Three-Chamber Function with Cardiac CT

  • Jongmin LeeEmail author
Part of the Contemporary Medical Imaging book series (CMI)


By evaluating the adjacent cardiac chambers, more reliable information of a single-chamber function and inter-chamber compensatory functional mechanism can be acquired. Based on cardiac CT data with multiphase reconstruction, morphometric imaging markers are useful for evaluating the levels of the preload, inotropy, and afterload in each cardiac chamber as well as the global multichamber cardiac function.

In clinical practice, the inotropic function and the afterload of left ventricle are major concerns. The left ventricular ejection fraction and the cardiac index are good markers for the inotropy. The left ventricular end-systolic volume index, the peripheral vascular resistance, and the aortic distensibility are useful markers for the afterload of left ventricle. The second major concern may be the afterload of the right ventricle, which can be evaluated by the right ventricular end-systolic volume index, the pulmonary vascular resistance, and the structural deformations.

If information about the cardiac function and the chamber volume could be acquired via coronary CT angiography, at the cost of increased radiation dose, it may be useful for clinical management of diverse cardiac diseases including ischemic heart disease, cardiomyopathy, and heart failure.


Preload Contractility Afterload Three-chamber function with cardiac CT Cardiac functional parameters Cardiac CT and three-chamber function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mohrman DE, Heller LJ. Cardiovascular physiology, McGraw-Hill, New York; 2006. p. 47–70.Google Scholar
  2. 2.
    Fuchs A, Kuhl JT, Lonborg J, Engstrom T, Vejlstrup N, Kober L, et al. Automated assessment of heart chamber volumes and function in patients with previous myocardial infarction using multidetector computed tomography. J Cardiovasc Comput Tomogr. 2012;6(5):325–34.PubMedGoogle Scholar
  3. 3.
    Stouffer GA. Cardiovascular hemodynamics for the clinician, Wiley Blackwell, Oxford; 2008. p. 3-100.Google Scholar
  4. 4.
    Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.PubMedGoogle Scholar
  5. 5.
    van Lieshout JJ, Wesseling KH. Continuous cardiac output by pulse contour analysis? Br J Anaesth. 2001;86(4):467–9.PubMedGoogle Scholar
  6. 6.
    Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J. Harrison’s principles of internal medicine: McGraw-Hill; New York, 2012.Google Scholar
  7. 7.
    Tanabe Y, Kido T, Kurata A, Sawada S, Suekuni H, Kido T, et al. Three-dimensional maximum principal strain using cardiac computed tomography for identification of myocardial infarction. Eur Radiol. 2017;27(4):1667–75.Google Scholar
  8. 8.
    Mahnken AH, Katoh M, Bruners P, Spuentrup E, Wildberger JE, Gunther RW, et al. Acute myocardial infarction: assessment of left ventricular function with 16-detector row spiral CT versus MR imaging–study in pigs. Radiology. 2005;236(1):112–7.PubMedGoogle Scholar
  9. 9.
    Hundt W, Siebert K, Wintersperger BJ, Becker CR, Knez A, Reiser MF, et al. Assessment of global left ventricular function: comparison of cardiac multidetector-row computed tomography with angiocardiography. J Comput Assist Tomogr. 2005;29(3):373–81.PubMedGoogle Scholar
  10. 10.
    Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J. 2006;151(3):736–44.PubMedGoogle Scholar
  11. 11.
    Yamamuro M, Tadamura E, Kubo S, Toyoda H, Nishina T, Ohba M, et al. Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology. 2005;234(2):381–90.PubMedGoogle Scholar
  12. 12.
    Maffei E, Messalli G, Martini C, Nieman K, Catalano O, Rossi A, et al. Left and right ventricle assessment with cardiac CT: validation study vs. cardiac MR. Eur Radiol. 2012;22(5):1041–9. Pubmed Central PMCID: 3321142.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Groen JM, van der Vleuten PA, Greuter MJ, Zijlstra F, Oudkerk M. Comparison of MRI, 64-slice MDCT and DSCT in assessing functional cardiac parameters of a moving heart phantom. Eur Radiol. 2009;19(3):577–83. Pubmed Central PMCID: 2816236.PubMedGoogle Scholar
  14. 14.
