Surgery for Hyperkinetic Movement Disorders

  • Zelma KissEmail author
  • Sarah Furtado
Part of the Current Clinical Neurology book series (CCNEU)


Surgery for movement disorders (MD) has experienced a renaissance over the past decade due to technological advances, greater comprehension of physiology of the basal ganglia, development of reliable disease severity scales, and multicentre clinical trials. While surgery for Parkinson disease (PD) usually receives the bulk of attention and discussion, contemporary surgical results for dystonia are more impressive and seem to be associated with fewer complications than that for PD. The surgical management of Huntington disease and Tourette syndrome remains experimental although a few reports have suggested benefit.


Deep Brain Stimulation Huntington Disease Tourette Syndrome Spinal Cord Stimulation Cervical Dystonia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Cesar Almeida-Serrano, who did some preliminary work for this chapter. Videos were made by Karen Hunka, Kristina Doig-Beyaert, and Dr. Cid Diesta. Dr. Kiss was a Canadian Institutes of Health Research Clinician-Scientist and a Clinical Investigator of the Alberta Heritage Foundation for Medical Research: This chapter was submitted July 2007.

Supplementary material

CASE 1 – Cervical Dystonia (wmv 5,694 KB)

CASE 1 – Cervical Dystonia (wmv 10,084 KB)

CASE 2 – Meige Syndrome (wmv 18,421 KB)

CASE 2 – Meige Syndrome (wmv 14,303 KB)

CASE 3 – Myoclonic Dystonia (wmv 14,272 KB)

CASE 4 – DYT 1 Dystonia (mpg 5,107 KB)

CASE 4 – DYT 1 Dystonia (mpg 3,772 KB)


  1. 1.
    Richter A, Loscher W. Pathology of idiopathic dystonia: findings from genetic animal models. Prog Neurobiol. 1998;54:633–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Jinnah HA, Hess EJ, LeDoux MS, et al. Rodent models for dystonia research: characteristics, evaluation, and utility. Mov Disord. 2005;20:283–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Berardelli A, Rothwell JC, Hallett M, et al. The pathophysiology of primary dystonia. Brain. 1998;121:1195–212.PubMedCrossRefGoogle Scholar
  4. 4.
    Vitek JL. Surgery for dystonia. In: Bakay RA, editor. Surgical treatment of movement disorders, vol. 9. Philadelphia: WB Saunders; 1998. p. 345–66.Google Scholar
  5. 5.
    DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Wichmann T, DeLong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol. 1996;6:751–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Vitek JL, Zhang J, Evatt M, et al. GPi pallidotomy for dystonia: clinical outcome and neuronal activity. Adv Neurol. 1998;78:211–9.PubMedGoogle Scholar
  8. 8.
    Starr PA, Rau GM, Davis V, et al. Spontaneous pallidal neuronal activity in human dystonia: Comparison with Parkinson’s disease and normal macaque. J Neurophysiol. 2005;93:3165–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Bennay M, Gernert M, Richter A. Spontaneous remission of paroxysmal dystonia coincides with normalization of entopeduncular activity in dt(SZ) mutants. J Neurosci. 2001; 21:RC153.PubMedGoogle Scholar
  10. 10.
    Hutchison WD, Lang AE, Dostrovsky JO, et al. Pallidal neuronal activity: implications for models of dystonia. Ann Neurol. 2003;53:480–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Silberstein P, Kuhn AA, Kupsch A, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain. 2003;126:2597–608.PubMedCrossRefGoogle Scholar
  12. 12.
    Brown P, Marsden CD. What do the basal ganglia do? Lancet. 1998;351:1801–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Leblois A, Boraud T, Meissner W, et al. Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci. 2006;26:3567–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Bar-Gad I, Bergman H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol. 2001;11:689–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50:381–425.PubMedCrossRefGoogle Scholar
  16. 16.
    Boraud T, Bezard E, Bioulac B, et al. Ratio of inhibited-to-activated pallidal neurons decreases dramatically during passive limb movement in the MPTP-treated monkey. J Neurophysiol. 2000;83:1760–3.PubMedGoogle Scholar
  17. 17.
    Davis DH, Duane DD, Swenson MK. Long term outcome of iontophoresis treatment for torticollis. Stereotact Funct Neurosurg. 1996;66:198–201.PubMedCrossRefGoogle Scholar
  18. 18.
    Jho HD, Jannetta PJ. Microvascular decompression for spasmodic torticollis. Acta Neurochir (Wien). 1995;134:21–6.CrossRefGoogle Scholar
  19. 19.
    Waltz JM, Davis JA. Cervical cord stimulation in the treatment of athetosis and dystonia. In: Fahn S, Calne DB, Shoulson I, editors. Experimental therapeutics of movement disorders, vol. 37. New York: Raven Press; 1983. p. 225–37.Google Scholar
  20. 20.
    Goetz CG, Penn RD, Tanner CM. Efficacy of cervical cord stimulation in dystonia. In: Fahn S, Marsden CD, Calne DB, editors. Dystonia 2, vol. 50. New York: Raven Press; 1988. p. 645–9.Google Scholar
  21. 21.
