, Alsip C, et al. Radiation dose estimation for prospective and retrospective ECG-gated cardiac CT angiography in infants and small children using a 320-MDCT volume scanner. AJR Am J Roentgenol. 2012;199(5):1129–35.PubMedGoogle Scholar
  20. 20.
    Vastel-Amzallag C, Le Bret E, Paul JF, Lambert V, Rohnean A, El Fassy E, et al. Diagnostic accuracy of dual-source multislice computed tomographic analysis for the preoperative detection of coronary artery anomalies in 100 patients with tetralogy of Fallot. J Thorac Cardiovasc Surg. 2011;142(1):120–6.PubMedGoogle Scholar
  21. 21.
    Han BK, Lindberg J, Overman D, Schwartz RS, Grant K, Lesser JR. Safety and accuracy of dual-source coronary computed tomography angiography in the pediatric population. J Cardiovasc Comput Tomogr. 2012;6(4):252–9.PubMedGoogle Scholar
  22. 22.
    Young C, Taylor AM, Owens CM. Paediatric cardiac computed tomography: a review of imaging techniques and radiation dose consideration. Eur Radiol. 2011;21(3):518–29.PubMedGoogle Scholar
  23. 23.
    Meinel FG, Henzler T, Schoepf UJ, Park PW, Huda W, Spearman JV, et al. ECG-synchronized CT angiography in 324 consecutive pediatric patients: spectrum of indications and trends in radiation dose. Pediatr Cardiol. 2015;36(3):569–78.PubMedGoogle Scholar
  24. 24.
    Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5(4):198–224.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, et al. PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease. Heart Rhythm. 2014;11(10):e102–65.PubMedGoogle Scholar
  26. 26.
    Morray BH, McElhinney DB, Cheatham JP, Zahn EM, Berman DP, Sullivan PM, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation: a multicenter experience. Circ Cardiovasc Interv. 2013;6(5):535–42.PubMedGoogle Scholar
  27. 27.
    McElhinney DB, Hellenbrand WE, Zahn EM, Jones TK, Cheatham JP, Lock JE, et al. Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation. 2010;122(5):507–16.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Han BK, Moga FX, Overman D, Carter C, Lesser JR. Diagnostic value of contrast-enhanced multiphase computed tomography for assessment of percutaneous pulmonary valve obstruction. Ann Thorac Surg. 2016;101(4):e115–6.PubMedGoogle Scholar
  29. 29.
    Habets J, Tanis W, van Herwerden LA, van den Brink RB, Mali WP, de Mol BA, et al. Cardiac computed tomography angiography results in diagnostic and therapeutic change in prosthetic heart valve endocarditis. Int J Cardiovasc Imaging. 2014;30(2):377–87.PubMedGoogle Scholar
  30. 30.
    Wijesekera H, Seneviratne S, Woolley I. Cardiac computed tomography in endocarditis. Heart. 2010;96(19):1604.PubMedGoogle Scholar
  31. 31.
    Stulak JM, Dearani JA, Burkhart HM, Ammash NM, Phillips SD, Schaff HV. Coronary artery disease in adult congenital heart disease: outcome after coronary artery bypass grafting. Ann Thorac Surg. 2012;93(1):116–22; discussion 22–3.PubMedGoogle Scholar
  32. 32.
    Bhatt AB, Foster E, Kuehl K, Alpert J, Brabeck S, Crumb S, et al. Congenital heart disease in the older adult: a scientific statement from the american heart association. Circulation. 2015;131(21):1884–931.PubMedGoogle Scholar
  33. 33.
    Pedersen TA. Late morbidity after repair of aortic coarctation. Dan Med J. 2012;59(4):B4436.PubMedGoogle Scholar
  34. 34.
    Brown ML, Burkhart HM, Connolly HM, Dearani JA, Cetta F, Li Z, et al. Coarctation of the aorta: lifelong surveillance is mandatory following surgical repair. J Am Coll Cardiol. 2013;62(11):1020–5.PubMedGoogle Scholar
  35. 35.