    Arsanjani R, Berman DS, Gransar H, Cheng VY, Dunning A, Lin FY, et al. Left ventricular function and volume with coronary CT angiography improves risk stratification and identification of patients at risk for incident mortality: results from 7758 patients in the prospective multinational CONFIRM observational cohort study. Radiology. 2014;273(1):70–7.PubMedGoogle Scholar
  15. 15.
    Mao SS, Li D, Vembar M, Gao Y, Luo Y, Lam F, et al. Model-based automatic segmentation algorithm accurately assesses the whole cardiac volumetric parameters in patients with cardiac CT angiography: a validation study for evaluating the accuracy of the workstation software and establishing the reference values. Acad Radiol. 2014;21(5):639–47.PubMedGoogle Scholar
  16. 16.
    Dell'Italia LJ, Walsh RA. Effect of intravenous metoprolol on left ventricular performance in Q-wave acute myocardial infarction. Am J Cardiol. 1989;63(3):166–71.PubMedGoogle Scholar
  17. 17.
    Port S, Cobb FR, Jones RH. Effects of propranolol on left ventricular function in normal men. Circulation. 1980;61(2):358–66.PubMedGoogle Scholar
  18. 18.
    Silke B, Verma SP, Frais MA, Reynolds G, Taylor SH. Comparative effects of metoprolol and celiprolol on cardiac hemodynamics and left ventricular volume at rest and during exercise-induced angina. Clin Pharmacol Ther. 1986;39(1):5–14.PubMedGoogle Scholar
  19. 19.
    Tsusaki H, Yonamine H, Tamai A, Shimomoto M, Kuwano K, Iwao H, et al. Left ventricular volume and function in cynomolgus monkeys using real-time three-dimensional echocardiography. J Med Primatol. 2007;36(1):39–46.PubMedGoogle Scholar
  20. 20.
    Mo YH, Jaw FS, Wang YC, Jeng CM, Peng SF. Effects of propranolol on the left ventricular volume of normal subjects during CT coronary angiography. Korean J Radiol. 2011;12(3):319–26. Pubmed Central PMCID: 3088849.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Martin GV, Sheehan FH, Stadius M, Maynard C, Davis KB, Ritchie JL, et al. Intravenous streptokinase for acute myocardial infarction. Effects on global and regional systolic function. Circulation. 1988;78(2):258–66.PubMedGoogle Scholar
  22. 22.
    Zeb I, Li D, Nasir K, Gupta M, Kadakia J, Gao Y, et al. Computerized left ventricular regional ejection fraction analysis for detection of ischemic coronary artery disease with multidetector CT angiography. Int J Cardiovasc Imaging. 2013;29(3):685–92. Pubmed Central PMCID: 4277887.PubMedGoogle Scholar
  23. 23.
    Yee S, Scalzetti EM. Measurement of cardiac output from dynamic pulmonary circulation time CT. Med Phys. 2014;41(6):061904.PubMedGoogle Scholar
  24. 24.
    Mahnken AH, Klotz E, Hennemuth A, Jung B, Koos R, Wildberger JE, et al. Measurement of cardiac output from a test-bolus injection in multislice computed tomography. Eur Radiol. 2003;13(11):2498–504.PubMedGoogle Scholar
  25. 25.
    Vanhoenacker PK, Van Hoe LR. A simple method to estimate cardiac function during routine multi-row detector CT exams. Eur Radiol. 2007;17(11):2845–51.PubMedGoogle Scholar
  26. 26.
    Truesdell C, Noll W, Antman SS. The non-linear field theories of mechanics. 3rd ed. Berlin, New York: Springer; 2004. xxix, 602 p. p.Google Scholar
  27. 27.