    Tasker RR. The treatment of spasmodic torticollis by peripheral denervation: the McKenzie operation. In: Morley TP, editor. Current controversies in neurosurgery. Philadelphia: Saunders; 1976. p. 448–54.Google Scholar
  22. 22.
    Bertrand C, Molina-Negro P, Bouvier G, et al. Observations and analysis of results in 131 cases of spasmodic torticollis after selective denervation. Appl Neurophysiol. 1987;50:319–23.PubMedGoogle Scholar
  23. 23.
    Gauthier S, Perot P, Bertrand G. Role of surgical anterior rhizotomies in the management of spasmodic torticollis. In: Fahn S, Marsden CD, Calne DB, editors. Dystonia 2, vol. 50. New York: Raven Press; 1988. p. 633–5.Google Scholar
  24. 24.
    Friedman AH, Nashold Jr BS, Sharp R, et al. Treatment of spasmodic torticollis with intradural selective rhizotomies. J Neurosurg. 1993;78:46–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Bertrand CM. Surgery of involuntary movements, particularly stereotactic surgery: reminiscences. Neurosurgery. 2004;55:698–703.PubMedCrossRefGoogle Scholar
  26. 26.
    Bertrand C. The treatment of spasmodic torticollis with particular reference to thalamotomy. In: Morley TP, editor. Current controversies in neurosurgery. Philadephia: Saunders; 1976. p. 455–60.Google Scholar
  27. 27.
    Bertrand C, Molina-Negro P, Martinez SN. Combined stereotactic and peripheral surgical approach for spasmodic torticollis. Appl Neurophysiol. 1978;41:122–33.PubMedGoogle Scholar
  28. 28.
    Braun V, Richter H-P. Selective peripheral denervation for the treatment of spasmodic torticollis. Neurosurgery. 1994;35:58–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Albright AL, Barry MJ, Shafton DH, et al. Intrathecal baclofen for generalized dystonia. Dev Med Child Neurol. 2001;43:652–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Dykstra DD, Mendez A, Chappuis D, et al. Treatment of cervical dystonia and focal hand dystonia by high cervical continuously infused intrathecal baclofen: a report of 2 cases. Arch Phys Med Rehabil. 2005;86:830–3.PubMedCrossRefGoogle Scholar
  31. 31.
    Dressler D, Oeljeschlager RO, Ruther E. Severe tardive dystonia: treatment with continuous intrathecal baclofen administration. Mov Disord. 1997;12:585–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Albright AL, Barry MJ, Painter MJ, et al. Infusion of intrathecal baclofen for generalized dystonia in cerebral palsy. J Neurosurg. 1998;88:73–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Albright AL, Ferson SS. Intrathecal baclofen therapy in children. Neurosurg Focus. 2006;21:e3.PubMedCrossRefGoogle Scholar
  34. 34.
    Walker RH, Danisi FO, Swope DM, et al. Intrathecal baclofen for dystonia: benefits and complications during six years of experience. Mov Disord. 2000;15:1242–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Tasker RR, Doorly T, Yamashiro K. Thalamotomy in generalized dystonia. Adv Neurol. 1988;50:615–31.PubMedGoogle Scholar
  36. 36.
    Benabid AL, Pollak P, Gervason C, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Fine J, Duff J, Chen R, et al. Long-term follow-up of unilateral pallidotomy in advanced Parkinson’s disease. N Engl J Med. 2000;342:1708–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg. 1992;76:53–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Iacono RP, Kuniyoshi S, Lonser RR, et al. Simultaneous bilateral pallidoansotomy for idiopathic dystonia musculorum deformans. Pediatr Neurol. 1996;14:145–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Lozano AM, Kumar R, Gross RE, et al. Globus pallidus internus pallidotomy for generalized dystonia. Mov Disord. 1997;12:865–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Coubes P, Roubertie A, Vayssiere N, et al. Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet. 2000;355:2220–1.PubMedCrossRefGoogle Scholar
  42. 42.
    Lang AE, Widner H. Deep brain stimulation for Parkinson’s disease: patient selection and evaluation. Mov Disord. 2002;17:S94–101.PubMedCrossRefGoogle Scholar
  43. 43.
    Burke RE, Fahn S, Marsden CD, et al. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology. 1985;35:73–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Krystkowiak P, du Montcel ST, Vercueil L, Houeto JL, Lagrange C, Cornu P, Blond S, Benabid AL, Pollak P, Vidailhet M. Reliability of the Burke-Fahn-Marsden scale in a multicenter trial for dystonia. Mov Disord. 2007;22:685–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Petrovich GD, Setlow B, Holland PC, et al. Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. J Neurosci. 2002;22:8748–53.PubMedGoogle Scholar
  46. 46.
    Comella CL, Stebbins GT, Goetz CG, et al. Teaching tape for the motor section of the Toronto Western Spasmodic Torticollis Scale. Mov Disord. 1997;12:570–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Tsui JK, Eisen A, Stoessl AJ, et al. Double-blind study of botulinum toxin in spasmodic torticollis. Lancet. 1986;2:245–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Tarsy D. Comparison of clinical rating scales in treatment of cervical dystonia with botulinum toxin. Mov Disord. 1997;12:100–2.PubMedCrossRefGoogle Scholar
  49. 49.
