Advertisement

Cardiac CT: Electrophysiological Applications

  • Joan M. LacomisEmail author
  • Iclal Ocak
  • Friedrich Knollmann
  • Andrew Voigt
  • Raveen Bazaaz
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

The increasing disease burden caused by atrial fibrillation has led to new interventions aimed at restoring normal sinus rhythm and preventing embolic complications. Cardiac CT can help identify suitable candidates, plan the intervention, and diagnose complications. In some institutions, this application has become the most common indication for the clinical use of cardiac CT. Consequently, expertise in making the pertinent observations outlined in this chapter is of critical importance for the success of any cardiac CT program and offers a tremendous opportunity for interdisciplinary collaboration.

Keywords

Electrophysiological applications of cardiac CT Atrial fibrillation and cardiac CT Radiofrequency catheter ablation Cryoballoon ablation Pulmonary vein stenosis Left atrial appendage occluder procedures Atrial fibrillation Left atrial appendage Left atrial appendage occluder Pulmonary vein isolation Left atrial thrombus Atrio-esophageal fistula Pulmonary vein stenosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Go AS, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Miyasaka Y, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114(2):119–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Grond M, et al. Improved detection of silent atrial fibrillation using 72-hour Holter ECG in patients with ischemic stroke: a prospective multicenter cohort study. Stroke. 2013;44(12):3357–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Henriksson KM, et al. Comparison of cardiovascular risk factors and survival in patients with ischemic or hemorrhagic stroke. Int J Stroke. 2012;7(4):276–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Kishore A, et al. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Stroke. 2014;45(2):520–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Investigators, T.A.F.F.-u.I.o.R.M. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347(23):1825–33.CrossRefGoogle Scholar
  7. 7.
    Fuster V, et al. ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation: executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation) developed in collaboration with the North American society of pacing and electrophysiology. Circulation. 2001;104(17):2118–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Pathak RK, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J Am Coll Cardiol. 2015;66(9):985–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Pathak RK, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. 2015;65(20):2159–69.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim MH, et al. Clinical outcomes and costs associated with a first episode of uncomplicated atrial fibrillation presenting to the emergency room. Am J Cardiol. 2001;88(1):A7. 74-6.PubMedCrossRefGoogle Scholar
  11. 11.
    Holmes DR Jr, et al. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J Am Coll Cardiol. 2014;64(1):1–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Haissaguerre M, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Shah DC, et al. Electrophysiologically guided ablation of the pulmonary veins for the curative treatment of atrial fibrillation. Ann Med. 2000;32(6):408–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Lacomis JM, et al. CT of the pulmonary veins. J Thorac Imaging. 2007;22(1):63–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Oral H, et al. Catheter ablation for paroxysmal atrial fibrillation: segmental pulmonary vein ostial ablation versus left atrial ablation. Circulation. 2003;108(19):2355–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Pappone C, et al. Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation. 2000;102(21):2619–28.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee R, et al. The closed heart MAZE: a nonbypass surgical technique. Ann Thorac Surg. 1999;67(6):1696–702.PubMedCrossRefGoogle Scholar
  18. 18.
    Haissaguerre M, et al. Successful catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 1994;5(12):1045–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Packer DL, et al. Clinical presentation, investigation, and management of pulmonary vein stenosis complicating ablation for atrial fibrillation. Circulation. 2005;111(5):546–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Schwartzman D, Bazaz R, Nosbisch J. Catheter ablation to suppress atrial fibrillation: evolution of technique at a single center. J Interv Card Electrophysiol. 2003;9(2):295–300.PubMedCrossRefGoogle Scholar
  21. 21.