    Buss SJ, Schulz F, Mereles D, Hosch W, Galuschky C, Schummers G, et al. Quantitative analysis of left ventricular strain using cardiac computed tomography. Eur J Radiol. 2014;83(3):e123–30.PubMedGoogle Scholar
  28. 28.
    Ganten MK, Krautter U, von Tengg-Kobligk H, Bockler D, Schumacher H, Stiller W, et al. Quantification of aortic distensibility in abdominal aortic aneurysm using ECG-gated multi-detector computed tomography. Eur Radiol. 2008;18(5):966–73.PubMedGoogle Scholar
  29. 29.
    Seo J, Choi D, Rienmueller R, Lim JG, Chang Y, Lee J. Suggestion for a new image-based aortic wall stiffness evaluation technique: arterial wall stiffness index. Int J Cardiovasc Imaging. 2009;25(Suppl 1):83–94.PubMedGoogle Scholar
  30. 30.
    Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014;63(6):493–505.PubMedGoogle Scholar
  31. 31.
    Prioli A, Marino P, Lanzoni L, Zardini P. Increasing degrees of left ventricular filling impairment modulate left atrial function in humans. Am J Cardiol. 1998;82(6):756–61.PubMedGoogle Scholar
  32. 32.
    Barbier P, Solomon SB, Schiller NB, Glantz SA. Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation. 1999;100(4):427–36.PubMedGoogle Scholar
  33. 33.
    Boudoulas KD, Paraskevaidis IA, Boudoulas H, Triposkiadis FK. The left atrium: from the research laboratory to the clinic. Cardiology. 2014;129(1):1–17.PubMedGoogle Scholar
  34. 34.
    Schweitzer A, Agmon Y, Aronson D, Abadi S, Mutlak D, Carasso S, et al. Assessment of left sided filling dynamics in diastolic dysfunction using cardiac computed tomography. Eur J Radiol. 2015;84(10):1930–7.PubMedGoogle Scholar
  35. 35.
    Rahimtoola SH, Ehsani A, Sinno MZ, Loeb HS, Rosen KM, Gunnar RM. Left atrial transport function in myocardial infarction. Importance of its booster pump function. Am J Med. 1975;59(5):686–94.PubMedGoogle Scholar
  36. 36.
    Hoit BD, Shao Y, Gabel M, Walsh RA. In vivo assessment of left atrial contractile performance in normal and pathological conditions using a time-varying elastance model. Circulation. 1994;89(4):1829–38.PubMedGoogle Scholar
  37. 37.
    Tsang TS, Abhayaratna WP, Barnes ME, Miyasaka Y, Gersh BJ, Bailey KR, et al. Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter? J Am Coll Cardiol. 2006;47(5):1018–23.PubMedGoogle Scholar
  38. 38.
    Agner BF, Kuhl JT, Linde JJ, Kofoed KF, Akeson P, Rasmussen BV, et al. Assessment of left atrial volume and function in patients with permanent atrial fibrillation: comparison of cardiac magnetic resonance imaging, 320-slice multi-detector computed tomography, and transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2014;15(5):532–40.PubMedGoogle Scholar
  39. 39.
    Choi MJ, Kim JK, Kim SG, Yoon JW, Koo JR, Kim HJ, et al. Left atrial volume index is a predictor of silent myocardial ischemia in high-risk patients with end-stage renal disease. Int J Cardiovas Imag. 2013;29(7):1433–9. PubMed PMID: WOS:000325716000004. English.Google Scholar
  40. 40.
    Feuchtner GM, Dichtl W, Bonatti JO, Jodocy D, Muller S, Hintringer F, et al. Diagnostic accuracy of cardiac 64-slice computed tomography in detecting atrial thrombi. Comparative study with transesophageal echocardiography and cardiac surgery. Investig Radiol. 2008;43(11):794–801.Google Scholar
  41. 41.