    Frucht SJ, Leurgans SE, Hallett M, et al. The Unified Myoclonus Rating Scale. Adv Neurol. 2002;89:361–76.PubMedGoogle Scholar
  50. 50.
    Pillon B, Ardouin C, Dujardin K, et al. Preservation of cognitive function in dystonia treated by pallidal stimulation. Neurology. 2006;66:1556–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Jahanshahi M, Rowe J, Fuller R. Cognitive executive function in dystonia. Mov Disord. 2003;18:1470–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Balas M, Peretz C, Badarny S, et al. Neuropsychological profile of DYT1 dystonia. Mov Disord. 2006;21:2073–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Scott RB, Gregory R, Wilson J, et al. Executive cognitive deficits in primary dystonia. Mov Disord. 2003;18:539–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Bejjani BP, Damier P, Arnulf I, et al. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med. 1999;340:1476–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Houeto JL, Mesnage V, Mallet L, et al. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2002;72:701–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Doshi PK, Chhaya N, Bhatt MH. Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17:1084–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Hauser RA, Furtado S, Cimino CR, et al. Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology. 2002;58:687–95.PubMedCrossRefGoogle Scholar
  58. 58.
    Krack PP, Vercueil L. Review of the functional surgical treatment of dystonia. Eur J Neurol. 2001;8:389–99.PubMedCrossRefGoogle Scholar
  59. 59.
    Ackermans L, Temel Y, Cath D, et al. Deep brain stimulation in Tourette’s syndrome: two targets? Mov Disord. 2006;21:709–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang JG, Zhang K, Wang ZC, et al. Deep brain stimulation in the treatment of secondary dystonia. Chin Med J (Engl). 2006;119:2069–74.Google Scholar
  61. 61.
    Vercueil L, Pollak P, Fraix V, et al. Deep brain stimulation in the treatment of severe dystonia. J Neurol. 2001;248:695–700.PubMedCrossRefGoogle Scholar
  62. 62.
    Sellal F, Hirsch E, Barth P, et al. A case of symptomatic hemidystonia improved by ventroposterolateral thalamic electrostimulation. Mov Disord. 1993;8:515–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Ghika J, Villemure JG, Miklossy J, et al. Postanoxic generalized dystonia improved by bilateral Voa thalamic deep brain stimulation. Neurology. 2002;58:311–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Eltahawy HA, Saint-Cyr JA, Giladi N, et al. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. 2004;54:613–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Cardoso F, Jankovic J, Grossman RG, et al. Outcome after stereotactic thalamotomy for dystonia and hemiballismus. Neurosurgery. 1995;36:501–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Zonenshayn M, Rezai AR, Mogilner A, et al. Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery. 2000;47:282–92.PubMedCrossRefGoogle Scholar
  67. 67.
    Tsao KJ, Wilkinson S, Overman J, et al. Pallidotomy lesion locations: significance of microelectrode refinement. Neurosurgery. 1998;43:506–13.PubMedCrossRefGoogle Scholar
  68. 68.
    Guridi J, Gorospe A, Ramos E, et al. Stereotactic targeting of the globus pallidus internus in Parkinson’s disease: imaging versus electrophysiological mapping. Neurosurgery. 1999;45:278–87.PubMedCrossRefGoogle Scholar
  69. 69.
    Lenz FA, Dostrovsky JO, Kwan HC, et al. Methods for microstimulation and recording of single neurons and evoked potentials in the human central nervous system. J Neurosurg. 1988;68:630–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Lenz FA, Dostrovsky JO, Tasker RR, et al. Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol. 1988;59:299–316.PubMedGoogle Scholar
  71. 71.
    Lenz FA, Kwan HC, Martin RL, et al. Single unit analysis of the human ventral thalamic nuclear group: tremor-related activity in functionally identified cells. Brain. 1994;117:531–43.PubMedCrossRefGoogle Scholar
  72. 72.
    Lenz FA, Kwan HC, Dostrovsky JO, et al. Single unit analysis of the human ventral thalamic nuclear group: activity correlated with movement. Brain. 1990;113:1795–821.PubMedCrossRefGoogle Scholar
  73. 73.
    Tasker RR, Kiss ZHT. The role of the thalamus in functional neurosurgery. Neurosurg Clin N Am. 1995;6:73–104.PubMedGoogle Scholar
  74. 74.
    Lenz FA, Normand SL, Kwan HC, et al. Statistical prediction of the optimal site for thalamotomy in Parkinsonian tremor. Mov Disord. 1995;10:318–28.PubMedCrossRefGoogle Scholar
  75. 75.
    Atkinson JD, Collins DL, Bertrand G, et al. Optimal location of thalamotomy lesions for tremor associated with Parkinson disease: a probabilistic analysis based on postoperative magnetic resonance imaging and an integrated digital atlas. J Neurosurg. 2002;96:854–66.PubMedCrossRefGoogle Scholar
  76. 76.
    Ohye C, Shibazaki T, Hirai T, et al. Further physiological observations on the ventralis intermedius neurons in the human thalamus. J Neurophysiol. 1989;61:488–500.PubMedGoogle Scholar
  77. 77.
