Cardiac CT in the Setting of Heart Transplantation

  • Gorka BastarrikaEmail author
  • Gregorio Rábago
Part of the Contemporary Medical Imaging book series (CMI)


Cardiac transplantation is the treatment of choice for patients with end-stage heart failure. Long-term prognosis and survival after heart transplantation is related to cardiac allograft vasculopathy (CAV), renal failure, and malignancy. Cardiac CT, particularly using latest generation equipment, is a unique imaging modality that allows the assessment of posttransplant anatomy and the detection of early and late complications related to the procedure. Coronary artery lumen and wall are now viewed and analyzed with unprecedented anatomical detail, whereas specific CT acquisition modes also enable the evaluation of cardiac morphologic and functional parameters in good agreement with established imaging modalities. Although conventional coronary angiography remains the reference standard for the diagnosis of CAV, the results of most recent studies and meta-analysis suggest that CCTA could be considered as an alternative to conventional coronary angiography in the routine surveillance of heart transplant recipients. However, further research is warranted to determine the impact of this imaging technology in the management and clinical outcomes of this patient population.


Cardiovascular anatomy after heart transplantation Orthotopic heart transplantation Heterotopic heart transplantation Cardiac allograft vasculopathy Coronary CT angiography and cardiac allograft vasculopathy Transplant-related findings on cardiac CT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dobbels F, et al. The registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report – 2011. J Heart Lung Transplant. 2011;30(10):1078–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Shumway NE, Lower RR, Stofer RC. Transplantation of the heart. Adv Surg. 1966;2:265–84.PubMedGoogle Scholar
  3. 3.
    Dreyfus G, Jebara V, Mihaileanu S, Carpentier AF. Total orthotopic heart transplantation: an alternative to the standard technique. Ann Thorac Surg. 1991;52(5):1181–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Sievers HH, Weyand M, Kraatz EG, Bernhard A. An alternative technique for orthotopic cardiac transplantation, with preservation of the normal anatomy of the right atrium. Thorac Cardiovasc Surg. 1991;39(2):70–2.PubMedCrossRefGoogle Scholar
  5. 5.
    Weiss ES, Nwakanma LU, Russell SB, Conte JV, Shah AS. Outcomes in bicaval versus biatrial techniques in heart transplantation: an analysis of the UNOS database. J Heart Lung Transplant. 2008;27(2):178–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Knisely BL, Mastey LA, Collins J, Kuhlman JE. Imaging of cardiac transplantation complications. Radiographics. 1999;19(2):321–39; discussion 40–1PubMedCrossRefGoogle Scholar
  7. 7.
    Triposkiadis F, Starling RC, Haas GJ, Sparks E, Myerowitz PD, Boudoulas H. Timing of recipient atrial contraction: a major determinant of transmitral diastolic flow in orthotopic cardiac transplantation. Am Heart J. 1993;126(5):1175–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Stevenson LW, Dadourian BJ, Kobashigawa J, Child JS, Clark SH, Laks H. Mitral regurgitation after cardiac transplantation. Am J Cardiol. 1987;60(1):119–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Gorcsan J 3rd, Snow FR, Paulsen W, Arrowood JA, Thompson JA, Nixon JV. Echocardiographic profile of the transplanted human heart in clinically well recipients. J Heart Lung Transplant. 1992;11(1 Pt 1):80–9.PubMedGoogle Scholar
  10. 10.
    Lai HY, Chen JH, Chiu KM, Wang KL, Cheung WK, Li AH, et al. CT of two hearts beating in one chest. AJR Am J Roentgenol. 2008;191(6):1711–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Roux C, Varnous S, Leprince P, Cluzel P. Two hearts, one soul: heterotopic heart transplantation follow-up with cardiac computed tomography. Eur Heart J. 2016;37:3356.PubMedCrossRefGoogle Scholar
  12. 12.
    Schmauss D, Weis M. Cardiac allograft vasculopathy: recent developments. Circulation. 2008;117(16):2131–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Rahmani M, Cruz RP, Granville DJ, McManus BM. Allograft vasculopathy versus atherosclerosis. Circ Res. 2006;99(8):801–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Lamich R, Ballester M, Marti V, Brossa V, Aymat R, Carrio I, et al. Efficacy of augmented immunosuppressive therapy for early vasculopathy in heart transplantation. J Am Coll Cardiol. 1998;32(2):413–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914–56.PubMedCrossRefGoogle Scholar
  16. 16.
    Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant. 2010;29(7):717–27.PubMedCrossRefGoogle Scholar
  17. 17.
    St Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ, et al. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation. 1992;85(3):979–87.PubMedCrossRefGoogle Scholar
  18. 18.
    Spes CH, Klauss V, Rieber J, Schnaack SD, Tammen AR, Uberfuhr P, et al. Functional and morphological findings in heart transplant recipients with a normal coronary angiogram: an analysis by dobutamine stress echocardiography, intracoronary Doppler and intravascular ultrasound. J Heart Lung Transplant. 1999;18(5):391–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Khandhar SJ, Yamamoto H, Teuteberg JJ, Shullo MA, Bezerra HG, Costa MA, et al. Optical coherence tomography for characterization of cardiac allograft vasculopathy after heart transplantation (OCTCAV study). J Heart Lung Transplant. 2013;32(6):596–602.PubMedCrossRefGoogle Scholar
  20. 20.
    Hou J, Lv H, Jia H, Zhang S, Xing L, Liu H, et al. OCT assessment of allograft vasculopathy in heart transplant recipients. JACC Cardiovasc Imaging. 2012;5(6):662–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson DE, Alderman EL, Schroeder JS, Gao SZ, Hunt S, DeCampli WM, et al. Transplant coronary artery disease: histopathologic correlations with angiographic morphology. J Am Coll Cardiol. 1991;17(2):449–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Rickenbacher PR, Pinto FJ, Chenzbraun A, Botas J, Lewis NP, Alderman EL, et al. Incidence and severity of transplant coronary artery disease early and up to 15 years after transplantation as detected by intravascular ultrasound. J Am Coll Cardiol. 1995;25(1):171–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsutsui H, Ziada KM, Schoenhagen P, Iyisoy A, Magyar WA, Crowe TD, et al. Lumen loss in transplant coronary artery disease is a biphasic process involving early intimal thickening and late constrictive remodeling: results from a 5-year serial intravascular ultrasound study. Circulation. 2001;104(6):653–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Shan P, Dong L, Maehara A, Nazif TM, Ali ZA, Rabbani LE, et al. Comparison between cardiac allograft vasculopathy and native coronary atherosclerosis by optical coherence tomography. Am J Cardiol. 2016;117(8):1361–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cohn JM, Wilensky RL, O'Donnell JA, Bourdillon PD, Dillon JC, Feigenbaum H. Exercise echocardiography, angiography, and intracoronary ultrasound after cardiac transplantation. Am J Cardiol. 1996;77(14):1216–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Akosah KO, McDaniel S, Hanrahan JS, Mohanty PK. Dobutamine stress echocardiography early after heart transplantation predicts development of allograft coronary artery disease and outcome. J Am Coll Cardiol. 1998;31(7):1607–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Derumeaux G, Redonnet M, Soyer R, Cribier A, Letac B. Assessment of the progression of cardiac allograft vasculopathy by dobutamine stress echocardiography. J Heart Lung Transplant. 1998;17(3):259–67.PubMedGoogle Scholar
  28. 28.
    Spes CH, Klauss V, Mudra H, Schnaack SD, Tammen AR, Rieber J, et al. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: a comparison with coronary angiography and intravascular ultrasound. Circulation. 1999;100(5):509–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Spes CH, Mudra H, Schnaack SD, Klauss V, Reichle FM, Uberfuhr P, et al. Dobutamine stress echocardiography for noninvasive diagnosis of cardiac allograft vasculopathy: a comparison with angiography and intravascular ultrasound. Am J Cardiol. 1996;78(2):168–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Mastrobuoni S, Bastarrika G, Ubilla M, Castano S, Azcarate P, Barrero EA, et al. Dual-source CT coronary angiogram in heart transplant recipients in comparison with dobutamine stress echocardiography for detection of cardiac allograft vasculopathy. Transplantation. 2009;87(4):587–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Ciliberto GR, Ruffini L, Mangiavacchi M, Parolini M, Sara R, Massa D, et al. Resting echocardiography and quantitative dipyridamole technetium-99m sestamibi tomography in the identification of cardiac allograft vasculopathy and the prediction of long-term prognosis after heart transplantation. Eur Heart J. 2001;22(11):964–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Elhendy A, Sozzi FB, van Domburg RT, Vantrimpont P, Valkema R, Krenning EP, et al. Accuracy of dobutamine tetrofosmin myocardial perfusion imaging for the noninvasive diagnosis of transplant coronary artery stenosis. J Heart Lung Transplant. 2000;19(4):360–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Braggion-Santos MF, Lossnitzer D, Buss S, Lehrke S, Doesch A, Giannitsis E, et al. Late gadolinium enhancement assessed by cardiac magnetic resonance imaging in heart transplant recipients with different stages of cardiac allograft vasculopathy. Eur Heart J Cardiovasc Imaging. 