Advertisement

Nonatherosclerotic Coronary Artery Disease

  • Toru SakumaEmail author
  • Kotaro Ouchi
  • Kunihiko Fukuda
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

Nonatherosclerotic coronary artery disease is rare but often produces severe and life-threatening complications, including coronary artery aneurysm, spasm, dissections, stenosis, or intraluminal thrombosis, that may occur at a young age and are often silent in the early stages of disease. Accurate diagnosis and proper patient management require the recognition by clinicians of the CT findings associated with these complications.

Keywords

Chronic active Epstein-Barr virus infection Coronary artery aneurysm Coronary artery dissection Coronary artery spasm Coronary artery vasculitis IgG4-related disease Kawasaki disease Takayasu arteritis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Waller BF. Nonatherosclerotic coronary heart disease. In: Fuster V, Walsh RA, Harrington RA, editors. Hurst’s the heart. 13th ed. New York: McGraw-Hill Education; 2011. p. 1257–86.Google Scholar
  2. 2.
    Prinzmetal M, Kennamer R, Merliss R, Wada T, Bor N. Angina pectoris. I. A variant form of angina pectoris; preliminary report. Am J Med. 1959;27:375–88.CrossRefGoogle Scholar
  3. 3.
    Oliva PB, Potts DE, Pluss RG. Coronary arterial spasm in Prinzmetal angina. Documentation by coronary arteriography. N Engl J Med. 1973;288:745–51.CrossRefGoogle Scholar
  4. 4.
    Nakamura M, Takeshita A, Nose Y. Clinical characteristics associated with myocardial infarction, arrhythmias, and sudden death in patients with vasospastic angina. Circulation. 1987;75:1110–6.CrossRefGoogle Scholar
  5. 5.
    Ong P, Athanasiadis A, Hill S, Vogelsberg H, Voehringer M, Sechtem U. Coronary artery spasm as a frequent cause of acute coronary syndrome: the CASPAR (Coronary Artery Spasm in Patients with Acute Coronary Syndrome) study. J Am Coll Cardiol. 2008;52:523–7.CrossRefGoogle Scholar
  6. 6.
    Yasue H, Kugiyama K. Coronary spasm: clinical features and pathogenesis. Intern Med. 1997;36:760–5.CrossRefGoogle Scholar
  7. 7.
    Williams JK, Adams MR, Klopfenstein HS. Estrogen modulates responses of atherosclerotic coronary arteries. Circulation. 1990;81:1680–7.CrossRefGoogle Scholar
  8. 8.
    Yasue H, Sasayama S, Kikuchi K, Okumura K, Matsubara T, Miwa K, et al. The role of coronary spasm in ischemic heart disease among Japanese. In: Annual report of the research on cardiovascular diseases. Osaka: National Cardiovascular Center; 2000. p. 96–7. [in Japanese].Google Scholar
  9. 9.
    Takaoka K, Yoshimura M, Ogawa H, Kugiyama K, Nakayama M, Shimasaki Y, et al. Comparison of the risk factors for coronary artery spasm with those for organic stenosis in a Japanese population: role of cigarette smoking. Int J Cardiol. 2000;72:121–6.CrossRefGoogle Scholar
  10. 10.
    Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y. Coronary artery spasm--clinical features, diagnosis, pathogenesis, and treatment. J Cardiol. 2008;51:2–17.CrossRefGoogle Scholar
  11. 11.
    Szlachcic J, Waters DD, Miller D, Théroux P. Ventricular arrhythmias during ergonovine-induced episodes of variant angina. Am Heart J. 1984;107:20–4.CrossRefGoogle Scholar
  12. 12.
    Ito T, Terashima M, Kaneda H, Nasu K, Ehara M, Kinoshita Y, et al. In vivo assessment of ergonovine-induced coronary artery spasm by 64-slice multislice computed tomography. Circ Cardiovasc Imaging. 2012;5:226–32.CrossRefGoogle Scholar
  13. 13.
    Kang EJ, Kim MH, De Jin C, Seo J, Kim DW, Yoon SK, et al. Noninvasive detection of coronary vasospastic angina using a double-acquisition coronary CT angiography protocol in the presence and absence of an intravenous nitrate: a pilot study. Eur Radiol. 2016.  https://doi.org/10.1007/s00330-016-4476-2.