    Kiss ZHT, Davis KD, Tasker RR, et al. Kinaesthetic neurons in thalamus of humans with and without tremor. Exp Brain Res. 2003;150:85–94.PubMedGoogle Scholar
  78. 78.
    Hirai T, Jones EG. A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev. 1989;14:1–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Tasker RR, Organ LW, Hawrylyshyn PA. The thalamus and midbrain of man. A physiological atlas using electrical stimulation. Springfield: Thomas; 1982.Google Scholar
  80. 80.
    Lin YC, Lenz FA. Distribution and response evoked by microstimulation of thalamus nuclei in patients with dystonia and tremor. Chin Med J (Engl). 1994;107:265–70.Google Scholar
  81. 81.
    Lenz FA, Jaeger CJ, Seike MS, et al. Thalamic single neuron activity in patients with dystonia: dystonia-related activity and somatic sensory reorganization. J Neurophysiol. 1999;82:2372–92.PubMedGoogle Scholar
  82. 82.
    Vitek JL, Bakay RA, Hashimoto T, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg. 1998;88:1027–43.PubMedCrossRefGoogle Scholar
  83. 83.
    Hutchison WD, Lozano AM, Davis KD, et al. Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport. 1994;5:1533–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Lozano AM, Hutchison WD. Microelectrode recordings in the pallidum. Mov Disord. 2002;17:S150–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Alterman RL, Sterio D, Beric A, et al. Microelectrode recording during posteroventral pallidotomy: impact of target selection and complications. Neurosurgery. 1999;44:315–23.PubMedCrossRefGoogle Scholar
  86. 86.
    Carlson JD, Iacono RP. Electrophysiological versus image-based targeting in the posteroventral pallidotomy. Comput Aided Surg. 1999;4:93–100.PubMedCrossRefGoogle Scholar
  87. 87.
    Lozano AM, Hutchison WD, Kiss ZHT, et al. Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg. 1996;84:194–202.PubMedCrossRefGoogle Scholar
  88. 88.
    Vidailhet M, Vercueil L, Houeto JL, et al. Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol. 2007;6:223–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Islekel S, Zileli M, Zileli B. Unilateral pallidal stimulation in cervical dystonia. Stereotact Funct Neurosurg. 1999;72:248–52.PubMedCrossRefGoogle Scholar
  90. 90.
    de Bie RM, Schuurman PR, Esselink RA, et al. Bilateral pallidotomy in Parkinson’s disease: a retrospective study. Mov Disord. 2002;17:533–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Favre J, Burchiel KJ, Taha JM, et al. Outcome of unilateral and bilateral pallidotomy for Parkinson’s disease: patient assessment. Neurosurgery. 2000;46:344–55.PubMedCrossRefGoogle Scholar
  92. 92.
    Linhares MN, Tasker RR. Microelectrode-guided thalamotomy for Parkinson’s disease. Neurosurgery. 2000;46:390–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Benabid AL, Pollak P, Gao DM, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorder. J Neurosurg. 1996;84:203–14.PubMedCrossRefGoogle Scholar
  94. 94.
    Paluzzi A, Belli A, Bain P, et al. Operative and hardware complications of deep brain stimulation for movement disorders. Br J Neurosurg. 2006;20:290–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Kiss ZHT, Doig K, Eliasziw M, et al. The Canadian multicentre trial of pallidal deep brain stimulation for cervical dystonia: preliminary results in three patients. Neurosurg Focus. 2004;17:E5.PubMedCrossRefGoogle Scholar
  96. 96.
    Kiss ZHT, Doig-Beyaert K, Eliasziw M, Tsui J, Haffenden A, Suchowersky O. The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain. 2007;130(Pt 11):2879–86.PubMedCrossRefGoogle Scholar
  97. 97.
    Tomlinson FH, Jack Jr CR, Kelly PJ. Sequential magnetic resonance imaging following stereotactic radiofrequency ventralis lateralis thalamotomy. J Neurosurg. 1991;74:579–84.PubMedCrossRefGoogle Scholar
  98. 98.
    Kumar R. Methods for programming and patient management with deep brain stimulation of the globus pallidus for the treatment of advanced Parkinson’s disease and dystonia. Mov Disord. 2002;17:S198–207.PubMedCrossRefGoogle Scholar
  99. 99.
    Hunka K, Suchowersky O, Wood S, et al. Nursing time to program and assess deep brain stimulators in movement disorder patients. J Neurosci Nurs. 2005;37:204–10.PubMedCrossRefGoogle Scholar
  100. 100.
    Kulisevsky J, Berthier ML, Gironell A, et al. Mania following deep brain stimulation for Parkinson’s disease. Neurology. 2002;59:1421–4.PubMedCrossRefGoogle Scholar
  101. 101.
    Burkhard PR, Vingerhoets FJ, Berney A, et al. Suicide after successful deep brain stimulation for movement disorders. Neurology. 2004;63:2170–2.PubMedCrossRefGoogle Scholar
  102. 102.
