Advertisement

Workflow Optimization

  • Thomas AllmendingerEmail author
  • Andrew N. Primak
  • Christian D. Eusemann
Chapter
Part of the Contemporary Medical Imaging book series (CMI)

Abstract

In this chapter key workflow elements that are crucial for a successful cardiac CT examination were described. Ignoring any of them can easily result in a suboptimal or even non-diagnostic exam. Since the described workflow is quite complex, a dedicated cardiac CT training of the technologists is highly desirable. Keeping in mind that cardiac CT technology is quickly evolving, such training should occur on a regular basis. Clinical practices with well-trained dedicated cardiac CT technologists perform exceptionally well. For example, a recent publication from one of such practices reports only one non-diagnostic CCTA in 1022 consecutive examinations (Ghoshhajra et al., Eur Radiol. 27:2784–2793, 2017). This example clearly proves that cardiac CT can (and should) be successfully performed when all the key workflow instructions are followed. This chapter at hand only focused on two major aspects of the cardiac CT workflow: patient preparation and selection of the most appropriate acquisition mode. Other important aspects such as use of beta-blockers, contrast injection, dealing with difficult-to-image patients (e.g., morbidly obese or with poor renal function), and cardiac CT post-processing were deliberately omitted here because they are described in other chapters of this book.

Keywords

Workflow optimization in cardiac CT Patient positioning in cardiac CT Acquisition strategy in cardiac CT Breath-hold training in cardiac CT ECG in cardiac CT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jakobs TF, Becker CR, Ohnesorge B, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol. 2002;12(5):1081–6.CrossRefGoogle Scholar
  2. 2.
    Weustink AC, Mollet NR, Pugliese F, et al. Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology. 2008;248(3):792–8.CrossRefGoogle Scholar
  3. 3.
    McCollough CH, Primak AN, Saba O, et al. Dose performance of a 64-channel dual-source CT scanner. Radiology. 2007;243(3):775–84.CrossRefGoogle Scholar
  4. 4.
    Ruzsics B, Gebregziabher M, Lee H, Brothers RL, Allmendinger T, Vogt S, Costello P, Schoepf UJ. Coronary CT angiography: automatic cardiac-phase selection for image reconstruction. Eur Radiol. 2009;19:1906–13.CrossRefGoogle Scholar
  5. 5.
    Hoffmann MH, Lessick J, Manzke R, Schmid FT, Gershin E, Boll DT, Rispler S, Aschoff AJ, Grass M. Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience. Eur Radiol. 2006;16:365–73.CrossRefGoogle Scholar
  6. 6.
    Lee AM, Engel LC, Shah B, Liew G, Sidhu MS, Kalra M, Abbara S, Brady TJ, Hoffmann U, Ghoshhajra BB. Coronary computed tomography angiography during arrhythmia: radiation dose reduction with prospectively ECG-triggered axial and retrospectively ECG-gated helical 128-slice dual-source CT. J Cardiovasc Comput Tomogr. 2012;6(3):172–183.e2.CrossRefGoogle Scholar
  7. 7.
    Lee AM, Beaudoin J, Engel LC, Sidhu MS, Abbara S, Brady TJ, Hoffmann U, Ghoshhajra BB. Assessment of image quality and radiation dose of prospectively ECG-triggered adaptive dual-source coronary computed tomography angiography (cCTA) with arrhythmia rejection algorithm in systole versus diastole: a retrospective cohort study. Int J Cardiovasc Imaging. 2013;29(6):1361–70.CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Williams MC, Weir NW, Mirsadraee S, Scott AE, Uren NG, McKillop G, van Beek EJ, Reid JH, Newby DE. Image quality with single-heartbeat 320-multidetector computed tomographic coronary angiography. J Comput Assist Tomogr. 2014;38(3):444–50.CrossRefGoogle Scholar
