Advertisement

Cytogenetic Abnormalities in Multiple Myeloma: The Importance of FISH and Cytogenetics

  • Esteban Braggio
  • Michael Sebag
  • Rafael Fonseca
Part of the Contemporary Hematology book series (CH)

Cyto-Molecular Techniques

Conventional Cytogenetics and Spectral Karyotyping

Conventional cytogenetics (CC) analysis has been employed widely in the study and clinical management of hematological malignancies, allowing the mapping of the whole genome for numeric and structural chromosomal abnormalities. Most centers, including ours, have incorporated karyotypic analysis to the baseline evaluation of multiple myeloma (MM) patients 1. However, CC identifies abnormalities in only 10–15% of cases. 2, 3, 4, 5 Several factors and technical restrictions are associated with this low detection rate, the most important of which is the low proliferative index (< 1%) intrinsic to MM tumor cells (Table 1). 2 Additionally, while numeric and larger structural changes can be routinely identified, certain smaller structural abnormalities remain cryptic, particularly those located in subtelomeric regions, such as the t(4;14)(p16.3;q32). 6To overcome the low proliferative index, the stimulation of bone...

Keywords

Overall Survival Multiple Myeloma Median Overall Survival Stem Cell Support Plasma Cell Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): Consensus statement. Mayo Clin Proc. 2007;82:323–341.PubMedCrossRefGoogle Scholar
  2. 2.
    Rajkumar SV, Fonseca R, Dewald GW, et al. Cytogenetic abnormalities correlate with the plasma cell labeling index and extent of bone marrow involvement in myeloma. Cancer Genet Cytogenet. 1999;113:73–77.PubMedCrossRefGoogle Scholar
  3. 3.
    Debes-Marun C, Dewald G, Bryant S, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia. 2003;17:427–436.PubMedCrossRefGoogle Scholar
  4. 4.
    Dewald GW, Kyle RA, Hicks GA, Greipp PR. The clinical Significance of Cytogenetic Studies in 100 Patients With Multiple Myeloma, Plasma Cell Leukemia, or Amyloidosis. Blood. 1985;66:380–390.PubMedGoogle Scholar
  5. 5.
    Sawyer JR, Waidron JA, Jagannath S, Barlogie B. Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet. 1995;82:41–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Chesi M, Nardini E, Brents LA, et al. Frequent translocation t(4;l4)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nature Genetics. 1997;16:260–264.PubMedCrossRefGoogle Scholar
  7. 7.
    Tricot G, Barlogie B, Jagannath S, et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 1 lq and not with other karyotype abnormalities. Blood. 1995;86:4250–4256.PubMedGoogle Scholar
  8. 8.
    Smadja NV, Fruchart C, Isnard F, et al. Chromosomal analysis in multiple myeloma: Cytogenetic evidence of two different diseases. Leukemia. 1998;12:960–969.PubMedCrossRefGoogle Scholar
  9. 9.
    Fonseca R, Debes-Marun CS, Picken EB, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood. 2003;102:2562–2567.PubMedCrossRefGoogle Scholar
  10. 10.
    Smadja NV, Leroux D, Soulier J, et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes, Chromosomes & Cancer. 2003;38:234–239.CrossRefGoogle Scholar
  11. 11.
    Chng WJ, Van Wier SA, Ahmann GJ, et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood. 2005;106:2156–2161.PubMedCrossRefGoogle Scholar
  12. 12.
    Drach J, Angerler J, Schuster J, et al. Interphase fluorescence in situ hybridization identifies chromosomal abnormalities in plasma cells from patients with mono-clonalgammopathy of undetermined significance. Blood. 1995;86:3915–3921.PubMedGoogle Scholar
  13. 13.
    Zandecki M, Obein V, Bernardi F, et al. Monoclonal gammopathy of undetermined significance: Chromosome changes are a common finding within bone marrow plasma cells. Br. J. Haematol. 1995;90:693–696.PubMedCrossRefGoogle Scholar
  14. 14.
    Bergsagel PL, Chesi M, Brents LA, et al. Translocations into IgH switch regions — the genetic hallmark of multiple myeloma. Blood. 1995;86:223.Google Scholar
  15. 15.
    Bergsagel PL, Chesi M, Nardini E, et al. Promiscuous translocations into immu-noglobulin heavy chain switch regions in multiple myeloma. Proc. Natl. Acad. Sci. USA. 1996;93(24):13931–13936.PubMedCrossRefGoogle Scholar
  16. 16.