    Saint-Cyr JA, Trepanier LL, Kumar R, et al. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain. 2000;123:2091–108.PubMedCrossRefGoogle Scholar
  103. 103.
    Iacono RP, Shima F, Lonser RR, et al. The results, indications, and physiology of posteroventral pallidotomy for patients with Parkinson’s disease. Neurosurgery. 1995;36:1118–27.PubMedCrossRefGoogle Scholar
  104. 104.
    Levy RM, Lamb S, Adams JE. Treatment of chronic pain by deep brain stimulation: long term follow-up and review of the literature. Neurosurgery. 1987;21:885–93.PubMedCrossRefGoogle Scholar
  105. 105.
    Benabid AL, Benazzouz A, Hoffmann D, et al. Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord. 1998;13:119–25.PubMedCrossRefGoogle Scholar
  106. 106.
    Limousin P, Krack PP, Pollak P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339:1105–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Schuurman PR, Bosch DA, Bossuyt PMM, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000;342:461–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Bakay RA. Ablative and stimulation procedures: techniques and outcome. Semin Neurol. 2001;12:195–212.CrossRefGoogle Scholar
  109. 109.
    Tasker RR. Thalamotomy. Neurosurg Clin N Am. 1990;1(4):841–64.PubMedGoogle Scholar
  110. 110.
    Petrovici JN. Speech disturbances following stereotaxic surgery in ventrolateral thalamus. Neurosurg Rev. 1980;3:189–95.PubMedCrossRefGoogle Scholar
  111. 111.
    Kelly PJ, Gillingham FJ. The long-term results of stereotaxic surgery and L-dopa therapy in patients with Parkinson’s disease. A 10-year follow-up study. J Neurosurg. 1980;53:332–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Matsumoto K, Shichijo F, Fukami T. Long-term follow-up review of cases of Parkinson’s disease after unilateral or bilateral thalamotomy. J Neurosurg. 1984;60:1033–44.PubMedCrossRefGoogle Scholar
  113. 113.
    Wester K, Hauglie-Hanssen E. Stereotaxic thalamotomy–experiences from the levodopa era. J Neurol Neurosurg Psychiatry. 1990;53:427–30.PubMedCrossRefGoogle Scholar
  114. 114.
    Jankovic J, Cardoso F, Grossman RG, et al. Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor. Neurosurgery. 1995;37:680–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Rossitch Jr E, Zeidman SM, Nashold Jr BS, et al. Evaluation of memory and language function pre- and post-thalamotomy with an attempt to define those patients at risk for post-operative dysfunction. Surg Neurol. 1988;29:11–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Eskandar EN, Shinobu LA, Penney Jr JB, et al. Stereotactic pallidotomy performed without using microelectrode guidance in patients with Parkinson’s disease: surgical technique and 2-year results. J Neurosurg. 2000;92:375–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Lang AE, Lozano AM, Montgomery EB, et al. Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med. 1997;337:1036–42.PubMedCrossRefGoogle Scholar
  118. 118.
    Biousse V, Newman NJ, Carroll C, et al. Visual fields in patients with posterior GPi pallidotomy. Neurology. 1998;50:258–65.PubMedCrossRefGoogle Scholar
  119. 119.
    Kondziolka D, Bonaroti E, Baser S, et al. Outcomes after stereotactically guided pallidotomy for advanced Parkinson’s disease. J Neurosurg. 1999;90:197–202.PubMedCrossRefGoogle Scholar
  120. 120.
    Merello M, Nouzeilles MI, Cammarota A, et al. Comparison of 1-year follow-up evaluations of patients with indication for pallidotomy who did not undergo surgery versus patients with Parkinson’s disease who did undergo pallidotomy: a case control study. Neurosurgery. 1999;44:461–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Baron MS, Vitek JL, Bakay RA, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol. 1996;40:355–66.PubMedCrossRefGoogle Scholar
  122. 122.
    Soukup VM, Ingram F, Schiess MC, et al. Cognitive sequelae of unilateral posteroventral pallidotomy. Arch Neurol. 1997;54:947–50.PubMedCrossRefGoogle Scholar
  123. 123.
    Uitti RJ, Wharen Jr RE, Turk MF, et al. Unilateral pallidotomy for Parkinson’s disease: comparison of outcome in younger versus elderly patients. Neurology. 1997;49:1072–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Scott R, Gregory R, Hines N, et al. Neuropsychological, neurological and functional outcome following pallidotomy for Parkinson’s disease. A consecutive series of eight simultaneous bilateral and twelve unilateral procedures. Brain. 1998;121:659–75.PubMedCrossRefGoogle Scholar
  125. 125.
    Alkhani A, Lozano AM. Pallidotomy for parkinson disease: a review of contemporary literature. J Neurosurg. 2001;94:43–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Vingerhoets G, van der Linden C, Lannoo E, et al. Cognitive outcome after unilateral pallidal stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;66:297–304.PubMedCrossRefGoogle Scholar
  127. 127.
    Parkinson’s disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345:956–63.CrossRefGoogle Scholar
  128. 128.
    Kondziolka D, Whiting D, Germanwala A, et al. Hardware-related complications after placement of thalamic deep brain stimulator systems. Stereotact Funct Neurosurg. 2002;79:228–33.PubMedCrossRefGoogle Scholar
  129. 129.