  10. 10.
    Latif MA, Sanchez FW, Sayegh K, Veledar E, Aziz M, Malik R, Haider I, Agatston AS, Batlle JC, Janowitz W, Peña C, Ziffer JA, Nasir K, Cury RC. Volumetric single-beat coronary computed tomography angiography: relationship of image quality, heart rate, and body mass index. Initial patient experience with a new computed tomography scanner. J Comput Assist Tomogr. 2016;40(5):763–72.CrossRefGoogle Scholar
  11. 11.
    Meyer M, Haubenreisser H, Schoepf UJ, Vliegenthart R, Leidecker C, Allmendinger T, Lehmann R, Sudarski S, Borggrefe M, Schoenberg SO, Henzler T. Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second-versus a third-generation dual-source CT system. Radiology. 2014 Nov;273(2):373–82.CrossRefGoogle Scholar
  12. 12.
    Felmly LM, De Cecco CN, Schoepf UJ, Varga-Szemes A, Mangold S, McQuiston AD, Litwin SE, Bayer RR 2nd, Vogl TJ, Wichmann JL. Low contrast medium-volume third-generation dual-source computed tomography angiography for transcatheter aortic valve replacement planning. Eur Radiol. 2017;27(5):1944–53.CrossRefGoogle Scholar
  13. 13.
    Koplay M, Guneyli S, Akbayrak H, Demir K, Sivri M, Avci A, Erdogan H, Paksoy Y. Diagnostic accuracy and effective radiation dose of high pitch dual source multidetector computed tomography in evaluation of coronary artery bypass graft patency. Wien Klin Wochenschr. 2016;128(13–14):488–94.CrossRefGoogle Scholar
  14. 14.
    Budoff MJ, Georgiou D, Brody A, Agatston AS, Kennedy J, Wolfkiel C, Stanford W, Shields P, Lewis RJ, Janowitz WR, Rich S, Brundage BH. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation. 1996;93:898–904.CrossRefGoogle Scholar
  15. 15.
    Hecht HS, Cronin P, Blaha MJ, Budoff MJ, Kazerooni EA, Narula J, Yankelevitz D, Abbara S. 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology. J Cardiovasc Comput Tomogr. 2017;32(5):W54–66.Google Scholar
  16. 16.
    Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, Dill KE, Jacobs JE, Maroules CD, Rubin GD, Rybicki FJ, Schoepf UJ, Shaw LJ, Stillman AE, White CS, Woodard PK, Leipsic JA. CAD-RADS(TM) Coronary Artery Disease – Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr. 2016;10(4):269–81.CrossRefGoogle Scholar
  17. 17.
    Halliburton S, Arbab-Zadeh A, De D, Einstein AJ, Gentry R, et al. State-of-the-art in CT hardware and scan modes for cardiovascular CT. J Cardiovasc Comput Tomogr. 2012;6:154–63.CrossRefGoogle Scholar
  18. 18.
    Celeng C, Vadvala H, Puchner S, Pursnani A, Sharma U, Kovacs A, Maurovich-Horvat P, Hoffmann U, Ghoshhajra B. Defining the optimal systolic phase targets using absolute delay time for reconstructions in dual-source coronary CT angiography. Int J Cardiovasc Imaging. 2016;32(1):91–100.CrossRefGoogle Scholar
  19. 19.
    Srichai MB, Barreto M, Lim RP, Donnino R, Babb JS, Jacobs JE. Prospective-triggered sequential dual-source end-systolic coronary CT angiography for patients with atrial fibrillation: a feasibility study. J Cardiovasc Comput Tomogr. 2013;7(2):102–9.CrossRefGoogle Scholar
  20. 20.
    Kondo T, Kumamaru KK, Fujimoto S, Matsutani H, Sano T, Takase S, Rybicki FJ. Prospective ECG-gated coronary 320-MDCT angiography with absolute acquisition delay strategy for patients with persistent atrial fibrillation. AJR Am J Roentgenol. 2013;201(6):1197–203.CrossRefGoogle Scholar
  21. 21.
    Siemens data sheet: FlashCheck.Google Scholar
  22. 22.
    Siemens syngo CT VB10 data sheet.Google Scholar
  23. 23.
  24. 24.
    Lee JD, See KA. Trust in automation: designing for appropriate reliance. Hum factors. Spring. 2004;46(1):50–80.Google Scholar
  25. 25.
