Preclinical Evidence for Cellular Therapy as a Treatment for Neurological Disease

  • Matthew T. Harting
  • Charles S. Cox
  • Stephen G. Hall
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

There continues to be extraordinary anticipation that stem cells will advance the current therapeutic regimen for both acute and degenerative neurological disease. Given the limited ability of the nervous system for regeneration and repair, combined with the devastating consequences that result from minimal neural tissue damage or cell death, any emerging therapy showing potential for cellular rescue or cell replacement represents a significant opportunity. This chapter will detail the preclinical progress using adult stem cells as a therapy for neurological diseases, both acute and degenerative. The basic adult stem cell types, including bone marrow–derived cells, umbilical cord blood–derived cells, and neural stem cells, will be discussed. The preclinical research using these cells to treat acute neurological diseases, such as traumatic brain injury and cerebrovascular disease, along with degenerative neurological disease, including Parkinson’s, Alzheimer’s, Huntington’s, and multiple sclerosis, will be detailed. Potential mechanisms of action and important limitations of current work will be addressed. Finally, the details of initiating a cellular therapy clinical trial, along with a brief discussion of ongoing clinical trials using cell therapy, with a focus on neurological disease trials, will be provided. Overall, early work using adult stem cell therapy for acute and degenerative neurological disease has provided some promising results, leading the way for the translation to clinical trials. The future of applying stem cell therapy to current treatment regimens of neurological diseases requires continued discovery at the molecular, cellular, tissue, and organism levels, alongside well-designed clinical trials.