    Jalal SM, Law ME. Utility of multicolor fluorescent in situ hybridization in clinical cytogenetics. Genet Med. 1999;1:181–186.PubMedCrossRefGoogle Scholar
  17. 17.
    Avet-Loiseau H, Daviet A, Brigaudeau C, et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood. 2001;97:822–825.PubMedCrossRefGoogle Scholar
  18. 18.
    Rao PH, Cigudosa JC, Ning Y, et al. Multicolor spectral karyotyping identifies new recurring breakpoints and translocations in multiple myeloma. Blood. 1998;92:1743–1748.PubMedGoogle Scholar
  19. 19.
    Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569–4575.PubMedCrossRefGoogle Scholar
  20. 20.
    Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109:3489–3495.PubMedCrossRefGoogle Scholar
  21. 21.
    Tabernero D, San Miguel JF, Garcia-Sanz M, et al. Incidence of chromosome numerical changes in multiple myeloma: Fluorescence in situ hybridization analysis using 15 chromosome-specific probes. Am. J. Pathol. 1996;149:153–161.PubMedGoogle Scholar
  22. 22.
    Drach J, Schuster J, Nowotny H, et al. Multiple myeloma: High incidence of chromosomal aneuploidy as detected by interphase fluorescence in situ hybridization. Cancer Res. 1995;55:3854–3859.PubMedGoogle Scholar
  23. 23.
    Ahman GJ, Jalal SM, Juneau AL, et al. A Novel Three-Color, Clone-specific Fluorescence In situ Hybridization Procedure for Monoclonal Gammopathies. Cancer Genet Cytogenet. 1998;101:7–11.CrossRefGoogle Scholar
  24. 24.
    Kallioniemi OP, Kallioniemi A, Sudar D, et al. Comparative genomic hybridization: A rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol. 1993;4:41–6.PubMedGoogle Scholar
  25. 25.
    Carrasco DR, Tonon U, Huang Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9:313–325.PubMedCrossRefGoogle Scholar
  26. 26.
    Avet-Loiseau H, Bataille R. Detection of nonrandom chromosomal changes in multiple myeloma by comparative genomic hybridization. Blood. 1998;92: 2997–2998.PubMedGoogle Scholar
  27. 27.
    Rao PH. Comparative genomic hybridization for analysis of changes in DNA copy number in multiple myeloma. Methods in Molecular Medicine. 2005;113:71–83.PubMedGoogle Scholar
  28. 28.
    Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 1998;20:207–211.PubMedCrossRefGoogle Scholar
  29. 29.
    Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanoni-cal NF-kappaB pathway in multiple myeloma. Cancer Cell 2007;12:131–144PubMedCrossRefGoogle Scholar
  30. 30.
    Bergsagel PL, Kuehi WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23:6333–6338.PubMedCrossRefGoogle Scholar
  31. 31.
    Zojer N, Konigsberg R, Ackermann J, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood. 2000;95:1925–1930.PubMedGoogle Scholar
  32. 32.
    Dao DD, Sawyer JR, Epstein J, et al. Deletion of the retinoblastoma gene in multiple myeloma. Leukemia. 1994;8:1280–1284.PubMedGoogle Scholar
  33. 33.
    Avet-Loiseau H, Daviet A, Sauner S, et al. Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol. 2000;111:1116–1117.CrossRefGoogle Scholar
  34. 34.
    Fonseca R, Oken MM, Harrington D, et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia. 2001;15:981–986.PubMedCrossRefGoogle Scholar
  35. 35.
    Fonseca R, Harrington D, Oken M, et al. Biologic and prognostic significance of interphase FISH detection of chromosome 13 abnormalities (A 13) in multiple myeloma: An Eastern Cooperative Oncology Group (ECOG) Study. Cancer Research. 2002;62:715–720.PubMedGoogle Scholar
  36. 36.
    Avet-Loiseau H, Li JY, Morineau N, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood. 1999;94:2583–2589.PubMedGoogle Scholar
  37. 37.
    Shaughnessy J, Tian E, Sawyer J,. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood. 2000;96:1505–1511.PubMedGoogle Scholar
  38. 38.
    Fonseca R, Bailey RJ, Ahmann GJ, et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood. 2002;100:1417–1424.PubMedGoogle Scholar
  39. 39.
    Desikan R, Barlogie B, Sawyer J, et al. Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood. 2000;95:4008–4010.PubMedGoogle Scholar
  40. 40.
    Fassas AB, Tricot G. Chromosome 13 deletionlhypodiploidy and prognosis in multiple myeloma patients. Leukemia &#x0026;#x0026; Lymphoma. 2004;45:1083–1091.CrossRefGoogle Scholar
  41. 41.