    Parasuraman R, Sheridan TB, Wickens CD. A model for types and levels of human interaction with automation. IEEE Trans Syst Man Cybern Syst Hum. 2000;30(3):286–97.CrossRefGoogle Scholar
  26. 26.
    Budoff MJ. Maximizing dose reductions with cardiac CT. Int J Cardiovasc Imaging. 2009;25(Suppl 2):279–87.CrossRefGoogle Scholar
  27. 27.
    Budoff MJ. Ethical issues related to lung nodules on cardiac CT. AJR Am J Roentgenol. 2009;192(3):W146.CrossRefGoogle Scholar
  28. 28.
    Budoff MJ, Gopal A. Incidental findings on cardiac computed tomography. Should we look? J Cardiovasc Comput Tomogr. 2007;1(2):97–105.CrossRefGoogle Scholar
  29. 29.
    Goehler A, McMahon PM, Lumish HS, Wu CC, Munshi V, Gilmore M, Chung JH, Ghoshhajra BB, Mark D, Truong QA, Gazelle GS, Hoffmann U. Cost-effectiveness of follow-up of pulmonary nodules incidentally detected on cardiac computed tomographic angiography in patients with suspected coronary artery disease. Circulation. 2014;130(8):668–75.CrossRefGoogle Scholar
  30. 30.
    Co SJ, Mayo J, Liang T, Krzymyk K, Yousefi M, Nicolaou S. Iterative reconstructed ultra high pitch CT pulmonary angiography with cardiac bowtie-shaped filter in the acute setting: effect on dose and image quality. Eur J Radiol. 2013;82(9):1571–6.CrossRefGoogle Scholar
  31. 31.
    Franck C, Bacher K. Influence of localizer and scan direction on the dose-reducing effect of automatic tube current modulation in computed tomography. Radiat Prot Dosim. 2016;169(1–4):136–42.CrossRefGoogle Scholar
  32. 32.
    Vadvala H, Kim P, Mayrhofer T, Pianykh O, Kalra M, Hoffmann U, Ghoshhajra B. Coronary CTA using scout-based automated tube potential and current selection algorithm, with breast displacement results in lower radiation exposure in females compared to males. Cardiovasc Diagn Ther. 2014 Dec;4(6):470–9.PubMedPubMedCentralGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
    Smith M. Rx for ECG monitoring artifact. Crit Care Nurse. 1984;4:64–6.PubMedGoogle Scholar
  36. 36.
    Odma S, Oberg P. Movement-induced potentials in surface electrodes. Med Biol Eng Comput. 1982;20:159–66.CrossRefGoogle Scholar
  37. 37.
    Adams-Hamoda MG, Caldwell MA, Stotts NA, Drew BJ. Factors to consider when analyzing 12-lead electrocardiograms for evidence of acute myocardial ischemia. Am J Crit Care. 2003;12:9–18.PubMedGoogle Scholar
  38. 38.
    Romans LE. Computed tomography for technologists: exam review. Lippincott Williams & Wilkins. 2010. https://www.amazon.com/Computed-Tomography-Technologists-Lippincott-Williams/dp/0781777968.
  39. 39.
    Bankier AA, O’Donnell CR, Boiselle PM. Quality initiatives. Respiratory instructions for CT examinations of the lungs: a hands-on guide. Radiographics. 2008;28:919–31.CrossRefGoogle Scholar
  40. 40.
    Ghoshhajra BB, Takx RA, Staziaki PV, Vadvala H, Kim P, Neilan TG, Meyersohn NM, Bittner D, Janjua SA, Mayrhofer T, Greenwald JL, Truong QA, Abbara S, Brown DF, Januzzi JL, Francis S, Nagurney JT, Hoffmann U, MGH Emergency Cardiac CTA Program Contributors. Clinical implementation of an emergency department coronary computed tomographic angiography protocol for triage of patients with suspected acute coronary syndrome. Eur Radiol. 2017;27(7):2784–93.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Thomas Allmendinger
    • 1
    Email author
  • Andrew N. Primak
    • 2
  • Christian D. Eusemann
    • 3
  1. 1.Department of Computed TomographySiemens Healthcare GmbHForchheimGermany
  2. 2.Department of Diagnostic ImagingSiemens HealthineersMalvernUSA
  3. 3.Department of CollaborationsSiemens Medical Solutions USA, Inc.MalvernUSA

Personalised recommendations