    Egan M, Holzer RJ. Comparing balloon angioplasty, stenting and surgery in the treatment of aortic coarctation. Expert Rev Cardiovasc Ther. 2009;7(11):1401–12.PubMedGoogle Scholar
  36. 36.
    Holzer R, Qureshi S, Ghasemi A, Vincent J, Sievert H, Gruenstein D, et al. Stenting of aortic coarctation: acute, intermediate, and long-term results of a prospective multi-institutional registry--Congenital Cardiovascular Interventional Study Consortium (CCISC). Catheter Cardiovasc Interv. 2010;76(4):553–63.PubMedGoogle Scholar
  37. 37.
    Khairy P, Landzberg MJ, Lambert J, O’Donnell CP. Long-term outcomes after the atrial switch for surgical correction of transposition: a meta-analysis comparing the Mustard and Senning procedures. Cardiol Young. 2004;14(3):284–92.PubMedGoogle Scholar
  38. 38.
    Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, et al. PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease: executive summary. Heart Rhythm. 2014;11(10):e102–65.PubMedGoogle Scholar
  39. 39.
    Villafane J, Lantin-Hermoso MR, Bhatt AB, Tweddell JS, Geva T, Nathan M, et al. D-transposition of the great arteries: the current era of the arterial switch operation. J Am Coll Cardiol. 2014;64(5):498–511.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ou P, Khraiche D, Celermajer DS, Agnoletti G, Le Quan Sang KH, Thalabard JC, et al. Mechanisms of coronary complications after the arterial switch for transposition of the great arteries. J Thorac Cardiovasc Surg. 2013;145(5):1263–9.PubMedGoogle Scholar
  41. 41.
    Ou P, Celermajer DS, Marini D, Agnoletti G, Vouhe P, Brunelle F, et al. Safety and accuracy of 64-slice computed tomography coronary angiography in children after the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol Img. 2008;1(3):331–9.Google Scholar
  42. 42.
    Khairy P, Aboulhosn J, Gurvitz MZ, Opotowsky AR, Mongeon FP, Kay J, et al. Arrhythmia burden in adults with surgically repaired tetralogy of Fallot: a multi-institutional study. Circulation. 2010;122(9):868–75.PubMedGoogle Scholar
  43. 43.
    Khairy P, Dore A, Poirier N, Marcotte F, Ibrahim R, Mongeon FP, et al. Risk stratification in surgically repaired tetralogy of Fallot. Expert Rev Cardiovasc Ther. 2009;7(7):755–62.PubMedGoogle Scholar
  44. 44.
    Geva T. Indications for pulmonary valve replacement in repaired tetralogy of fallot: the quest continues. Circulation. 2013;128(17):1855–7.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ferraz Cavalcanti PE, Sa MP, Santos CA, Esmeraldo IM, de Escobar RR, de Menezes AM, et al. Pulmonary valve replacement after operative repair of tetralogy of Fallot: meta-analysis and meta-regression of 3,118 patients from 48 studies. J Am Coll Cardiol. 2013;62(23):2227–43.PubMedGoogle Scholar
  46. 46.
    Le Gloan L, Mongeon FP, Mercier LA, Dore A, Marcotte F, Ibrahim R, et al. Tetralogy of Fallot and aortic root disease. Expert Rev Cardiovasc Ther. 2013;11(2):233–8.PubMedGoogle Scholar
  47. 47.
    Warnes CA, Child JS. Aortic root dilatation after repair of tetralogy of Fallot: pathology from the past? Circulation. 2002;106(11):1310–1.PubMedGoogle Scholar
  48. 48.
    d’Udekem Y, Xu MY, Galati JC, Lu S, Iyengar AJ, Konstantinov IE, et al. Predictors of survival after single-ventricle palliation: the impact of right ventricular dominance. J Am Coll Cardiol. 2012;59(13):1178–85.PubMedGoogle Scholar
  49. 49.