    Pappone C, et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation. 2004;109(3):327–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Verma A, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372(19):1812–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Packer DL, et al. Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: first results of the North American Arctic Front (STOP AF) pivotal trial. J Am Coll Cardiol. 2013;61(16):1713–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Lustgarten DL, Keane D, Ruskin J. Cryothermal ablation: mechanism of tissue injury and current experience in the treatment of tachyarrhythmias. Prog Cardiovasc Dis. 1999;41(6):481–98.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuck K-H, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374(23):2235–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Khoueiry Z, et al. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: impact of pulmonary veins anatomy. Europace. 2016;18(9):1343–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Ang R, et al. The hot and the cold: radiofrequency versus cryoballoon ablation for atrial fibrillation. Curr Cardiol Rep. 2015;17(9):631.PubMedCrossRefGoogle Scholar
  28. 28.
    Guhl EN, et al. Efficacy of cryoballoon pulmonary vein isolation in patients with persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2016;27(4):423–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Rillig A, et al. Six-year clinical outcomes after catheter ablation of atrial fibrillation in patients with impaired left ventricular function. J Cardiovasc Electrophysiol. 2015;26:1169.PubMedCrossRefGoogle Scholar
  30. 30.
    Kholova I, Kautzner J. Morphology of atrial myocardial extensions into human caval veins: a postmortem study in patients with and without atrial fibrillation. Circulation. 2004;110(5):483–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Kurotobi T, et al. Marshall vein as arrhythmogenic source in patients with atrial fibrillation: correlation between its anatomy and electrophysiological findings. J Cardiovasc Electrophysiol. 2006;17(10):1062–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Scharf C, et al. Anatomy of the pulmonary veins in patients with atrial fibrillation and effects of segmental ostial ablation analyzed by computed tomography. J Cardiovasc Electrophysiol. 2003;14(2):150–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Dill T, et al. Pulmonary vein diameter reduction after radiofrequency catheter ablation for paroxysmal atrial fibrillation evaluated by contrast-enhanced three-dimensional magnetic resonance imaging. Circulation. 2003;107(6):845–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Lacomis JM, et al. Multi-detector row CT of the left atrium and pulmonary veins before radio-frequency catheter ablation for atrial fibrillation. Radiographics. 2003;23 Spec No:S35–48. discussion S48–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Lacomis J, et al. Direct comparison of CT & MRI for characterization of PLA morphology. J Interv Card Electrophysiol. 2006;16(1):7–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Kato R, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003;107(15):2004–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Schwartzman D, Lacomis J, Wigginton WG. Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J Am Coll Cardiol. 2003;41(8):1349–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Cronin P, et al. MDCT of the left atrium and pulmonary veins in planning radiofrequency ablation for atrial fibrillation: a how-to guide. AJR Am J Roentgenol. 2004;183(3):767–78.PubMedCrossRefGoogle Scholar
  39. 39.
    Lacomis J, et al. 3D-Multidetector CT and variations in pulmonary venous and left atrial anatomy; implications in atrial fibrillation patients undergoing ablative therapy. Radiology. 2002;S 225:631.Google Scholar
  40. 40.
    Marom EM, et al. Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology. 2004;230(3):824–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Cronin P. 2D or Not 2D that is the question, but 3D is the answer. Acad Radiol. 2007;14(7):769–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Cronin P, et al. Reliability of MDCT in characterizing pulmonary venous drainage, diameter and distance to first bifurcation: an interobserver study. Acad Radiol. 2007;14(4):437–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Cronin P, et al. Normative analysis of pulmonary vein drainage patterns on multidetector CT with measurements of pulmonary vein ostial diameter and distance to first bifurcation. Acad Radiol. 2007;14(2):178–88.PubMedCrossRefGoogle Scholar
  44. 44.
    Lickfett L, et al. Changes of pulmonary vein orifice size and location throughout the cardiac cycle: dynamic analysis using magnetic resonance cine imaging. J Cardiovasc Electrophysiol. 2005;16(6):582–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Hsieh MH, et al. Double multielectrode mapping catheters facilitate radiofrequency catheter ablation of focal atrial fibrillation originating from pulmonary veins. J Cardiovasc Electrophysiol. 1999;10(2):136–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhong H, Lacomis JM, Schwartzman D. On the accuracy of CartoMerge for guiding posterior left atrial ablation in man. Heart Rhythm. 2007;4(5):595–602.PubMedCrossRefGoogle Scholar
  47. 47.