    Blomstedt P, Hariz MI. Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir (Wien). 2005;147:1061–4.CrossRefGoogle Scholar
  130. 130.
    Constantoyannis C, Berk C, Honey CR, et al. Reducing hardware-related complications of deep brain stimulation. Can J Neurol Sci. 2005;32:194–200.PubMedGoogle Scholar
  131. 131.
    Koller WC, Lyons KE, Wilkinson SB, et al. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord. 2001;16:464–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Hariz GM, Bergenheim AT, Hariz MI, et al. Assessment of ability/disability in patients treated with chronic thalamic stimulation for tremor. Mov Disord. 1998;13:78–83.PubMedCrossRefGoogle Scholar
  133. 133.
    Ondo W, Almaguer M, Jankovic J, et al. Thalamic deep brain stimulation: comparison between unilateral and bilateral placement. Arch Neurol. 2001;58:218–22.PubMedCrossRefGoogle Scholar
  134. 134.
    Pahwa R, Wilkinson S, Smith D, et al. High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology. 1997;49:249–53.PubMedCrossRefGoogle Scholar
  135. 135.
    Galvez-Jiminez N, Lozano AM, Tasker RR, et al. Pallidal stimulation in Parkinson’s disease patients with a prior unilateral pallidotomy. Can J Neurol Sci. 1998;25:300–5.Google Scholar
  136. 136.
    Tronnier VM, Fogel W, Kronenbuerger M, et al. Pallidal stimulation: an alternative to pallidotomy? J Neurosurg. 1997;87:700–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Krack PP, Pollak P, Limousin P, et al. Opposite motor effects of pallidal stimulation in Parkinson’s disease. Ann Neurol. 1998;43:180–92.PubMedCrossRefGoogle Scholar
  138. 138.
    Andrew J, Fowler CJ, Harrison MJ. Stereotaxic thalamotomy in 55 cases of dystonia. Brain. 1983;106:981–1000.PubMedCrossRefGoogle Scholar
  139. 139.
    Loher TJ, Pohle T, Krauss JK. Functional stereotactic surgery for treatment of cervical dystonia: review of the experience from the lesional era. Stereotact Funct Neurosurg. 2004;82:1–13.PubMedCrossRefGoogle Scholar
  140. 140.
    Pralong E, Debatisse D, Maeder M, et al. Effect of deep brain stimulation of GPi on neuronal activity of the thalamic nucleus ventralis oralis in a dystonic patient. Neurophysiol Clin. 2003;33:169–73.PubMedCrossRefGoogle Scholar
  141. 141.
    Kumar R, Dagher A, Hutchison WD, et al. Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology. 1999;53:871–4.PubMedCrossRefGoogle Scholar
  142. 142.
    Ondo WG, Desaloms JM, Jankovic J, et al. Pallidotomy for generalized dystonia. Mov Disord. 1998;13:693–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Tronnier VM, Fogel W. Pallidal stimulation for generalized dystonia. Report of three cases. J Neurosurg. 2000;92:453–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Bereznai B, Steude U, Seelos K, et al. Chronic high-frequency globus pallidus internus stimulation in different types of dystonia: a clinical, video, and MRI report of six patients presenting with segmental, cervical, and generalized dystonia. Mov Disord. 2002;17:138–44.PubMedCrossRefGoogle Scholar
  145. 145.
    Bittar RG, Yianni J, Wang S, et al. Deep brain stimulation for generalised dystonia and spasmodic torticollis. J Clin Neurosci. 2005;12:12–6.PubMedCrossRefGoogle Scholar
  146. 146.
    Coubes P, Cif L, El Fertit H, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg. 2004;101:189–94.PubMedCrossRefGoogle Scholar
  147. 147.
    Vidailhet M, Vercueil L, Houeto JL, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352:459–67.PubMedCrossRefGoogle Scholar
  148. 148.
    Kupsch A, Benecke R, Muller J, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355:1978–90.PubMedCrossRefGoogle Scholar
  149. 149.
    Krauss JK, Pohle T, Weber S, et al. Bilateral stimulation of globus pallidus internus for treatment of cervical dystonia. Lancet. 1999;354:837–8.PubMedGoogle Scholar
  150. 150.
    Kulisevsky J, Lleo A, Gironell A, et al. Bilateral pallidal stimulation for cervical dystonia: dissociated pain and motor improvement. Neurology. 2000;55:1754–5.PubMedCrossRefGoogle Scholar
  151. 151.
    Krauss JK, Loher TJ, Pohle T, et al. Pallidal deep brain stimulation in patients with cervical dystonia and severe cervical dyskinesias with cervical myelopathy. J Neurol Neurosurg Psychiatry. 2002;72:249–56.PubMedCrossRefGoogle Scholar
  152. 152.
    Yianni J, Bain PG, Giladi N, et al. Globus pallidus internus deep brain stimulation for dystonic conditions: a prospective audit. Mov Disord. 2003;18:436–42.PubMedCrossRefGoogle Scholar
  153. 153.