    DiBardino DJ. Long-term progression and survival following Norwood Single Ventricle Reconstruction. Curr Opin Cardiol. 2015;30(1):95–9.PubMedGoogle Scholar
  50. 50.
    Stern KW, McElhinney DB, Gauvreau K, Geva T, Brown DW. Echocardiographic evaluation before bidirectional Glenn operation in functional single-ventricle heart disease: comparison to catheter angiography. Circ Cardiovasc Imaging. 2011;4(5):498–505.PubMedGoogle Scholar
  51. 51.
    Rabbitts JA, Groenewald CB, Mauermann WJ, Barbara DW, Burkhart HM, Warnes CA, et al. Outcomes of general anesthesia for noncardiac surgery in a series of patients with Fontan palliation. Paediatr Anaesth. 2013;23(2):180–7.PubMedGoogle Scholar
  52. 52.
    Brown DW, Gauvreau K, Powell AJ, Lang P, Colan SD, Del Nido PJ, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation. 2007;116(23):2718–25.PubMedGoogle Scholar
  53. 53.
    Han BK, Vezmar M, Lesser JR, Michalak G, Grant K, Dassenko D, et al. Selective use of cardiac computed tomography angiography: an alternative diagnostic modality before second-stage single ventricle palliation. J Thorac Cardiovasc Surg. 2014;148(4):1548–54.PubMedGoogle Scholar
  54. 54.
    Brown DW, Gauvreau K, Powell AJ, Lang P, del Nido PJ, Odegard KC, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis: long-term follow-up of a prospective randomized trial. J Thorac Cardiovasc Surg. 2013;146(5):1172–8.PubMedGoogle Scholar
  55. 55.
    Banka P, McElhinney DB, Bacha EA, Mayer JE Jr, Gauvreau K, Geva T, et al. What is the clinical utility of routine cardiac catheterization before a Fontan operation? Pediatr Cardiol. 2010;31(7):977–85.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Aho MR, Gebregziabher M, Schoepf UJ, Suranyi P, Lee H, Gregg D, et al. Impact of right ventricular contrast attenuation on the accuracy of right ventricular function analysis at cardiac multi-detector-row CT. Eur J Radiol. 2010;73(3):560–5.PubMedGoogle Scholar
  57. 57.
    Greupner J, Zimmermann E, Grohmann A, Dubel HP, Althoff TF, Borges AC, et al. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging as the reference standard. J Am Coll Cardiol. 2012;59(21):1897–907.PubMedGoogle Scholar
  58. 58.
    Rizvi A, Deano RC, Bachman DP, Xiong G, Min JK, Truong QA. Analysis of ventricular function by CT. J Cardiovasc Comput Tomogr. 2015;9(1):1–12.PubMedGoogle Scholar
  59. 59.
    Lesser AM, Newell MC, Samara MA, Gornick C, Grant K, Garberich R, et al. Radiation dose and image quality of 70 kVp functional cardiovascular computed tomography imaging in congenital heart disease. J Cardiovasc Comput Tomogr. 2016;10(2):173–8.PubMedGoogle Scholar
  60. 60.
    Niazi I, Dhala A, Choudhuri I, Sra J, Akhtar M, Tajik AJ. Cardiac resynchronization therapy in patients with challenging anatomy due to venous anomalies or adult congenital heart disease. Pacing Clin Electrophysiol: PACE. 2014;37(9):1181–8.PubMedGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Department of Advanced Congenital Cardiac ImagingMinneapolis Heart Institute and the Children’s Hospitals and Clinics of MinnesotaMinneapolisUSA
  2. 2.Department of CardiologyOttawa Heart Institute, University of OttawaOttawaCanada
  3. 3.Minneapolis Heart Institute FoundationMinneapolisUSA

Personalised recommendations