    Bhakta D, Miller JM. Principles of electroanatomic mapping. Indian Pacing Electrophysiol J. 2008;8(1):32–50.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Choi SI, et al. Variation of the size of pulmonary venous ostia during the cardiac cycle: optimal reconstruction window at ECG-gated multi-detector row CT. Eur Radiol. 2005;15(7):1441–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Merchant FM, et al. Pulmonary vein remodeling following atrial fibrillation ablation: implications for the radiographic diagnosis of pulmonary vein stenosis. J Atr Fibrillation. 2016;9(2):1453.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wongcharoen W, et al. Morphologic characteristics of the left atrial appendage, roof, and septum: implications for the ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17(9):951–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Gal P, Marrouche NF. Magnetic resonance imaging of atrial fibrosis: redefining atrial fibrillation to a syndrome. Eur Heart J. 2017;38(1):14–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Calkins H, et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2007;4(6):816–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Ghaye B, et al. Percutaneous ablation for atrial fibrillation: the role of cross-sectional imaging. Radiographics. 2003;23 Spec No:S19–33. discussion S48–50.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lacomis J, et al. Ablation imaging of left atrial and pulmonary venous anatomy in atrial fibrillation patients: comparison of 3D-multidetector CT angiography and magnetic resonance angiography. Radiology. 2002;S 225:626.Google Scholar
  55. 55.
    Mangrum JM, et al. Intracardiac echocardiography-guided, anatomically based radiofrequency ablation of focal atrial fibrillation originating from pulmonary veins. J Am Coll Cardiol. 2002;39(12):1964–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Tsao HM, et al. Role of right middle pulmonary vein in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2001;12(12):1353–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Wittkampf FH, et al. Pulmonary vein ostium geometry: analysis by magnetic resonance angiography. Circulation. 2003;107(1):21–3.PubMedCrossRefGoogle Scholar
  58. 58.
    Duerinckx AJ, Vanovermeire O. Accessory appendages of the left atrium as seen during 64-slice coronary CT angiography. Int J Cardiovasc Imaging. 2008;24(2):215–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Romero J, et al. Left atrial appendage closure devices. Clin Med Insights Cardiol. 2014;8(4251-CMC-Left-Atrial-Appendage-Closure-Devices.pdf):45–52.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Lazoura O, et al. Prevalence of left atrial anatomical abnormalities in patients with recurrent atrial fibrillation compared with patients in sinus rhythm using multi-slice CT. J Cardiovasc Comput Tomogr. 2012;6(4):268–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Sosa E, Scanavacca M. Left atrial-esophageal fistula complicating radiofrequency catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2005;16(3):249–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Scanavacca MI, et al. Left atrial-esophageal fistula following radiofrequency catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2004;15(8):960–2.PubMedCrossRefGoogle Scholar
  63. 63.
    Kelly S, Bicknell SG, Sharma S. Left atrial wall hematoma after radiofrequency ablation for atrial fibrillation. AJR Am J Roentgenol. 2006;186(5):1317–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Ramakrishna G, et al. Endocardial flap of left atrial dissection following radiofrequency ablation. Pacing Clin Electrophysiol. 2003;26(8):1771–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Park HW, et al. Disseminated intravascular coagulation as a complication of radiofrequency catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2005;16(9):1011–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Sonmez B, Demirsoy E, Yilmaz O. Atrioesophageal fistula: is it an unavoidable complication of radiofrequency ablation? J Thorac Cardiovasc Surg. 2003;126(5):1662–3. author reply 1663.PubMedCrossRefGoogle Scholar
  67. 67.
    Gillinov AM, Pettersson G, Rice TW. Esophageal injury during radiofrequency ablation for atrial fibrillation. J Thorac Cardiovasc Surg. 2001;122(6):1239–40.PubMedCrossRefGoogle Scholar
  68. 68.