  14. 14.
    Saw J, Ricci D, Starovoytov A, Fox R, Buller CE. Spontaneous coronary artery dissection: prevalence of predisposing conditions including fibromuscular dysplasia in a tertiary center cohort. JACC Cardiovasc Interv. 2013;6:44–52.CrossRefGoogle Scholar
  15. 15.
    Pretty HC. Dissecting aneurysm of coronary artery in a woman aged 42: rupture. Br Med J. 1931;1:667.CrossRefGoogle Scholar
  16. 16.
    Forker AD, Rosenlof RC, Weaver WF, Carveth SW, Reese HE. Primary dissecting aneurysm of the right coronary artery with survival. Chest. 1973;64:656–8.CrossRefGoogle Scholar
  17. 17.
    Vrints CJ. Spontaneous coronary artery dissection. Heart. 2010;96:801–8.CrossRefGoogle Scholar
  18. 18.
    Vanzetto G, Berger-Coz E, Barone-Rochette G, Chavanon N, Bouvaist H, Hacini R, et al. Prevalence, therapeutic management and medium-term prognosis of spontaneous coronary artery dissection: results from a database of 11,605 patients. Eur J Cardiothorac Surg. 2009;35:250–4.CrossRefGoogle Scholar
  19. 19.
    Maehara A, Mintz GS, Castagna MT, Pichard AD, Satler LF, Waksman R, et al. Intravascular ultrasound assessment of spontaneous coronary artery dissection. Am J Cardiol. 2002;89:466–8.CrossRefGoogle Scholar
  20. 20.
    Alfonso F, Paulo M, Gonzalo N, Dutary J, Jimenez-Quevedo P, Lennie V, et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59:1073–9.CrossRefGoogle Scholar
  21. 21.
    Tweet MS, Hayes SN, Pitta SR, Simari RD, Lerman A, Lennon RJ, et al. Clinical features, management, and prognosis of spontaneous coronary artery dissection. Circulation. 2012;126:579–88.CrossRefGoogle Scholar
  22. 22.
    Alfonso F, Paulo M, Lennie V, Dutary J, Bernardo E, Jiménez-Quevedo P, et al. Spontaneous coronary artery dissection: long-term follow-up of a large series of patients prospectively managed with a “conservative” therapeutic strategy. JACC Cardiovasc lnterv. 2012;5:1062–70.CrossRefGoogle Scholar
  23. 23.
    Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65:1–11.CrossRefGoogle Scholar
  24. 24.
    Kang EJ, Kim SM, Choe YH, Lee GY, Lee KN, Kim DK. Takayasu arteritis: assessment of coronary arterial abnormalities with 128-section dual-source CT angiography of the coronary arteries and aorta. Radiology. 2014;270:74–81.CrossRefGoogle Scholar
  25. 25.
    de Souza AW, de Carvalho JF. Diagnostic and classification criteria of Takayasu arteritis. J Autoimmun. 2014;48-49:79–83.CrossRefGoogle Scholar
  26. 26.
    Subramanyan R, Joy J, Balakrishnan KG. Natural history of aortoarteritis (Takayasu’s disease). Circulation. 1989;80:429–37.CrossRefGoogle Scholar
  27. 27.
    Park YB, Hong SK, Choi KJ, Sohn DW, Oh BH, Lee MM, et al. Takayasu arteritis in Korea: clinical and angiographic features. Heart Vessels Suppl. 1992;7:55–9.CrossRefGoogle Scholar
  28. 28.
    Lee GY, Jang SY, Ko SM, Kim EK, Lee SH, Han H, et al. Cardiovascular manifestations of Takayasu arteritis and their relationship to the disease activity: analysis of 204 Korean patients at a single center. Int J Cardiol. 2012;159:14–20.CrossRefGoogle Scholar
  29. 29.
    Ishikawa K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu’s arteriopathy. J Am Coll Cardiol. 1988;12:964–72.CrossRefGoogle Scholar
  30. 30.