2014;15(10):1125–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Pedrotti P, Bonacina E, Vittori C, Frigerio M, Roghi A. Pathologic correlates of late gadolinium enhancement cardiovascular magnetic resonance in a heart transplant patient. Cardiovasc Pathol. 2015;24(4):247–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Riesenkampff E, Chen CK, Kantor PF, Greenway S, Chaturvedi RR, Yoo SJ, et al. Diffuse myocardial fibrosis in children after heart transplantations: a magnetic resonance T1 mapping study. Transplantation. 2015;99(12):2656–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Ellims AH, Shaw JA, Stub D, Iles LM, Hare JL, Slavin GS, et al. Diffuse myocardial fibrosis evaluated by post-contrast t1 mapping correlates with left ventricular stiffness. J Am Coll Cardiol. 2014;63(11):1112–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Usman AA, Taimen K, Wasielewski M, McDonald J, Shah S, Giri S, et al. Cardiac magnetic resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection: a pilot study. Circ Cardiovasc Imaging. 2012;5(6):782–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Muehling OM, Wilke NM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, et al. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol. 2003;42(6):1054–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Miller CA, Sarma J, Naish JH, Yonan N, Williams SG, Shaw SM, et al. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol. 2014;63(8):799–808.PubMedCrossRefGoogle Scholar
  40. 40.
    Chih S, Ross HJ, Alba AC, Fan CS, Manlhiot C, Crean AM. Perfusion cardiac magnetic resonance imaging as a rule-out test for cardiac allograft vasculopathy. Am J Transplant. 2016;16(10):3007–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Ferencik M, Brady TJ, Hoffmann U. Computed tomography imaging of cardiac allograft vasculopathy. J Cardiovasc Comput Tomogr. 2012;6(4):223–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Bastarrika G, De Cecco CN, Arraiza M, Ubilla M, Mastrobuoni S, Pueyo JC, et al. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval. Eur Radiol. 2008;18(9):1791–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Gregory SA, Ferencik M, Achenbach S, Yeh RW, Hoffmann U, Inglessis I, et al. Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol. 2006;98(7):877–84.PubMedCrossRefGoogle Scholar
  44. 44.
    Romeo G, Houyel L, Angel CY, Brenot P, Riou JY, Paul JF. Coronary stenosis detection by 16-slice computed tomography in heart transplant patients: comparison with conventional angiography and impact on clinical management. J Am Coll Cardiol. 2005;45(11):1826–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Sigurdsson G, Carrascosa P, Yamani MH, Greenberg NL, Perrone S, Lev G, et al. Detection of transplant coronary artery disease using multidetector computed tomography with adaptative multisegment reconstruction. J Am Coll Cardiol. 2006;48(4):772–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Bastarrika G, Broncano J, Arraiza M, Azcarate PM, Simon-Yarza I, Levy Praschker BG, et al. Systolic prospectively ECG-triggered dual-source CT angiography for evaluation of the coronary arteries in heart transplant recipients. Eur Radiol. 2011;21(9):1887–94.PubMedCrossRefGoogle Scholar
  47. 47.
    Bastarrika G, De Cecco CN, Arraiza M, Mastrobuoni S, Pueyo JC, Ubilla M, et al. Dual-source CT for visualization of the coronary arteries in heart transplant patients with high heart rates. AJR Am J Roentgenol. 2008;191(2):448–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Mittal TK, Panicker MG, Mitchell AG, Banner NR. Cardiac allograft vasculopathy after heart transplantation: electrocardiographically gated cardiac CT angiography for assessment. Radiology. 2013;268(2):374–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology. 2008;248(2):431–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Schepis T, Achenbach S, Weyand M, Raum P, Marwan M, Pflederer T, et al. Comparison of dual source computed tomography versus intravascular ultrasound for evaluation of coronary arteries at least one year after cardiac transplantation. Am J Cardiol. 2009;104(10):1351–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Adler G, Meille L, Rohnean A, Sigal-Cinqualbre A, Capderou A, Paul JF. Robustness of end-systolic reconstructions in coronary dual-source CT angiography for high heart rate patients. Eur Radiol. 2010;20(5):1118–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56(22):1864–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Ludman PF, Lazem F, Barbir M, Yacoub M. Incidence and clinical relevance of coronary calcification detected by electron beam computed tomography in heart transplant recipients. Eur Heart J. 1999;20(4):303–8.PubMedCrossRefGoogle Scholar
  54. 54.