    Christiaens L, Varroud-Vial N, Ardilouze P, Ragot S, Mergy J, Bonnet B, et al. Real three-dimensional assessment of left atrial and left atrial appendage volumes by 64-slice spiral computed tomography in individuals with or without cardiovascular disease. Int J Cardiol. 2010;140(2):189–96.PubMedGoogle Scholar
  42. 42.
    Im SI, Na JO, Kim SW, Choi CU, Kim JW, Yong HS, et al. Adjusted left atrial emptying fraction as a predictor of procedural outcome after catheter ablation for atrial fibrillation. Tex Heart Inst J. 2015;42(3):216–25. Pubmed Central PMCID: 4473613.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1(1):62–73.PubMedGoogle Scholar
  44. 44.
    Caselli S, Canali E, Foschi ML, Santini D, Di Angelantonio E, Pandian NG, et al. Long-term prognostic significance of three-dimensional echocardiographic parameters of the left ventricle and left atrium. Eur J Echocardiogr. 2010;11(3):250–6.PubMedGoogle Scholar
  45. 45.
    Boogers MJ, van Werkhoven JM, Schuijf JD, Delgado V, El-Naggar HM, Boersma E, et al. Feasibility of diastolic function assessment with cardiac CT: feasibility study in comparison with tissue Doppler imaging. J Am Coll Cardiol Img. 2011;4(3):246–56.Google Scholar
  46. 46.
    Kusunose K, Motoki H, Popovic ZB, Thomas JD, Klein AL, Marwick TH. Independent association of left atrial function with exercise capacity in patients with preserved ejection fraction. Heart. 2012;98(17):1311–7.PubMedGoogle Scholar
  47. 47.
    Di Bella G, Siciliano V, Aquaro GD, De Marchi D, Rovai D, Carerj S, et al. Right ventricular dysfunction: an independent and incremental predictor of cardiac deaths late after acute myocardial infarction. Int J Cardiovasc Imaging. 2015;31(2):379–87.PubMedGoogle Scholar
  48. 48.
    Goldhaber SZ, Elliott CG. Acute pulmonary embolism: part II: risk stratification, treatment, and prevention. Circulation. 2003;108(23):2834–8.PubMedGoogle Scholar
  49. 49.
    Dogan H, Kroft LJ, Huisman MV, van der Geest RJ, de Roos A. Right ventricular function in patients with acute pulmonary embolism: analysis with electrocardiography-synchronized multi-detector row CT. Radiology. 2007;242(1):78–84.PubMedGoogle Scholar
  50. 50.
    Sato T, Tsujino I, Oyama-Manabe N, Ohira H, Ito YM, Sugimori H, et al. Simple prediction of right ventricular ejection fraction using tricuspid annular plane systolic excursion in pulmonary hypertension. Int J Cardiovasc Imaging. 2013;29(8):1799–805.PubMedGoogle Scholar
  51. 51.
    Pienn M, Kovacs G, Tscherner M, Johnson TR, Kullnig P, Stollberger R, et al. Determination of cardiac output with dynamic contrast-enhanced computed tomography. Int J Cardiovasc Imaging. 2013;29(8):1871–8.PubMedGoogle Scholar
  52. 52.
    Yamasaki Y, Nagao M, Kamitani T, Yamanouchi T, Kawanami S, Yamamura K, et al. Clinical impact of left ventricular eccentricity index using cardiac MRI in assessment of right ventricular hemodynamics and myocardial fibrosis in congenital heart disease. Eur Radiol. 2016;26(10):3617–25.PubMedGoogle Scholar
  53. 53.
    Muller HM, Tripolt MB, Rehak PH, Groell R, Rienmuller R, Tscheliessnigg KH. Noninvasive measurement of pulmonary vascular resistances by assessment of cardiac output and pulmonary transit time. Investig Radiol. 2000;35(12):727–31.Google Scholar
  54. 54.
    Revel MP, Faivre JB, Remy-Jardin M, Delannoy-Deken V, Duhamel A, Remy J. Pulmonary hypertension: ECG-gated 64-section CT angiographic evaluation of new functional parameters as diagnostic criteria. Radiology. 2009;250(2):558–66.PubMedGoogle Scholar
  55. 55.