Keywords

Cellular therapy Adult stem cells Neurological disease Translational research 

References

  1. 1.
    Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.PubMedGoogle Scholar
  3. 3.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5): 641–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Tao H, Rao R, Ma DD. Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition. Dev Growth Differ. 2005;47(6):423–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Long X, Olszewski M, Huang W, Kletzel M. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Devel. 2005;14(1):65–9.CrossRefGoogle Scholar
  9. 9.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Mahmood A, Lu D, Yi L, Chen JL, Chopp M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg. 2001;94(4): 589–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery. 2003;53(3):697–702; discussion-3.PubMedCrossRefGoogle Scholar
  12. 12.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.PubMedCrossRefGoogle Scholar
  13. 13.
    McKay R. Stem cells in the central nervous system. Science. 1997;276(5309):66–71.PubMedCrossRefGoogle Scholar
  14. 14.
    McKay R, Renfranz P, Cunningham M. Immortalized stem cells from the central nervous system. Comptes rendus de l’Academie des sciences. 1993;316(12):1452–7.PubMedGoogle Scholar
  15. 15.
    Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Okano H. Stem cell biology of the central nervous system. J Neurosci Res. 2002;69(6):698–707.PubMedCrossRefGoogle Scholar
  17. 17.
    Murayama A, Matsuzaki Y, Kawaguchi A, Shimazaki T, Okano H. Flow cytometric analysis of neural stem cells in the developing and adult mouse brain. J Neurosci Res. 2002;69(6): 837–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Xu Y, Kimura K, Matsumoto N, Ide C. Isolation of neural stem cells from the forebrain of deceased early postnatal and adult rats with protracted post-mortem intervals. J Neurosci Res. 2003;74(4):533–40.PubMedCrossRefGoogle Scholar
  19. 19. Secco M, Zucconi E, Vieira NM, et al. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells. 2007.Google Scholar
  20. 20.
    Yasuhara T, Matsukawa N, Yu G, et al. Transplantation of cryopreserved human bone marrow-derived multipotent adult progenitor cells for neonatal hypoxic-ischemic injury: targeting the hippocampus. Rev. Neurosci. 2006;17(1–2):215–25.PubMedGoogle Scholar
  21. 21.
    Tang Y, Yasuhara T, Hara K, et al. Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell Transplant. 2007;16(2):159–69.PubMedGoogle Scholar
  22. 22.
    Consensus conference. Rehabilitation of persons with traumatic brain injury. NIH Consensus Development Panel on Rehabilitation of Persons With Traumatic Brain Injury. JAMA. 1999;282(10):974–83.CrossRefGoogle Scholar
  23. 23.
    Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery. 2001;49(5):1196–203; discussion 203–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport. 2001;12(3):559–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma. 2001;18(8):813–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Tolar J, O’Shaughnessy MJ, Panoskaltsis-Mortari A, et al. Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells. Blood. 2006;107(10): 4182–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Mahmood A, Lu D, Qu C, Goussev A, Chopp M. Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J Neurosurg. 2006;104(2):272–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Mahmood A, Lu D, Qu C, Goussev A, Chopp M. Treatment of traumatic brain injury with a combination therapy of marrow stromal cells and atorvastatin in rats. Neurosurgery. 2007;60(3): 546–53; discussion 53–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Lu D, Mahmood A, Qu C, Hong X, Kaplan D, Chopp M. Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery. 2007;61(3):596–602; discussion-3.PubMedCrossRefGoogle Scholar
  30. 30.
    Mahmood A, Lu D, Qu C, Goussev A, Chopp M. Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery. 2005;57(5):1026–31; discussion 1031.PubMedCrossRefGoogle Scholar
  31. 31.
    Sinson G, Voddi M, McIntosh TK. Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat. J Neurosurg. 1996;84(4):655–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Philips MF, Muir JK, Saatman KE, et al. Survival and integration of transplanted postmitotic human neurons following experimental brain injury in immunocompetent rats. J Neurosurg. 1999;90(1):116–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Muir JK, Raghupathi R, Saatman KE, et al. Terminally differentiated human neurons survive and integrate following transplantation into the traumatically injured rat brain. J Neurotrauma. 1999;16(5):403–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang C, Saatman KE, Royo NC, et al. Delayed transplantation of human neurons following brain injury in rats: a long-term graft survival and behavior study. J Neurotrauma. 2005;22(12): 1456–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Gao J, Prough DS, McAdoo DJ, et al. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol. 2006;201(2):281–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Englund U, Bjorklund A, Wictorin K. Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Brain Res Dev Brain Res. 2002;134(1–2):123–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Englund U, Fricker-Gates RA, Lundberg C, Bjorklund A, Wictorin K. Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp Neurol. 2002;173(1):1–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Vescovi AL, Gritti A, Galli R, Parati EA. Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma. 1999;16(8):689–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A. 2002;99(26):17089–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Hagan M, Wennersten A, Meijer X, Holmin S, Wahlberg L, Mathiesen T. Neuroprotection by human neural progenitor cells after experimental contusion in rats. Neurosci Lett. 2003;351(3): 149–52.PubMedCrossRefGoogle Scholar
  41. 41.
