Interaction of Yersinia pestis Virulence Factors with IL-1R/TLR Recognition System

  • Vyacheslav M. Abramov
  • Valentin S. Khlebnikov
  • Anatoly M. Vasiliev
  • Igor V. Kosarev
  • Raisa N. Vasilenko
  • Nataly L. Kulikova
  • Vladimir L. Motin
  • Georgy B. Smirnov
  • Valentin I. Evstigneev
  • Nicolay N. Karkischenko
  • Vladimir N. Uversky
  • Robert R. Brubaker
Conference paper
Part of the Infectious Disease book series (ID)

22.1 Introduction

The innate immunity is the first line of defense recognizing commensals and pathogenic microorganisms (1, 2). Innate immune responses derive from the ability of cells to rapidly combat invading microorganisms without the requirement for an antigen-specific adaptation. These mechanisms have evolved to recognize common microbe-associated molecular patterns and to interfere with conserved replication and survival strategies that support the propagation of microbial invaders. Toll-like receptors (TLRs) perform the recognition functions. Interleu-kin (IL)-1 and IL-18 receptors also belong to the TLR family. TLRs are critical proteins linking innate and acquired immunity (3). In the evolutionary process of host-parasite interrelations, pathogenic microorganisms had been armed with virulence factors specifically interacting with TLRs to manage the innate immunity and evade immunological control. Y. pestis, a causative agent of bubonic and pneumonic plague, inherited...