    Sharma BK, Jain S, Suri S, Numano F. Diagnostic criteria for Takayasu arteritis. Int J Cardiol. 1996;54(Suppl):141–7.CrossRefGoogle Scholar
  31. 31.
    Amano J, Suzuki A. Coronary artery involvement in Takayasu’s arteritis. Collective review and guideline for surgical treatment. J Thorac Cardiovasc Surg. 1991;102:554–60.PubMedGoogle Scholar
  32. 32.
    Endo M, Tomizawa Y, Nishida H, Aomi S, Nakazawa M, Tsurumi Y, et al. Angiographic findings and surgical treatments of coronary artery involvement in Takayasu arteritis. J Thorac Cardiovasc Surg. 2003;125:570–7.CrossRefGoogle Scholar
  33. 33.
    Matsubara O, Kuwata T, Nemoto T, Kasuga T, Numano F. Coronary artery lesions in Takayasu arteritis: pathological considerations. Heart Vessels Suppl. 1992;7:26–31.CrossRefGoogle Scholar
  34. 34.
    Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Allergy. 1967;16:178–222. [in Japanese].PubMedGoogle Scholar
  35. 35.
    Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics. 1974;54:271–6.PubMedGoogle Scholar
  36. 36.
    Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 2004;110:2747–71.CrossRefGoogle Scholar
  37. 37.
    JCS Joint Working Group. Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2008)—digest version. Circ J. 2010;74:1989–2020.CrossRefGoogle Scholar
  38. 38.
    Taubert KA, Rowley AH, Shulman ST. Nationwide survey of Kawasaki disease and acute rheumatic fever. J Pediatr. 1991;119:279–82.CrossRefGoogle Scholar
  39. 39.
    Dajani AS, Taubert KA, Takahashi M, Bierman FZ, Freed M, Ferrieri P, et al. Guidelines for long-term management of patients with Kawasaki disease. Report from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 1994;89:916–22.CrossRefGoogle Scholar
  40. 40.
    Uehara R, Belay ED, Maddox RA, Holman RC, Nakamura Y, Yashiro M, et al. Analysis of potential risk factors associated with nonresponse to initial intravenous immunoglobulin treatment among Kawasaki disease patients in Japan. Pediatr Infect Dis J. 2008;27:155–60.PubMedGoogle Scholar
  41. 41.
    Orenstein JM, Shulman ST, Fox LM, Baker SC, Takahashi M, Bhatti TR, et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS One. 2012;7(6):e38998.CrossRefGoogle Scholar
  42. 42.
    Newburger JW, Takahashi M, Burns JC. Kawasaki disease. J Am Coll Cardiol. 2016;67:1738–49.CrossRefGoogle Scholar
  43. 43.
    Suzuki A, Kamiya T, Tsuda E, Tsukano S. Natural history of coronary artery lesions in Kawasaki disease. Prog Pediatr Cardiol. 1997;6:211–8.CrossRefGoogle Scholar
  44. 44.
    Kamisawa T, Egawa N, Nakajima H. Autoimmune pancreatitis is a systemic autoimmune disease. Am J Gastroenterol. 2003;98:2811–2.CrossRefGoogle Scholar
  45. 45.
    Kamisawa T, Funata N, Hayashi Y, Eishi Y, Koike M, Tsuruta K, et al. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol. 2003;38:982–4.CrossRefGoogle Scholar
  46. 46.
    Kanno A, Nishimori I, Masamune A, Kikuta K, Hirota M, Kuriyama S, et al. Research Committee on Intractable Diseases of Pancreas. Nationwide epidemiological survey of autoimmune pancreatitis in Japan. Pancreas. 2012;41:835–9.CrossRefGoogle Scholar
  47. 47.
    Nishimori I, Tamakoshi A, Otsuki M, Research Committee on Intractable Diseases of the Pancreas, Ministry of Health, Labour, and Welfare of Japan. Prevalence of autoimmune pancreatitis in Japan from a nationwide survey in 2002. J Gastroenterol. 2007;42(Suppl 18):6–8.CrossRefGoogle Scholar
  48. 48.
    Kamisawa T, Zen Y, Pillai S, Stone JH. IgG4-related disease. Lancet. 2015;385:1460–71.CrossRefGoogle Scholar
  49. 49.