    von Ziegler F, Kaczmarek I, Knez A, Greif M, Rummler J, Meiser B, et al. Coronary calcifications detected by computed tomography are not markers of cardiac allograft vasculopathy. Transplantation. 2011;92(4):493–8.CrossRefGoogle Scholar
  55. 55.
    Moro J, Almenar L, Igual B, Martinez-Dolz L, Sanchez E, Martin J, et al. Multislice CT in graft vascular disease. A pilot study. Transplant Proc. 2006;38(8):2563–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Pichler P, Loewe C, Roedler S, Syeda B, Stadler A, Aliabadi A, et al. Detection of high-grade stenoses with multislice computed tomography in heart transplant patients. J Heart Lung Transplant. 2008;27(3):310–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Iyengar S, Feldman DS, Cooke GE, Leier CV, Raman SV. Detection of coronary artery disease in orthotopic heart transplant recipients with 64-detector row computed tomography angiography. J Heart Lung Transplant. 2006;25(11):1363–6.PubMedCrossRefGoogle Scholar
  58. 58.
    von Ziegler F, Leber AW, Becker A, Kaczmarek I, Schonermarck U, Raps C, et al. Detection of significant coronary artery stenosis with 64-slice computed tomography in heart transplant recipients: a comparative study with conventional coronary angiography. Int J Cardiovasc Imaging. 2009;25(1):91–100.CrossRefGoogle Scholar
  59. 59.
    von Ziegler F, Rummler J, Kaczmarek I, Greif M, Schenzle J, Helbig S, et al. Detection of significant coronary artery stenosis with cardiac dual-source computed tomography angiography in heart transplant recipients. Transpl Int. 2012;25(10):1065–71.CrossRefGoogle Scholar
  60. 60.
    Kepka C, Sobieszczansk-Malek M, Pregowski J, Kruk M, Bekta P, Opolski M, et al. Usefulness of dual-source computed tomography for the evaluation of coronary arteries in heart transplant recipients. Kardiol Pol. 2012;70(11):1111–9.PubMedGoogle Scholar
  61. 61.
    Khan R, Jang IK. Evaluation of coronary allograft vasculopathy using multi-detector row computed tomography: a systematic review. Eur J Cardiothorac Surg. 2012;41(2):415–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Wever-Pinzon O, Romero J, Kelesidis I, Wever-Pinzon J, Manrique C, Budge D, et al. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: a meta-analysis of prospective trials. J Am Coll Cardiol. 2014;63(19):1992–2004.PubMedCrossRefGoogle Scholar
  63. 63.
    Rohnean A, Houyel L, Sigal-Cinqualbre A, To NT, Elfassy E, Paul JF. Heart transplant patient outcomes: 5-year mean follow-up by coronary computed tomography angiography. Transplantation. 2011;91(5):583–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Globits S, De Marco T, Schwitter J, Sakuma H, O'Sullivan M, Rifkin C, et al. Assessment of early left ventricular remodeling in orthotopic heart transplant recipients with cine magnetic resonance imaging: potential mechanisms. J Heart Lung Transplant. 1997;16(5):504–10.PubMedGoogle Scholar
  65. 65.
    Bellenger NG, Marcus NJ, Davies C, Yacoub M, Banner NR, Pennell DJ. Left ventricular function and mass after orthotopic heart transplantation: a comparison of cardiovascular magnetic resonance with echocardiography. J Heart Lung Transplant. 2000;19(5):444–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Kronik G, Slany J, Mosslacher H. Comparative value of eight M-mode echocardiographic formulas for determining left ventricular stroke volume. A correlative study with thermodilution and left ventricular single-plane cineangiography. Circulation. 1979;60(6):1308–16.PubMedCrossRefGoogle Scholar
  67. 67.
    Allison JD, Flickinger FW, Wright JC, Falls DG 3rd, Prisant LM, VonDohlen TW, et al. Measurement of left ventricular mass in hypertrophic cardiomyopathy using MRI: comparison with echocardiography. Magn Reson Imaging. 1993;11(3):329–34.PubMedCrossRefGoogle Scholar
  68. 68.
    Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J. 2004;25(21):1940–65.PubMedCrossRefGoogle Scholar
  69. 69.
    Sandstede J, Lipke C, Beer M, Hofmann S, Pabst T, Kenn W, et al. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol. 2000;10(3):438–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M, et al. Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. AJR Am J Roentgenol. 2006;186(6 Suppl 2):S357–65.PubMedCrossRefGoogle Scholar
  71. 71.
    Myerson SG, Bellenger NG, Pennell DJ. Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension. 2002;39(3):750–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Ferencik M, Gregory SA, Butler J, Achenbach S, Yeh RW, Hoffmann U, et al. Analysis of cardiac dimensions, mass and function in heart transplant recipients using 64-slice multi-detector computed tomography. J Heart Lung Transplant. 2007;26(5):478–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Bastarrika G, Arraiza M, De Cecco CN, Broncano J, Mastrobuoni S, Ubilla M, et al. Dual-source CT in heart transplant recipients: quantification of global left ventricular function and mass. J Thorac Imaging. 2009;24(2):103–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Bastarrika G, Arraiza M, De Cecco CN, Mastrobuoni S, Ubilla M, Rabago G. Quantification of left ventricular function and mass in heart transplant recipients using dual-source CT and MRI: initial clinical experience. Eur Radiol. 2008;18(9):1784–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Bastarrika G, Zudaire B, Ferreira M, Arraiza M, Saiz-Mendiguren R, Rabago G. Assessment of left atrial volumes and function in orthotopic heart transplant recipients by dual-source CT: comparison with MRI. Investig Radiol. 2010;45(2):72–6.CrossRefGoogle Scholar
  76. 76.
    Cole WH. The increase in immunosuppression and its role in the development of malignant lesions. J Surg Oncol. 1985;30(3):139–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Roussel JC, Baron O, Perigaud C, Bizouarn P, Pattier S, Habash O, et al. Outcome of heart transplants 15 to 20 years ago: graft survival, post-transplant morbidity, and risk factors for mortality. J Heart Lung Transplant. 2008;27(5):486–93.PubMedCrossRefGoogle Scholar
  78. 78.
    Budoff MJ, Gopal A. Incidental findings on cardiac computed tomography. Should we look? J Cardiovasc Comput Tomogr. 2007;1(2):97–105.PubMedCrossRefGoogle Scholar
  79. 79.
    Earls JP. The pros and cons of searching for extracardiac findings at cardiac CT: studies should be reconstructed in the maximum field of view and adequately reviewed to detect pathologic findings. Radiology. 2011;261(2):342–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Hlatky MA, Iribarren C. The dilemma of incidental findings on cardiac computed tomography. J Am Coll Cardiol. 2009;54(16):1542–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Killeen RP, Dodd JD, Cury RC. Noncardiac findings on cardiac CT part I: pros and cons. J Cardiovasc Comput Tomogr. 2009;3(5):293–9.PubMedCrossRefGoogle Scholar
  82. 82.
    White CS. The pros and cons of searching for extracardiac findings at cardiac CT: use of a restricted field of view is acceptable. Radiology. 2011;261(2):338–41.PubMedCrossRefGoogle Scholar
  83. 83.
    Budoff MJ, Fischer H, Gopal A. Incidental findings with cardiac CT evaluation: should we read beyond the heart? Catheter Cardiovasc Interv. 2006;68(6):965–73.PubMedCrossRefGoogle Scholar
  84. 84.
    Dewey M, Schnapauff D, Teige F, Hamm B. Non-cardiac findings on coronary computed tomography and magnetic resonance imaging. Eur Radiol. 2007;17(8):2038–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Kirsch J, Araoz PA, Steinberg FB, Fletcher JG, McCollough CH, Williamson EE. Prevalence and significance of incidental extracardiac findings at 64-multidetector coronary CTA. J Thorac Imaging. 2007;22(4):330–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Johnson KM. Extracardiac findings on cardiac computed tomography: a radiologist's perspective. J Am Coll Cardiol. 2010;55(15):1566–8.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Cardiothoracic Imaging Division, Department of RadiologyClínica Universidad de NavarraPamplonaSpain
  2. 2.Department of Cardiac SurgeryClínica Universidad de NavarraPamplonaSpain

Personalised recommendations