    Eltahawy HA, Saint-Cyr JA, Lang AE, et al. Pallidal deep brain stimulation in cervical dystonia: clinical outcome in four cases. Can J Neurol Sci. 2004;31:328–32.PubMedGoogle Scholar
  154. 154.
    Consky ES, Lang AE. Clinical assessments of patients with cervical dystonia. In: Jankovic J, Hallett M, editors. Therapy with botulinum toxin. New York: Marcel Dekker; 1994. p. 211–37.Google Scholar
  155. 155.
    Capelle HH, Weigel R, Krauss JK. Bilateral pallidal stimulation for blepharospasm-oromandibular dystonia (Meige syndrome). Neurology. 2003;60:2017–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Muta D, Goto S, Nishikawa S, et al. Bilateral pallidal stimulation for idiopathic segmental axial dystonia advanced from Meige syndrome refractory to bilateral thalamotomy. Mov Disord. 2001;16:774–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Foote KD, Sanchez JC, Okun MS. Staged deep brain stimulation for refractory craniofacial dystonia with blepharospasm: case report and physiology. Neurosurgery. 2005;56:415.CrossRefGoogle Scholar
  158. 158.
    Houser M, Waltz T. Meige syndrome and pallidal deep brain stimulation. Mov Disord. 2005;20:1203–5.PubMedCrossRefGoogle Scholar
  159. 159.
    Trottenberg T, Meissner W, Arnold G, et al. Neurostimulation of the ventral intermediate thalamic nucleus in inherited myoclonus-dystonia syndrome. Mov Disord. 2001;16: 769–71.PubMedCrossRefGoogle Scholar
  160. 160.
    Cif L, Valente EM, Hemm S, et al. Deep brain stimulation in myoclonus-dystonia syndrome. Mov Disord. 2004;19:724–7.PubMedCrossRefGoogle Scholar
  161. 161.
    Liu X, Griffin IC, Parkin SG, et al. Involvement of the medial pallidum in focal myoclonic dystonia: a clinical and neurophysiological case study. Mov Disord. 2002;17:346–53.PubMedCrossRefGoogle Scholar
  162. 162.
    Magarinos-Ascone CM, Regidor I, Martinez-Castrillo JC, et al. Pallidal stimulation relieves myoclonus-dystonia syndrome. J Neurol Neurosurg Psychiatry. 2005;76:989–91.PubMedCrossRefGoogle Scholar
  163. 163.
    Oropilla J, Diesta C, Itthimathin P, Suchowersky O, Kiss Z. Both thalamic and pallidal deep brain stimulation for myoclonic dystonia. J Neurosurg. 2010;112(6):1267–70.PubMedCrossRefGoogle Scholar
  164. 164.
    Krause M, Fogel W, Kloss M, et al. Pallidal stimulation for dystonia. Neurosurgery. 2004;55:1361–70.PubMedCrossRefGoogle Scholar
  165. 165.
    Krauss JK, Yianni J, Loher TJ, et al. Deep brain stimulation for dystonia. J Clin Neurophysiol. 2004;21:18–30.PubMedCrossRefGoogle Scholar
  166. 166.
    Yianni J, Bain PG, Gregory RP, et al. Post-operative progress of dystonia patients following globus pallidus internus deep brain stimulation. Eur J Neurol. 2003;10:239–47.PubMedCrossRefGoogle Scholar
  167. 167.
    Hristova A, Lyons K, Tröster AI, et al. Effect and time course of deep brain stimulation of the globus pallidus and subthalamus on motor features of Parkinson’s disease. Clin Neuropharmacol. 2000;23:208–11.PubMedCrossRefGoogle Scholar
  168. 168.
    Lopiano L, Torre E, Benedetti F, et al. Temporal changes in movement time during the switch of the stimulators in Parkinson’s disease patients treated by subthalamic nucleus stimulation. Eur Neurol. 2003;50:94–9.PubMedCrossRefGoogle Scholar
  169. 169.
    Madrazo I, Franco-Bourland RE, Castrejon H, et al. Fetal striatal homotransplantation for Huntington’s disease: first two case reports. Neurol Res. 1995;17:312–5.PubMedGoogle Scholar
  170. 170.
    Bachoud-Levi AC, Remy P, Nguyen JP, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet. 2000;356:1975–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Bachoud-Levi AC, Gaura V, Brugieres P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 2006;5:303–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Furtado S, Sossi V, Hauser RA, et al. Positron emission tomography after fetal transplantation in Huntington’s disease. Ann Neurol. 2005;58:331–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Keene CD, Sonnen JA, Swanson PD, et al. Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology. 2007;68:2093–8.PubMedCrossRefGoogle Scholar
  174. 174.
    Cubo E, Shannon KM, Penn RD, et al. Internal globus pallidotomy in dystonia secondary to Huntington’s disease. Mov Disord. 2000;15:1248–51.PubMedCrossRefGoogle Scholar
  175. 175.
    Joel D. Deep brain stimulation in Huntington’s disease: Globus pallidus externus or substantia nigra pars compacta. Mov Disord. 2002;17:431–2.CrossRefGoogle Scholar
  176. 176.