U937 Cell Capsular Antigen Soluble Decoy Receptor Pneumonic Plague Bubonic Plague 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Medzhitov R, Janeway CAJr(1997) Innate immunity: the virtues of a non-clonal system of recognition. Cell 91:295–298.PubMedCrossRefGoogle Scholar
  2. 2.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila TOLL protein signals activation of adaptive immunity. Nature 388:394–397.PubMedCrossRefGoogle Scholar
  3. 3.
    Akira S, Takeda K, Kaisho T (2001) TOLL-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680.PubMedCrossRefGoogle Scholar
  4. 4.
    Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Car-niel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96:14,043–14,048.CrossRefGoogle Scholar
  5. 5.
    Ferber DV, Brubaker RR (1981) Pllasmids in Yersinia pestis. Infect Immun 31:839–841.PubMedGoogle Scholar
  6. 6.
    Galyov EE, Smirnov OYu, Karlishev AV, Volkovoy KI, Dene-syuk AI, Nazimov IV, Rubtsov KS, Abramov VM, Dalvadyanz SM, Zav'alov VP (1990) Nucleotide sequence of the Yersinia pestis gene encoding F1 antigen and the primary structure of the protein. Putative T and B cell epices. FEBS Lett 227:230–232.CrossRefGoogle Scholar
  7. 7.
    Galyov EE, Karlishev AV, Chernovskaya TV, Dolgikh DA, Smirnov OYu, Volkovoy KI, Abramov VM, Zav'alov VP (1991) Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caf1M gene having homology with the chaperone protein PapD of Escherichia coli. FEBS Lett 286:79–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Karlyshev AV, Galyov EE, Abramov VM, Zav'alov VP (1992a) Caf1R gene and its role in the regulation of capsule formation of Yersinia pestis. FEBS Lett 305:37–40.CrossRefGoogle Scholar
  9. 9.
    Karlyshev AV, Galyov EE, Smirnov OYu, Guzayev AP, Abramov VM, Zav'alov VP (1992b) A new gene of the f1 operon of Yersinia pestis involved in the capsule biogenesis. FEBS Lett 297:77–80.CrossRefGoogle Scholar
  10. 10.
    Motin VL, Nakajima R, Smirnov GB, Brubaker RR (1994) Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide. Infect Immun 62:4192–4201.PubMedGoogle Scholar
  11. 11.
    Motin VM, Nedialkov YA, Brubaker RR (1996) V antigen-poly-histidine fusion peptide: binding to LcrH and active immunity against plague. Infect Immun 64:4313–4318.PubMedGoogle Scholar
  12. 12.
    Anderson GW JrLea SEC, Williamson ED, Titball RC, W e l -kos SC, Worsham PL, Friedlander AM (1996) Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infect Immun 64:4580–4585.PubMedGoogle Scholar
  13. 13.
    Jones SM, Griffin KF, Hodgson I, Williamson ED (2003) Protective efficacy of a fully recombinant plague vaccine in the guinea pig. Vaccine 21:3912–3918.PubMedCrossRefGoogle Scholar
  14. 14.
    Overheim KA, Depaolo RW, Debord KL, Morrin EM, Anderson DM, Green NM, Brubaker RR, Jabri B, Schneewind O (2005) LcrV plague vaccine with altered immunomodulatory properties. Infect Immun 73:5152–5159.PubMedCrossRefGoogle Scholar
  15. 15.
    Williamson ED, Flick-Smith HC, LeButt C, Rowland CA, Jones SM, Waters EL, Gwyther RJ, Miller J, Packer PJ, Irving M (2005) Human immune response to a plague vaccine comprising recombinant F1 and V antigens. Infect Immun 73:3598–3608.PubMedCrossRefGoogle Scholar
  16. 16.
    DeBord KL, Anderson DM, Marketon MM, Overheim KA, DePaolo RW, Ciletti NA, Jabri B, Schneewind O (2006) Immu-nogenicity and protective immunity against bubonic plague and pneumonic plague by immunization of mice with the recombinant V10 antigen, a variant of LcrV. Infect Immun 74:4910–4914.PubMedCrossRefGoogle Scholar
  17. 17.
    Mueller CA, Broz P, Muller SA, Ringler P, Erne-Brand F S o r g I, Kuhn M, Engel A, Cornelis GR. (2005) The V-antigen of Ye rsinia forms a distinct structure at the tip of injectisome needles. Science 310:674–676.PubMedCrossRefGoogle Scholar
  18. 18.
    Brubaker RR (2003) Interleukin-10 and Inhibition of Innate Immunity to Yersiniae : Roles of Yops and LcrV (V Antigen). Infect Immun 71:3673–3681.PubMedCrossRefGoogle Scholar
  19. 19.
    Nakajima R, Motin VL, Brubaker RR (1995) Suppression of cyto-kines in mice by protein A-V antigen fusion peptide and restoration of synthesis by active immunization. Infect Immun 63:3021–3029.PubMedGoogle Scholar
  20. 20.
    Une T, Nakajima R, Brubaker RR (1986) Roles of V antigen in promoting virulence in Yersinia. Contrib. Microbiol Immunol 9:179–185.Google Scholar
  21. 21.
    Sing A, Rost D, Tvardovaskaia N, Roggenkamp A, Wiede-mann A, Kirschning CJ, Aepfelbacher M, Heesemann J (2002) Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med 196:1017–1024.PubMedCrossRefGoogle Scholar
  22. 22.
    Sing A, Reithmeier-Rost D, Granfors K, Hill J, Roggenkamp A, Heesemann J (2005) A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. PNAS 102:16,049–16,054.CrossRefGoogle Scholar
  23. 23.
    Hu P, Elliott J, McCready P, Skowronski E, Garnes J, Kobayashi A, Brubaker RR, Garcia E (1998) Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol 180:5192–5202.PubMedGoogle Scholar
  24. 24.
    Nedialkov YA, Motin VL, Brubaker RR (1997) Resistance to lipopolysaccharide mediated by the Yersinia pestis V antigen-polyhistidine fusion peptide: amplification of interleukin-10. Infect Immun 65:1196–1203.PubMedGoogle Scholar
  25. 25.
    Fujita M, Into T, Yasuda M, Okusawa T, Hamahira S, Kuroki Y, Eto A, Nisizawa T, Morita M, Shibata K (2003) Involvement of leucine residues at positions 107, 112, and 115 in a leucine-rich repeat motif of human Toll-like receptor 2 in the recognition of diacylated lipoproteins and lipopeptides and Staphylococcus aureus peptidoglycans. J Immunol 171:3675–3683.PubMedGoogle Scholar
  26. 26.
    Pessen H, Kumosinski TF (1985) Measurements of protein hydra-tion by various techniques. Methods Enzymol 117:219–255.PubMedCrossRefGoogle Scholar