    Doll N, et al. Esophageal perforation during left atrial radiofrequency ablation: is the risk too high? J Thorac Cardiovasc Surg. 2003;125(4):836–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Bunch TJ, et al. Temporary esophageal stenting allows healing of esophageal perforations following atrial fibrillation ablation procedures. J Cardiovasc Electrophysiol. 2006;17(4):435–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Schley P, Gulker H, Horlitz M. Atrio-oesophageal fistula following circumferential pulmonary vein ablation: verification of diagnosis with multislice computed tomography. Europace. 2006;8(3):189–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Pappone C, et al. Atrio-esophageal fistula as a complication of percutaneous transcatheter ablation of atrial fibrillation. Circulation. 2004;109(22):2724–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Malamis AP, Kirshenbaum KJ, Nadimpalli S. CT radiographic findings: atrio-esophageal fistula after transcatheter percutaneous ablation of atrial fibrillation. J Thorac Imaging. 2007;22(2):188–91.PubMedCrossRefGoogle Scholar
  73. 73.
    Ripley KL, et al. Time course of esophageal lesions after catheter ablation with cryothermal and radiofrequency ablation: implication for atrio-esophageal fistula formation after catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18(6):642–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Lemola K, et al. Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation. 2004;110(24):3655–60.PubMedCrossRefGoogle Scholar
  75. 75.
    Cury RC, et al. Relationship of the esophagus and aorta to the left atrium and pulmonary veins: implications for catheter ablation of atrial fibrillation. Heart Rhythm. 2005;2(12):1317–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Gillinov AM, et al. Esophageal perforation during left atrial radiofrequency ablation: is the risk too high? J Thorac Cardiovasc Surg. 2003;126(5):1661–2. author reply 1662.PubMedCrossRefGoogle Scholar
  77. 77.
    Pappone C, et al. Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation. 2001;104(21):2539–44.PubMedCrossRefGoogle Scholar
  78. 78.
    Bunch TJ, et al. Outcomes after cardiac perforation during radiofrequency ablation of the atrium. J Cardiovasc Electrophysiol. 2005;16(11):1172–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Rostamian A, et al. The incidence, diagnosis, and management of pulmonary vein stenosis as a complication of atrial fibrillation ablation. J Interv Card Electrophysiol. 2014;40(1):63–74.PubMedCrossRefGoogle Scholar
  80. 80.
    Ravenel JG, McAdams HP. Pulmonary venous infarction after radiofrequency ablation for atrial fibrillation. AJR Am J Roentgenol. 2002;178(3):664–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Saad EB, et al. Pulmonary vein stenosis after catheter ablation of atrial fibrillation: emergence of a new clinical syndrome. Ann Intern Med. 2003;138(8):634–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Burgstahler C, et al. Visualization of pulmonary vein stenosis after radio frequency ablation using multi-slice computed tomography: initial clinical experience in 33 patients. Int J Cardiol. 2005;102(2):287–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Yu WC, et al. Acquired pulmonary vein stenosis after radiofrequency catheter ablation of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2001;12(8):887–92.PubMedCrossRefGoogle Scholar
  84. 84.
    Saad EB, et al. Pulmonary vein stenosis after radiofrequency ablation of atrial fibrillation: functional characterization, evolution, and influence of the ablation strategy. Circulation. 2003;108(25):3102–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Mohr FW, et al. Curative treatment of atrial fibrillation with intraoperative radiofrequency ablation: short-term and midterm results. J Thorac Cardiovasc Surg. 2002;123(5):919–27.PubMedCrossRefGoogle Scholar
  86. 86.
    Stroker E, et al. Anatomic predictors of phrenic nerve injury in the setting of pulmonary vein isolation using the 28-mm second-generation cryoballoon. Heart Rhythm. 2016;13(2):342–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Hai JJ, Tse HF. Phrenic nerve palsy in cryoballoon ablation: can it be prevented? Heart Rhythm. 2016;13(2):352–3.PubMedCrossRefGoogle Scholar
  88. 88.