    Tang JK, Moro E, Lozano AM, et al. Firing rates of pallidal neurons are similar in Huntington’s and Parkinson’s disease patients. Exp Brain Res. 2005;166:230–6.PubMedCrossRefGoogle Scholar
  177. 177.
    Moro E, Lang AE, Strafella AP, et al. Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol. 2004;56:290–4.PubMedCrossRefGoogle Scholar
  178. 178.
    Hebb MO, Garcia R, Gaudet P, et al. Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: technical case report. Neurosurgery. 2006;58:E383.PubMedCrossRefGoogle Scholar
  179. 179.
    DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntington with siRNA attenuates striatal and cortical neuropathology and behavioural deficits. PNAS. 2007;104:17204–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Wang YL, Liu W, Wada E, et al. Clinicopathological rescue of a mouse model of Huntington’s Disease by siRNA. Neurosci Res. 2005;53:241–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Saka E, Graybiel AM. Pathophysiology of Tourette’s syndrome: striatal pathways revisited. Brain Dev. 2003;25:S15–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Rauch SL, Baer L, Cosgrove GR, et al. Neurosurgical treatment of Tourette’s syndrome: a critical review. Compr Psychiatry. 1995;36:141–56.PubMedCrossRefGoogle Scholar
  183. 183.
    Temel Y, Visser-Vandewalle V. Surgery in Tourette syndrome. Mov Disord. 2004;19:3–14.PubMedCrossRefGoogle Scholar
  184. 184.
    Houeto JL, Karachi C, Mallet L, et al. Tourette’s syndrome and deep brain stimulation. J Neurol Neurosurg Psychiatry. 2005;76:992–5.PubMedCrossRefGoogle Scholar
  185. 185.
    Vandewalle V, Van Der LC, Groenewegen HJ, et al. Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus. Lancet. 1999;353:724.PubMedCrossRefGoogle Scholar
  186. 186.
    Visser-Vandewalle V, Ackermans L, Van Der Linden C, Temel Y, Tijssen MA, Schruers KR, Nederveen P, Kleijer M, Boon P, Weber W, Cath D. Deep brain stimulation in Gilles de la Tourette’s syndrome. Neurosurgery. 2006;58:E590.PubMedGoogle Scholar
  187. 187.
    Mink JW, Walkup J, Frey KA, et al. Patient selection and assessment recommendations for deep brain stimulation in Tourette syndrome. Mov Disord. 2006;21:1831–8.PubMedCrossRefGoogle Scholar
  188. 188.
    Flaherty AW, Williams ZM, Amirnovin R, et al. Deep brain stimulation of the anterior internal capsule for the treatment of Tourette syndrome: technical case report. Neurosurgery. 2005;57:E403.PubMedCrossRefGoogle Scholar
  189. 189.
    Sun B, Krahl SE, Zhan S, et al. Improved capsulotomy for refractory Tourette’s syndrome. Stereotact Funct Neurosurg. 2005;83:55–6.PubMedCrossRefGoogle Scholar
  190. 190.
    Babel TB, Warnke PC, Ostertag CB. Immediate and long term outcome after infrathalamic and thalamic lesioning for intractable Tourette’s syndrome. J Neurol Neurosurg Psychiatry. 2001;70:666–71.PubMedCrossRefGoogle Scholar
  191. 191.
    Diederich NJ, Kalteis K, Stamenkovic M, et al. Efficient internal pallidal stimulation in Gilles de la Tourette syndrome: a case report. Mov Disord. 2005;20:1496–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Schrader C, Peschel T, Petermeyer M, et al. Unilateral deep brain stimulation of the internal globus pallidus alleviates tardive dyskinesia. Mov Disord. 2004;19:583–5.PubMedCrossRefGoogle Scholar
  193. 193.
    Wang Y, Turnbull I, Calne S, et al. Pallidotomy for tardive dyskinesia. Lancet. 1997;349:777–8.PubMedCrossRefGoogle Scholar
  194. 194.
    Trottenberg T, Volkmann J, Deuschl G, et al. Treatment of severe tardive dystonia with pallidal deep brain stimulation. Neurology. 2005;64:344–6.PubMedCrossRefGoogle Scholar
  195. 195.
    Weetman J, Anderson IM, Gregory RP, et al. Bilateral posteroventral pallidotomy for severe antipsychotic induced tardive dyskinesia and dystonia. J Neurol Neurosurg Psychiatry. 1997;63:554–6.PubMedCrossRefGoogle Scholar
  196. 196.
    Eltahawy HA, Feinstein A, Khan F, et al. Bilateral globus pallidus internus deep brain stimulation in tardive dyskinesia: a case report. Mov Disord. 2004;19:969–72.PubMedCrossRefGoogle Scholar
  197. 197.
    Franzini A, Marras C, Ferroli P, et al. Long-term high-frequency bilateral pallidal stimulation for neuroleptic-induced tardive dystonia. Report of two cases. J Neurosurg. 2005;102:721–5.PubMedCrossRefGoogle Scholar
  198. 198.
    Damier P, Thobois S, Witjas T, et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch Gen Psychiatry. 2007;64:170–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Clinical NeuroscienceUniversity of CalgaryCalgaryCanada

Personalised recommendations