  27. 27.
    Shi L, Kataoka M, Fink AL (1996) Conformational characterization of DnaK and its complexes by small-angle X-ray scattering. Biochemistry 35:3287–3308.Google Scholar
  28. 28.
    Gast K, Damaschun H, Misselwitz R, Muller-Frohne M, Zirwer D, Damaschun G (1994) Compactness of protein molten globules: temperature-induced structural changes of the apomyoglo-bin folding intermediate. Eur Biophys J 23:297–305.PubMedCrossRefGoogle Scholar
  29. 29.
    Abramov VM, Vasiliev AM, Vasilenko RN, Kulikova NL, Kosarev I V, Khlebnikov VS, Ishchenko AT, MacIntyre S, Gillespie JR, Khurana R, Korpela T, Fink AL, Uversky VN (2001) Structural and functional similarity between Yersinia pestis capsular protein Caf1 and human Interleukin-1β. Biochemistry 40:6076–6084.PubMedCrossRefGoogle Scholar
  30. 30.
    Zavialov AV, Berglund J, Knight SD (2003) Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the F1 antigen Caf1M-Caf1 chaperone-subunit pre-assembly complex from Yersinia pestis. Acta Cryst D59:359–362.Google Scholar
  31. 31.
    Du Y, Rosqvist R, Forsberg Å (2002) Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 70:1453–1460.PubMedCrossRefGoogle Scholar
  32. 32.
    Privalov PL, Potekhin SA (1986) Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol 131: 4–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Abramov VM, Vasiliev AM, Vasilenko RN, Kulikova NL, Khleb-nikov VS, Kosarev IV, Karlyshev AV, Tereshin SN, Khodyakova AV, Anisimov AP, Uversky VN (2003) Protein structures. Kaleidoscope of structural properties and functions. In Structural Base of the Polyfunctional Role of Caf1 Protein and Caf1M Chaperone in Providing Yersinia pestis Circulation in Ecological Systems of Natural Plague Foci (Urersky VN, ed.), pp. 373–403. Research Signpost, Kerala, India.Google Scholar
  34. 34.
    Konnov NP (1990) Ultrastructural and functional analysis of the plague microbe and its interrelations with the flea organism. Thesis for the doctorate of biology, Saratov.Google Scholar
  35. 35.
    Tito MA, Miller J, Griffin KF, Williamson ED, Titball RW, Robinson CV (2001) Macromolecular organization of the Yersinia pestis capsular F1 antigen: insight from time-of-flight mass spectrometry. Protein Sci 10:2408–2413.PubMedCrossRefGoogle Scholar
  36. 36.
    Zavialov AV, Berglund J, Pudney AF, Fooks LJ, Ibrahim TM, MacIntyre S, Knight SD (2003) Structure and biogenesis of the capsular F1 antigen from Yersinia pestis : Preserved folding energy drives fiber formation. Cell 113:587–596.PubMedCrossRefGoogle Scholar
  37. 37.
    Zav'yalov VP, Chernovskaya TV, Navolotskaya EV, Karlyshev AV, MacIntyre Sh. Vasiliev AM, Abramov VM (1995) Specific high affinity binding of interleukin 1β by Caf1A usher protein of Yersinia pestis. FEBS Lett 371:65–68.PubMedCrossRefGoogle Scholar
  38. 38.
    Bechul OK, Lebedeva SA, Alekseeva LP, at al (1989) Obtaining of monoclonal antibodies against F1 antigen and their use for the testing of natural and experimental yersiniae strains. Microbiology Lab Diagnost. Special prophylaxis of quarantine infections. Saratov, pp. 44–49.Google Scholar
  39. 39.
    Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond MR, Gros P (2001) Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J 20:5033–5039.PubMedCrossRefGoogle Scholar
  40. 40.
    Korhonen TK (2001) Protein regions important for plasmino-gen activation and inactivation of α2-antiplasmin in the surface protease Pla of Yersinia pestis. Mol Microbiol 40:1097–1111.PubMedCrossRefGoogle Scholar
  41. 41.
    Lähteenmäki K, Edelman S, Korhonen TK (2005) Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13:79–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Cowan C, Jones HA, Kaya YH, Perry RD, Straley SC (2000) Invasion of epithelial cells by Yersinia pestis : evidence for a Y. pestis-specific invasin. Infect Immun 68:4523–4530.PubMedCrossRefGoogle Scholar
  43. 43.
    Lahteenmaki K, Kukkonen M, Korhonen TK (2001) The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett 504:69–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Lahteenmaki K, Virkola R, Saren A, Emody L, Korhonen TK (1998) Expression of plasminogen activator Pla of Yersinia pes-tis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66:5755–5762.PubMedGoogle Scholar
  45. 45.
    Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ (2006) Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. PNAS 103:5526–5530.PubMedCrossRefGoogle Scholar
  46. 46.
    Sebbane F, Lemaître N, Sturdevant DE, Rebeil R, Virtaneva K, Porcella SF, Hinnebusch BJ (2006) Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. PNAS 103:11,765–11,771.Google Scholar
  47. 47.
    Sodeinde OA, Subrahmanyam YVBK, Stark K, Quan T, Bao Y, Goguen JD (1992) A surface protease and the invasive character of plague. Science 258:1004–1007.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vyacheslav M. Abramov
    • 1
  • Valentin S. Khlebnikov
    • 1
  • Anatoly M. Vasiliev
    • 1
  • Igor V. Kosarev
    • 1
  • Raisa N. Vasilenko
    • 1
  • Nataly L. Kulikova
    • 1
  • Vladimir L. Motin
    • 2
  • Georgy B. Smirnov
    • 3
  • Valentin I. Evstigneev
    • 1
  • Nicolay N. Karkischenko
    • 4
  • Vladimir N. Uversky
    • 1
  • Robert R. Brubaker
    • 5
  1. 1.Department of Biochemistry of Immunity and BiodefenseInstitute of Immunological EngineeringLyubuchanyRussia
  2. 2.Departments of Pathology/Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.The Gamaleya Institute of Epidemiology and MicrobiologyMoscowRussia
  4. 4.Scientific Center of Biomedical Technologies RAMSRussia
  5. 5.Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingUSA

Personalised recommendations