    Seong C, Delasalle K, Hayes K, et al. Prognostic value of cytogenetics in multiple myeloma. Br J Haematol. 1998;101:189–194.PubMedCrossRefGoogle Scholar
  42. 42.
    Shaughnessy J, Jacobson J, Sawyer J, et al. Continuous absence of metaphasedefined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with Total Therapy I: Interpretation in the context of global gene expression. Blood. 2003;101:3849–3856.PubMedCrossRefGoogle Scholar
  43. 43.
    Shaughnessy J, Jr., Tian E, Sawyer J, et al. Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II. British Journal of Haematology. 2003;120:44–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Facon T, Avet-Loiseau H, Guillerm G, et al. Chromosome 13 abnormalities identified by FISH analysis and serum beta-2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood. 2001;97:1566–1571.PubMedCrossRefGoogle Scholar
  45. 45.
    Perez-Simon JA, Garcia-Sanz R, Tabernero MD, et al. Prognostic value of numerical chromosome aberrations in multiple myeloma: A FISH analysis of 15 different chromosomes. Blood. 1998;91:3366–3371.PubMedGoogle Scholar
  46. 46.
    Chiecchio L, Protheroe RK, Ibrahim AH, et al. Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia. 2006;20:1610–1617.PubMedCrossRefGoogle Scholar
  47. 47.
    Dewald GW, Therneau T, Larson D, et al. Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma. Blood. 2005;106:3553–3558.PubMedCrossRefGoogle Scholar
  48. 48.
    Tricot G, Sawyer JIR, Jagannath S, et al. Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol. 1997;15:2659–2666.PubMedGoogle Scholar
  49. 49.
    Gutierrez NC, Castellanos MV, Martin ML, et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4; 14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia. 2007;21:143–150.PubMedCrossRefGoogle Scholar
  50. 50.
    Chng WJ, Santana-Davila R, Van Wier SA, et al. Prognostic factors for hyper-diploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia. 2006;20:807–813.PubMedCrossRefGoogle Scholar
  51. 51.
    Chang H, Trieu Y, Qi X, X u W Stewart KA, Reece D. Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res. 2007;31:779–782.PubMedCrossRefGoogle Scholar
  52. 52.
    Sagaster V, Ludwig H, Kaufmann H, Odelga V, Zojer N, Ackermann J, Kuenburg E, Wieser R, Zielinski C, Drach J. Bortezomib in relapsed multiple myeloma: Response rates and duration of response are independent of a chromosome 13q-deletion. Leukemia. 2007;21:164–168.PubMedCrossRefGoogle Scholar
  53. 53.
    Jagannath S, Richardson PG, Sonneveld P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia. 2007;21:151–157.PubMedCrossRefGoogle Scholar
  54. 54.
    Mateos MV, Hernandez JIM, Hernandez MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: Results of a multicenter phase I/H study. Blood. 2006;108:2165–2172.PubMedCrossRefGoogle Scholar
  55. 55.
    Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene. 2001;20:5611–5622.PubMedCrossRefGoogle Scholar
  56. 56.
    Nishida K, Tamura A, Nakazawa N, et al. The Ig heavy chain gene is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization. Blood. 1997;90:526–534.PubMedGoogle Scholar
  57. 57.
    Bergsagel PL, Kuehl WM. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunological Reviews. 2003;194:96–104.PubMedCrossRefGoogle Scholar
  58. 58.
    Bergsagel PL, Kuehi WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106:296–303.PubMedCrossRefGoogle Scholar
  59. 59.
    Dalton WS, Bergsagel PL, Kuehl WM, et al. Multiple Myeloma. Hematology Am Soc Hematol Educ Program. 2001;157–177.Google Scholar
  60. 60.
    Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehi W M Dysregulation of cyclin Dl by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood. 1996;88:674–681.PubMedGoogle Scholar
  61. 61.
    Fonseca R, Witzig TE, Gertz MA, et al. Multiple myeloma and the translocation t(1 1;14)(q13;q32): A report on 13 cases. Br J Haematol. 1998;101:296–301.PubMedCrossRefGoogle Scholar
  62. 62.
    Harrison C, Mazullo H, Cheung K, et al. Chromosomal abnormalities in systemic amyloidosis. Proceedings of the VIII International Myeloma Workshop. Banff, Alberta, Canada; 2001:P18.Google Scholar
  63. 63.
    Hayman SR, Bailey RJ, Jalal SM, et al. Translocations involving heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood. 2001;98:2266–2268.PubMedCrossRefGoogle Scholar