    Andrade JG, et al. The biophysics and biomechanics of cryoballoon ablation. Pacing Clin Electrophysiol. 2012;35(9):1162–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Horton R, et al. Locating the right phrenic nerve by imaging the right pericardiophrenic artery with computerized tomographic angiography: implications for balloon-based procedures. Heart Rhythm. 2010;7(7):937–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Matsumoto Y, et al. Detection of phrenic nerves and their relation to cardiac anatomy using 64-slice multidetector computed tomography. Am J Cardiol. 2007;100(1):133–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Cummings KW, et al. Cross-sectional imaging anatomy and pathologic conditions affecting thoracic nerves. Radiographics. 2017;37(1):73–92.PubMedCrossRefGoogle Scholar
  92. 92.
    Verma N, et al. Bronchial effects of cryoballoon ablation for atrial fibrillation. Heart Rhythm. 2017;14(1):17–8.Google Scholar
  93. 93.
    Bessiere F, Chevalier P. Pulmonary vein hematoma after atrial fibrillation cryoablation: a new complication. Heart Rhythm. 2013;10(9):1359.PubMedCrossRefGoogle Scholar
  94. 94.
    Lip GYH, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–72.PubMedCrossRefGoogle Scholar
  95. 95.
    Kosior DA. Risk stratification schemes for stroke in atrial fibrillation: the predictive factors still undefined. Pol Arch Med Wewn. 2015;125(12):889–90.PubMedGoogle Scholar
  96. 96.
    Pisters R, et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010;138(5):1093–100.PubMedCrossRefGoogle Scholar
  97. 97.
    Steinberg BA, et al. Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: results from the ROCKET-AF Trial. Eur Heart J. 2015;36(5):288–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Lee G, Sanders P, Kalman JM. Catheter ablation of atrial arrhythmias: state of the art. Lancet. 2012;380(9852):1509–19.PubMedCrossRefGoogle Scholar
  99. 99.
    Burrell LD, et al. Usefulness of left atrial appendage volume as a predictor of embolic stroke in patients with atrial fibrillation. Am J Cardiol. 2013;112(8):1148–52.PubMedCrossRefGoogle Scholar
  100. 100.
    Di Biase L, et al. Atrial fibrillation ablation strategies for paroxysmal patients: randomized comparison between different techniques. Circ Arrhythm Electrophysiol. 2009;2(2):113–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Anselmino M, et al. Left atrial appendage morphology and silent cerebral ischemia in patients with atrial fibrillation. Heart Rhythm. 2014;11(1):2–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Yamamoto M, et al. Complex left atrial appendage morphology and left atrial appendage thrombus formation in patients with atrial fibrillation. Circ Cardiovasc Imaging. 2014;7(2):337–43.PubMedCrossRefGoogle Scholar
  103. 103.
    Fluckiger JU, et al. Left atrial flow velocity distribution and flow coherence using four-dimensional FLOW MRI: a pilot study investigating the impact of age and Pre- and Postintervention atrial fibrillation on atrial hemodynamics. J Magn Reson Imaging. 2013;38(3):580–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg. 1996;61(2):755–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Kirchhof P, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–962.PubMedCrossRefGoogle Scholar
  106. 106.
    Kanderian AS, et al. Success of surgical left atrial appendage closure: assessment by transesophageal echocardiography. J Am Coll Cardiol. 2008;52(11):924–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Ellis CR, Aznaurov SG. The left atrial appendage and thromboembolic stroke in atrial fibrillation: rationale for ligation by an epicardial approach: the AtriClip stroke trial. J Innov Card Rhythm Manag. 2015;6:2052–6.Google Scholar
  108. 108.
    Holmes DR, et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009;374(9689):534–42.PubMedCrossRefGoogle Scholar
  109. 109.