    Tan RT, Kuzo R, Goodman LR, Siegel R, Haasler GB, Presberg KW. Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Medical College of Wisconsin Lung Transplant Group. Chest. 1998;113(5):1250–6.PubMedGoogle Scholar
  56. 56.
    Chan AL, Juarez MM, Shelton DK, MacDonald T, Li CS, Lin TC, et al. Novel computed tomographic chest metrics to detect pulmonary hypertension. BMC Med Imaging. 2011;11:7. Pubmed Central PMCID: 3073886.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Remy-Jardin M, Duhamel A, Deken V, Bouaziz N, Dumont P, Remy J. Systemic collateral supply in patients with chronic thromboembolic and primary pulmonary hypertension: assessment with multi-detector row helical CT angiography. Radiology. 2005;235(1):274–81.PubMedGoogle Scholar
  58. 58.
    Collins MA, Pidgeon JW, Fitzgerald R. Computed tomography manifestations of tricuspid regurgitation. Br J Radiol. 1995;68(814):1058–60.PubMedGoogle Scholar
  59. 59.
    Yeh BM, Kurzman P, Foster E, Qayyum A, Joe B, Coakley F. Clinical relevance of retrograde inferior vena cava or hepatic vein opacification during contrast-enhanced CT. AJR Am J Roentgenol. 2004;183(5):1227–32.PubMedGoogle Scholar
  60. 60.
    Sivak JA, Raina A, Forfia PR. Assessment of the physiologic contribution of right atrial function to total right heart function in patients with and without pulmonary arterial hypertension. Pulm Circ. 2016;6(3):322–8.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Nourian S, Hosseinsabet A, Jalali A, Mohseni-Badalabadi R. Evaluation of right atrial function by two-dimensional speckle-tracking echocardiography in patients with right ventricular myocardial infarction. Int J Cardiovasc Imaging. 2017;33(1):47–56.Google Scholar
  62. 62.
    Lin FY, Devereux RB, Roman MJ, Meng J, Jow VM, Jacobs A, et al. Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography: mean values among healthy adults free of hypertension and obesity. J Am Coll Cardiol Img. 2008;1(6):782–6.Google Scholar
  63. 63.
    Stojanovska J, Cronin P, Patel S, Gross BH, Oral H, Chughtai K, et al. Reference normal absolute and indexed values from ECG-gated MDCT: left atrial volume, function, and diameter. AJR Am J Roentgenol. 2011;197(3):631–7.PubMedGoogle Scholar
  64. 64.
    Stolzmann P, Scheffel H, Leschka S, Schertler T, Frauenfelder T, Kaufmann PA, et al. Reference values for quantitative left ventricular and left atrial measurements in cardiac computed tomography. Eur Radiol. 2008;18(8):1625–34.PubMedGoogle Scholar
  65. 65.
    Budoff MJ, Pagali SR, Hamirani YS, Chen A, Cheu G, Gao Y, et al. Sex-specific biatrial volumetric measurements obtained with use of multidetector computed tomography in subjects with and without coronary artery disease. Tex Heart Inst J. 2014;41(3):286–92. Pubmed Central PMCID: 4060347.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Yamasaki Y, Nagao M, Kawanami S, Kamitani T, Sagiyama K, Yamanouchi T, et al. One-stop shop assessment for atrial septal defect closure using 256-slice coronary CT angiography. Eur Radiol. 2017;27(2):697–704.Google Scholar
  67. 67.
    Addetia K, Takeuchi M, Maffessanti F, Nagata Y, Hamilton J, Mor-Avi V, et al. Simultaneous longitudinal strain in all 4 cardiac chambers: a novel method for comprehensive functional assessment of the heart. Circ Cardiovasc Imaging. 2016;9(3):e003895.PubMedGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Department of RadiologyKyungpook National University, School of MedicineDaeguSouth Korea

Personalised recommendations