    Wennersten A, Holmin S, Al Nimer F, Meijer X, Wahlberg LU, Mathiesen T. Sustained survival of xenografted human neural stem/progenitor cells in experimental brain trauma despite discontinuation of immunosuppression. Exp Neurol. 2006;199(2): 339–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Al Nimer F, Wennersten A, Holmin S, Meijer X, Wahlberg L, Mathiesen T. MHC expression after human neural stem cell transplantation to brain contused rats. Neuroreport. 2004;15(12): 1871–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Shear DA, Tate MC, Archer DR, et al. Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res. 2004;1026(1):11–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Tate MC, Shear DA, Hoffman SW, Stein DG, Archer DR, LaPlaca MC. Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplant. 2002;11(3):283–95.PubMedGoogle Scholar
  45. 45.
    Renfranz PJ, Cunningham MG, McKay RD. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell. 1991;66(4):713–29.PubMedCrossRefGoogle Scholar
  46. 46.
    Sinden JD, Rashid-Doubell F, Kershaw TR, et al. Recovery of spatial learning by grafts of a conditionally immortalized hippocampal neuroepithelial cell line into the ischaemia-lesioned hippocampus. Neuroscience. 1997;81(3):599–608.PubMedCrossRefGoogle Scholar
  47. 47.
    Ryder EF, Snyder EY, Cepko CL. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J Neurobiol. 1990;21(2):356–75.PubMedCrossRefGoogle Scholar
  48. 48.
    Shindo T, Matsumoto Y, Wang Q, Kawai N, Tamiya T, Nagao S. Differences in the neuronal stem cells survival, neuronal differentiation and neurological improvement after transplantation of neural stem cells between mild and severe experimental traumatic brain injury. J Med Invest. 2006;53(1–2):42–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Lu D, Sanberg PR, Mahmood A, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. 2002;11(3): 275–81.PubMedGoogle Scholar
  50. 50.
    Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367(9524):1747–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53.PubMedCrossRefGoogle Scholar
  52. 52.
    van der Worp HB, van Gijn J. Clinical practice. Acute ischemic stroke. New Engl J Med. 2007;357(6):572–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Li Y, Chen J, Chopp M. Adult bone marrow transplantation after stroke in adult rats. Cell Transplant. 2001;10(1):31–40.PubMedGoogle Scholar
  54. 54.
    Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurol. 2002;174(1): 11–20.CrossRefGoogle Scholar
  56. 56.
    Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–72.PubMedGoogle Scholar
  57. 57.
    Shen LH, Li Y, Chen J, et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience. 2006;137(2):393–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Chu K, Kim M, Park KI, et al. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res. 2004;1016(2):145–53.PubMedCrossRefGoogle Scholar
  59. 59.
    Chu K, Kim M, Jeong SW, Kim SU, Yoon BW. Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett. 2003;343(2):129–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Jeong SW, Chu K, Jung KH, Kim SU, Kim M, Roh JK. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke. 2003;34(9):2258–63.PubMedCrossRefGoogle Scholar
  61. 61.
    Ishibashi S, Sakaguchi M, Kuroiwa T, et al. Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res. 2004;78(2):215–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Kelly S, Bliss TM, Shah AK, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004;101(32): 11839–44.PubMedCrossRefGoogle Scholar
  63. 63.
    Mi R, Luo Y, Cai J, Limke TL, Rao MS, Hoke A. Immortalized neural stem cells differ from nonimmortalized cortical neurospheres and cerebellar granule cell progenitors. Exp Neurol. 2005;194(2):301–19.PubMedCrossRefGoogle Scholar
  64. 64.
    Toda H, Takahashi J, Iwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett. 2001;316(1):9–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang ZG, Jiang Q, Zhang R, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol. 2003;53(2):259–63.PubMedCrossRefGoogle Scholar
  66. 66.
    Wong AM, Hodges H, Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia. Brain Res. 2005;1063(2):140–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke. 2004;35(4):952–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke. 2001;32(4):1012–9.PubMedGoogle Scholar
  69. 69.
    Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC. Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann N Y Acad Sci. 2005;1049: 84–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Kozlowska H, Jablonka J, Janowski M, Jurga M, Kossut M, Domanska-Janik K. Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev. 2007;16(3):481–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Ukai R, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Mesenchymal stem cells derived from peripheral blood protects against ischemia. J Neurotrauma. 2007;24(3):508–20.PubMedCrossRefGoogle Scholar
  72. 72.
    Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003;991:1–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Bernheimer H, Birkmayer W, Hornykiewicz O et al. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20:415–55.PubMedCrossRefGoogle Scholar
  74. 74.
    Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain. 2005;128(Pt 12):2977–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson’s disease. Prog Neurobiol. 2007;81(1):29–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Ye M, Wang XJ, Zhang YH, Lu GQ, Liang L, Xu JY, Chen SD. Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(1):44–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang S, Zou Z, Jiang X, Xu R, Zhang W, Zhou Y, Ke Y. The therapeutic effects of tyrosine hydroxylase gene transfected hematopoetic stem cells in a rat model of Parkinson’s disease. Cell Mol Neurobiol. 2008;28(4):529–43.PubMedCrossRefGoogle Scholar
  78. 78.
    Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24(3):781–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Dziewczapolski G, Lie DC, Ray J, Gage FH, Shults CW. Survival and differentiation of adult rat-derived neural progenitor cells transplanted to the striatum of hemiparkinsonian rats. Exp Neurol. 2003;183(2):653–64.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Terrence F. Holekamp, TF, McDonald J. W. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci U S A. 2000;97: 6126–6131.PubMedCrossRefGoogle Scholar
  81. 81.
    Yankner BA. Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron. 1996;16:921–932.PubMedCrossRefGoogle Scholar
  82. 82.
    Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem. 1995;64: 253–265.PubMedCrossRefGoogle Scholar
  83. 83.
    Walsh DT, Montero RM, Bresciani LG, Jen AY, Leclercq PD, Saunders D, et al. Amyloid-beta peptide is toxic to neurons in vivo via indirect mechanisms. Neurobiol Dis. 2002;10:20–27.PubMedCrossRefGoogle Scholar
  84. 84.
    Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci. 2003;23:5088–95.PubMedGoogle Scholar
  85. 85.
    Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY. Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res. 2003;971:197–209.PubMedCrossRefGoogle Scholar
  86. 86.
    Chen CW, Boiteau RM, Lai WF, Barger SW, Cataldo AM. sAPPalpha enhances the transdifferentiation of adult bone marrow progenitor cells to neuronal phenotypes. Curr Alzheimer Res. 2006;3(1):63–70.PubMedCrossRefGoogle Scholar
  87. 87.
    Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998;4(1):97–100.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang X, Jin G, Tian M, Qin J, Huang Z. The denervated hippocampus provides proper microenvironment for the survival and differentiation of neural progenitors. Neurosci Lett. 2007;414(2):115–20.PubMedCrossRefGoogle Scholar
  89. 89.
    Ramaswamy S, Shannon KM, Kordower JH. Huntington’s disease: pathological mechanisms and therapeutic strategies. Cell Transplant. 2007;16(3):301–12.PubMedGoogle Scholar
  90. 90.
    Winkler C, Kirik D, Bjorklund A, Dunnett SB. Transplantation in the rat model of Parkinson’s disease: ectopic versus homotopic graft placement. Prog Brain Res. 2000;127:233–65.PubMedCrossRefGoogle Scholar
  91. 91.
    Lescaudron L, Unni D, Dunbar GL. Autologous adult bone marrow stem cell transplantation in an animal model of Huntington’s disease: behavioral and morphological outcomes. Int J Neurosci. 2003;113(7):945–56.PubMedCrossRefGoogle Scholar
  92. 92.
    Vazey EM, Chen K, Hughes SM, Connor B. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp Neurol. 2006;199(2):384–96.PubMedCrossRefGoogle Scholar
  93. 93.
    Batista CM, Kippin TE, Willaime-Morawek S, Shimabukuro MK, Akamatsu W, van der Kooy D. A progressive and cell non-autonomous increase in striatal neural stem cells in the Huntington’s disease R6/2 mouse. J Neurosci. 200611;26(41): 10452–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.PubMedCrossRefGoogle Scholar
  95. 95.
    Hafler DA, Slavik JM, Anderson DE, O’Connor KC, DeJager P, Baecher-Allan C. Multiple sclerosis. Immunol Rev. 2005;204:208–231.PubMedCrossRefGoogle Scholar
  96. 96.
    Franklin RJM, Gilson JM, Franceschini IA, Barnett SC. Schwann cell-like myelination following transplantation of an olfactory bulbensheathing cell line into areas of demyelination in the adult CNS. Glia. 1996;17:217–24.PubMedCrossRefGoogle Scholar
  97. 97.
    Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci. 1998;18:6176–85.PubMedGoogle Scholar
  98. 98.
    Smith PM, Lakatos A, Barnett SC, Jeffery ND, Franklin RJM. Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Exp Neurol. 2002;176: 402–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Gold R, Hartung HP, Toyka KV Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today. 2000;6:88–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Steinman L, Zamvil SS. Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol. 2005;26:565–71.PubMedCrossRefGoogle Scholar
  101. 101.
    Akiyama Y, Radtke C, Honmou O, Kocsis JD. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia. 2002;39(3):229–36.PubMedCrossRefGoogle Scholar
  102. 102.
    Inoue M, Honmou O, Oka S, Houkin K, Hashi K, Kocsis JD. Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord. Glia. 2003;44(2):111–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Metz I, Lucchinetti CF, Openshaw H, Garcia-Merino A, Lassmann H, Freedman MS, et al. Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis. Brain. 2007;130(Pt 5):1254–62.PubMedCrossRefGoogle Scholar
  104. 104.
    Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422(6933):688–94.PubMedCrossRefGoogle Scholar
  105. 105.
    Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature. 2005;436(7048):266–71.PubMedCrossRefGoogle Scholar
  106. 106.
    Richardson RM, Sun D, Bullock MR. Neurogenesis after traumatic brain injury. Neurosur Clin N Am. 2007;18(1):169–81, xi.CrossRefGoogle Scholar
  107. 107.
    Kernie SG, Erwin TM, Parada LF. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res. 2001;66(3):317–26.PubMedCrossRefGoogle Scholar
  108. 108.
    Dash PK, Mach SA, Moore AN. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res. 2001;63(4):313–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Miles DK, Kernie SG. Activation of neural stem and progenitor cells after brain injury. Prog Brain Res. 2006;157:187–97.PubMedCrossRefGoogle Scholar
  110. 110.
    Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery. 2004;55(5):1185–93.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res. 2002;69(5):687–91.PubMedCrossRefGoogle Scholar
  112. 112.
    Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004;21(1):33–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke. 2007;38(2 Suppl):817–26.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Matthew T. Harting
    • 1
  • Charles S. Cox
    • 1
  • Stephen G. Hall
    • 1
  1. 1.Department of Regenerative MedicineAlphaGenix, Inc.Sioux Falls

Personalised recommendations