    Reddy VY, et al. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation: 2.3-Year Follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients with Atrial Fibrillation) Trial. Circulation. 2013;127(6):720–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Belgaid DR, et al. Prospective randomized evaluation of the watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. Int J Cardiol. 2016;219:177–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Lee RJ, et al. Percutaneous alternative to the Maze procedure for the treatment of persistent or long-standing persistent atrial fibrillation (aMAZE trial): rationale and design. Am Heart J. 2015;170(6):1184–94.PubMedCrossRefGoogle Scholar
  112. 112.
    Tzikas A, Sievert H, Holmes DR Jr. Percutaneous left atrial appendage occlusion in 2016. EuroIntervention. 2016;11(14):e1576–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Khattab AA, Meier B. Transcatheter left atrial appendage exclusion, gold or fool's gold? Eur Heart J Suppl. 2010;12(suppl_E):E35–40.CrossRefGoogle Scholar
  114. 114.
    Wang Y, et al. Left atrial appendage studied by computed tomography to help planning for appendage closure device placement. J Cardiovasc Electrophysiol. 2010;21(9):973–82.PubMedCrossRefGoogle Scholar
  115. 115.
    Pellegrino PL, et al. Left atrial appendage closure guided by 3D printed cardiac reconstruction: emerging directions and future trends. J Cardiovasc Electrophysiol. 2016;27(6):768–71.PubMedCrossRefGoogle Scholar
  116. 116.
    Giannopoulos AA, et al. Cardiothoracic applications of 3-dimensional printing. J Thorac Imaging. 2016;31(5):253–72.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wunderlich NC, et al. Percutaneous interventions for left atrial appendage exclusion: options, assessment, and imaging using 2D and 3D echocardiography. JACC Cardiovasc Imaging. 2015;8(4):472–88.PubMedCrossRefGoogle Scholar
  118. 118.
    Cabrera JA, Saremi F, Sanchez-Quintana D. Left atrial appendage: anatomy and imaging landmarks pertinent to percutaneous transcatheter occlusion. Heart. 2014;100(20):1636–50.PubMedCrossRefGoogle Scholar
  119. 119.
    Saremi F, et al. Arterial supply to sinuatrial and atrioventricular nodes: imaging with multidetector CT. Radiology. 2008;246(1):99–107; discussion 108-9.PubMedCrossRefGoogle Scholar
  120. 120.
    Singh SM, Douglas PS, Reddy VY. The incidence and long-term clinical outcome of iatrogenic atrial septal defects secondary to transseptal catheterization with a 12F transseptal sheath. Circ Arrhythm Electrophysiol. 2011;4(2):166–71.PubMedCrossRefGoogle Scholar
  121. 121.
    Price MJ, et al. Early safety and efficacy of percutaneous left atrial appendage suture ligation: results from the U.S. transcatheter LAA ligation consortium. J Am Coll Cardiol. 2014;64(6):565–72.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Stone D, Byrne T, Pershad A. Early results with the LARIAT device for left atrial appendage exclusion in patients with atrial fibrillation at high risk for stroke and anticoagulation. Catheter Cardiovasc Interv. 2015;86(1):121–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Viles-Gonzalez JF, et al. The clinical impact of incomplete left atrial appendage closure with the Watchman Device in patients with atrial fibrillation: a PROTECT AF (Percutaneous Closure of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients With Atrial Fibrillation) substudy. J Am Coll Cardiol. 2012;59(10):923–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Tzikas A, et al. Left atrial appendage occlusion for stroke prevention in atrial fibrillation: multicentre experience with the AMPLATZER Cardiac Plug. EuroIntervention. 2016;11(10):1170–9.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Joan M. Lacomis
    • 1
    Email author
  • Iclal Ocak
    • 1
  • Friedrich Knollmann
    • 2
  • Andrew Voigt
    • 3
  • Raveen Bazaaz
    • 3
  1. 1.Department of Radiology, Thoracic Imaging DivisionUniversity of Pittsburgh Medical Center, University of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of RadiologyUCDavis HealthSacramentoUSA
  3. 3.Heart and Vascular Institute, University of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations