Advertisement

CT for Minimally Invasive Repair of Mitral Valve and Other Structural Heart Diseases

  • John F. Mooney
  • Philipp Blanke
  • Shaw Hua Kueh
  • Stephanie Sellers
  • Jonathon A. LeipsicEmail author
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

CT imaging prior to minimally invasive cardiac procedures is emerging as a vital tool. Excellent spatial and temporal resolution with wide-field views allows an understanding of the target and surrounding anatomy. Accurate sizing can determine appropriate device to minimize complications. Finally, higher-risk features can be identified to allow appropriate patient selection and minimization of morbidity and mortality.

Keywords

CT for minimally invasive repair of mitral valve Mitral valve repair Minimally invasive repair of mitral valve Transcatheter aortic valve replacement Transcatheter mitral valve replacement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.CrossRefGoogle Scholar
  2. 2.
    Maisano F, Alfieri O, Banai S, et al. The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement? Eur Heart J. 2015;36:1651–9.CrossRefGoogle Scholar
  3. 3.
    Shroyer AL, Coombs LP, Peterson ED, et al. The Society of Thoracic Surgeons: 30-day operative mortality and morbidity risk models. Ann Thorac Surg. 2003;75:1856–64. discussion 64-5.CrossRefGoogle Scholar
  4. 4.
    Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2438–88.CrossRefGoogle Scholar
  5. 5.
    Mirabel M, Iung B, Baron G, et al. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J. 2007;28:1358–65.CrossRefGoogle Scholar
  6. 6.
    Nishimura RA, Vahanian A, Eleid MF, Mack MJ. Mitral valve disease--current management and future challenges. Lancet. 2016;387:1324–34.CrossRefGoogle Scholar
  7. 7.
    Feldman T, Wasserman HS, Herrmann HC, et al. Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST Phase I Clinical Trial. J Am Coll Cardiol. 2005;46:2134–40.CrossRefGoogle Scholar
  8. 8.
    Feldman T, Foster E, Glower DD, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011;364:1395–406.CrossRefGoogle Scholar
  9. 9.
    Whitlow PL, Feldman T, Pedersen WR, et al. Acute and 12-month results with catheter-based mitral valve leaflet repair: the EVEREST II (Endovascular valve edge-to-edge repair) high risk study. J Am Coll Cardiol. 2012;59:130–9.CrossRefGoogle Scholar
  10. 10.
    Blanke P, Naoum C, Webb J, et al. Multimodality imaging in the context of Transcatheter mitral valve replacement: establishing consensus among modalities and disciplines. J Am Coll Cardiol Img. 2015;8:1191–208.CrossRefGoogle Scholar
  11. 11.
    Guerrero M, Dvir D, Himbert D, et al. Transcatheter mitral valve replacement in native mitral valve disease with severe mitral annular calcification: results from the first multicenter global registry. JACC Cardiovasc Interv. 2016;9:1361–71.CrossRefGoogle Scholar
  12. 12.
    Willson AB, Webb JG. Labounty TM, et al. 3-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: a multicenter retrospective analysis. J Am Coll Cardiol. 2012;59:1287–94.CrossRefGoogle Scholar
  13. 13.
    Jilaihawi H, Kashif M, Fontana G, et al. Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. J Am Coll Cardiol. 2012;59:1275–86.CrossRefGoogle Scholar
  14. 14.
    Toggweiler S, Gurvitch R, Leipsic J, et al. Percutaneous aortic valve replacement: vascular outcomes with a fully percutaneous procedure. J Am Coll Cardiol. 2012;59:113–8.CrossRefGoogle Scholar
  15. 15.
    Hayashida K, Lefevre T, Chevalier B, et al. Transfemoral aortic valve implantation new criteria to predict vascular complications. JACC Cardiovasc Interv. 2011;4:851–8.CrossRefGoogle Scholar
  16. 16.
    Schoenhagen P, Numburi U, Halliburton SS, et al. Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance. Eur Heart J. 2010;31:2727–40.CrossRefGoogle Scholar
  17. 17.
    Levine RA, Triulzi MO, Harrigan P, Weyman AE. The relationship of mitral annular shape to the diagnosis of mitral valve prolapse. Circulation. 1987;75:756–67.CrossRefGoogle Scholar
  18. 18.