    Inoue D, Zen Y, Abo H, Gabata T, Demachi H, Yoshikawa J, et al. Immunoglobulin G4-related periaortitis and periarteritis: CT findings in 17 patients. Radiology. 2011;261:625–33.CrossRefGoogle Scholar
  50. 50.
    Matsumoto Y, Kasashima S, Kawashima A, Sasaki H, Endo M, Kawakami K, et al. A case of multiple immunoglobulin G4-related periarteritis: a tumorous lesion of the coronary artery and abdominal aortic aneurysm. Hum Pathol. 2008;39:975–80.CrossRefGoogle Scholar
  51. 51.
    Ishizaka N, Sakamoto A, Imai Y, Terasaki F, Nagai R. Multifocal fibrosclerosis and IgG4-related disease involving the cardiovascular system. J Cardiol. 2012;59:132–8.CrossRefGoogle Scholar
  52. 52.
    Hourai R, Miyamura M, Tasaki R, Iwata A, Takeda Y, Morita H, et al. A case of IgG4-related lymphadenopathy, pericarditis, coronary artery periarteritis and luminal stenosis. Heart Vessel. 2016;31:1709–13.CrossRefGoogle Scholar
  53. 53.
    Yamamoto M, Takahashi H, Tabeya T, Suzuki C, Naishiro Y, Ishigami K, et al. Risk of malignancies in IgG4-related disease. Mod Rheumatol. 2012;22:414–8.CrossRefGoogle Scholar
  54. 54.
    Ishizaka N. IgG4-related disease underlying the pathogenesis of coronary artery disease. Clin Chim Acta. 2013;415:220–5.CrossRefGoogle Scholar
  55. 55.
    Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3.CrossRefGoogle Scholar
  56. 56.
    Cohen JI. Epstein-Barr virus infection. N Engl J Med. 2000;343:481–92.CrossRefGoogle Scholar
  57. 57.
    Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med. 2004;350:1328–37.CrossRefGoogle Scholar
  58. 58.
    Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA. EBV persistence in memory B cells in vivo. Immunity. 1998;9:395–404.CrossRefGoogle Scholar
  59. 59.
    Cohen JI. Epstein-Barr virus lymphoproliferative disease associated with acquired immunodeficiency. Medicine (Baltimore). 1991;70:137–60.CrossRefGoogle Scholar
  60. 60.
    Kimura H. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol. 2006;16:251–61.CrossRefGoogle Scholar
  61. 61.
    Virelizier JL, Lenoir G, Griscelli C. Persistent Epstein-Barr virus infection in a child with hypergammaglobulinaemia and immunoblastic proliferation associated with a selective defect in immune interferon secretion. Lancet. 1978;2:231–4.CrossRefGoogle Scholar
  62. 62.
    Okano M, Kawa K, Kimura H, Yachie A, Wakiguchi H, Maeda A, et al. Proposed guidelines for diagnosing chronic active Epstein-Barr virus infection. Am J Hematol. 2005;80:64–9.CrossRefGoogle Scholar
  63. 63.
    Kikuta H, Taguchi Y, Tomizawa K, Kojima K, Kawamura N, Ishizaka A, et al. Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature. 1988;333:455–7.CrossRefGoogle Scholar
  64. 64.
    Sato Y, Tsuboi T, Mikami T, Kurosawa H, Kanou K, Sugita K, et al. Chronic active Epstein-Barr virus infection with dilatation of the Valsalva sinus. Pediatr Int. 2006;48:643–5.CrossRefGoogle Scholar
  65. 65.
    Muneuchi J, Ohga S, Ishimura M, Ikeda K, Yamaguchi K, Nomura A, et al. Cardiovascular complications associated with chronic active Epstein-Barr virus infection. Pediatr Cardiol. 2009;30:274–81.CrossRefGoogle Scholar
  66. 66.
    Kimura H, Morishima T, Kanegane H, Ohga S, Hoshino Y, Maeda A, et al. Prognostic factors for chronic active Epstein-Barr virus infection. J Infect Dis. 2003;187:527–33.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Department of RadiologyThe Jikei University School of MedicineTokyoJapan

Personalised recommendations