    Berdajs D, Zund G, Camenisch C, Schurr U, Turina MI, Genoni M. Annulus fibrous of the mitral valve: reality or myth. J Card Surg. 2007;22:406–9.CrossRefGoogle Scholar
  19. 19.
    Lee AP, Hsiung MC, Salgo IS, et al. Quantitative analysis of mitral valve morphology in mitral valve prolapse with real-time 3-dimensional echocardiography: importance of annular saddle shape in the pathogenesis of mitral regurgitation. Circulation. 2013;127:832–41.CrossRefGoogle Scholar
  20. 20.
    Naoum C, Leipsic J, Cheung A, et al. Mitral annular dimensions and geometry in patients with functional mitral regurgitation and mitral valve prolapse: implications for transcatheter mitral valve implantation. J Am Coll Cardiol Img. 2016;9:269–80.CrossRefGoogle Scholar
  21. 21.
    Hyodo E, Iwata S, Tugcu A, et al. Accurate measurement of mitral annular area by using single and biplane linear measurements: comparison of conventional methods with the three-dimensional planimetric method. Eur Heart J Cardiovasc Imaging. 2012;13:605–11.CrossRefGoogle Scholar
  22. 22.
    Hahn RT, Abraham T, Adams MS, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26:921–64.CrossRefGoogle Scholar
  23. 23.
    Grewal J, Suri R, Mankad S, et al. Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography. Circulation. 2010;121:1423–31.CrossRefGoogle Scholar
  24. 24.
    Blanke P, Dvir D, Cheung A, et al. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr. 2014;8:459–67.CrossRefGoogle Scholar
  25. 25.
    Hutchins GM, Moore GW, Skoog DK. The association of floppy mitral valve with disjunction of the mitral annulus fibrosus. N Engl J Med. 1986;314:535–40.CrossRefGoogle Scholar
  26. 26.
    Cheung A, Webb J, Verheye S, et al. Short-term results of transapical transcatheter mitral valve implantation for mitral regurgitation. J Am Coll Cardiol. 2014;64:1814–9.CrossRefGoogle Scholar
  27. 27.
    Blanke P, Naoum C, Dvir D, et al. Predicting LVOT obstruction in transcatheter mitral valve implantation: concept of the Neo-LVOT. J Am Coll Cardiol Img. 2017;10(4):482–5.CrossRefGoogle Scholar
  28. 28.
    Gurvitch R, Wood DA, Leipsic J, et al. Multislice computed tomography for prediction of optimal angiographic deployment projections during transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2010;3:1157–65.CrossRefGoogle Scholar
  29. 29.
    Blanke P, Dvir D, Naoum C, et al. Prediction of fluoroscopic angulation and coronary sinus location by CT in the context of transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr. 2015;9:183–92.CrossRefGoogle Scholar
  30. 30.
    Ruiz CE, Kliger C, Perk G, et al. Transcatheter therapies for the treatment of valvular and paravalvular regurgitation in acquired and congenital valvular heart disease. J Am Coll Cardiol. 2015;66:169–83.CrossRefGoogle Scholar
  31. 31.
    Webb G, Gatzoulis MA. Atrial septal defects in the adult: recent progress and overview. Circulation. 2006;114:1645–53.CrossRefGoogle Scholar
  32. 32.
    Wahl A, Meier B. Patent foramen ovale and ventricular septal defect closure. Heart. 2009;95:70–82.CrossRefGoogle Scholar
  33. 33.
    Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circ Cardiovasc Imaging. 2013;6:185–94.CrossRefGoogle Scholar
  34. 34.
    Xu B, Gooley R, Seneviratne SK, Nasis A. Clinical utility of multi-detector cardiac computed tomography in structural heart interventions. J Med Imaging Radiat Oncol. 2016;60:299–305.CrossRefGoogle Scholar
  35. 35.
    Burke MC, Roberts MJ, Knight BP. Integration of cardiac imaging and electrophysiology during catheter ablation procedures for atrial fibrillation. J Electrocardiol. 2006;39:S188–92.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • John F. Mooney
    • 1
  • Philipp Blanke
    • 1
  • Shaw Hua Kueh
    • 1
  • Stephanie Sellers
    • 1
  • Jonathon A. Leipsic
    • 2
    Email author
  1. 1.Department of RadiologyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of RadiologySt. Paul’s Hospital, Providence HealthcareVancouverCanada

Personalised recommendations