  64. 64.
    Garand R, Avet-Loiseau H, Accard F, et al. t(11; 14) and t(4; 14) translocations correlated with mature lymphoplasmocytoid and immature morphology, respectively, in multiple myeloma. Leukemia. 2003;17:2032–2035.PubMedCrossRefGoogle Scholar
  65. 65.
    Fonseca R, Blood EA, Oken MM, et al. Myeloma and the t(11; 1 4)(q 13;q32); evidence for a biologically defined unique subset of patients. Blood. 2002;99:3735–3741.PubMedCrossRefGoogle Scholar
  66. 66.
    Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition some plasma cell tumors. Blood. 2005;105:317–323.PubMedCrossRefGoogle Scholar
  67. 67.
    GertzMA, LacyMQ, DispenzieriA,etal. Clinical implicationsoft(11;14)(q13;q32), t(4;14)(p16.3;q32), and -Ylpl3 in myeloma patients treated with high-dose therapy. Blood. 2005;106:2837–2840.PubMedCrossRefGoogle Scholar
  68. 68.
    Moreau P, Facon T, Leleu X, et al. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood. 2002;100:1579–1583.PubMedCrossRefGoogle Scholar
  69. 69.
    Keats JJ, Reiman T, Maxwell CA, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101:1520–1529.PubMedCrossRefGoogle Scholar
  70. 70.
    Avet-Loiseau H, Facon T, Daviet A, et al. 1 4q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a mul-tistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome. Cancer Res. 1999;59:4546–4550.PubMedGoogle Scholar
  71. 71.
    FonsecaR,OkenMM,GreippPR,EasternCooperativeOncologyGroupMyelomaG The t(4; l4.)(pl6.3;q3 2) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal of undetermined significance. Blood. 2001;98:1271–1272.PubMedCrossRefGoogle Scholar
  72. 72.
    Chang H, Qi XY, Samiee S, et al. Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant. 2005;36:793–796.PubMedCrossRefGoogle Scholar
  73. 73.
    Chang H, Trieu Y, Qi X, et al. Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res. 2006;31:779–782.PubMedCrossRefGoogle Scholar
  74. 74.
    Mulligan G, Mitsiades C, Bryant B, et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood. 2007;109:3177–3188.PubMedCrossRefGoogle Scholar
  75. 75.
    Trudel S, Li ZH, Wei E, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood. 2005;105: 2941–2948.PubMedCrossRefGoogle Scholar
  76. 76.
    Trudel S, Stewart AK, Rom E, et al. The inhibitory anti-FGFR3 antibody, PRO-001 is cytotoxic to t(4;14) multiple myeloma cells. Blood. 2006;107:4039–4046.PubMedCrossRefGoogle Scholar
  77. 77.
    Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 1 6q23 by translocation to an Ig locus in multiple myeloma. Blood. 1998;91:4457–4463.PubMedGoogle Scholar
  78. 78.
    Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020–2028.PubMedCrossRefGoogle Scholar
  79. 79.
    Shaughi-iessy J, Jr., Gabrea A, Qi Y, et al. Cyclin D3 at 6p2l is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood. 2001;98:217–223.CrossRefGoogle Scholar
  80. 80.
    Drach J, Ackermann J, Kromer E, et al. Short survival of Patients with Multiple Myeloma and p53 gene deletion: A study by Interphase FISH. Blood. 1997;90:244a.Google Scholar
  81. 81.
    Drach J, Ackermann J, Fritz E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood. 1998;92:802–809.PubMedGoogle Scholar
  82. 82.
    Avet-Loiseau H, Li JY, Godon C, et al. P53 deletion is not a frequent event in multiple myeloma. Br J Haematol. 1999;106:717–719.PubMedCrossRefGoogle Scholar
  83. 83.
    Chang H, Qi C, Yi QL, Reece D, Stewart AK. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood. 2005;105:358–360.PubMedCrossRefGoogle Scholar
  84. 84.
    Tiedemann RR, Gonzalez-Paz N, Kyle RA, et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia. 2008; 22:1044–1052.PubMedCrossRefGoogle Scholar
  85. 85.
    Chng WJ, Price-Troska T, Gonzalez-Paz N, et al. Clinical significance of TP53 mutation in myeloma. Leukemia. 2007;21:582–584.PubMedCrossRefGoogle Scholar
  86. 86.
    Sawyer JR, Tricot G, Mattox S, Jagannath S, Barlogie B. Jumping translocations of chromosome 1 q in multiple myeloma: Evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood. 1998;91:1732–1741.PubMedGoogle Scholar
  87. 87.
    Zhan F, Colla S, Wu X, et al. CKS1B, over expressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip 1-depend-ent and independent mechanisms. Blood. 2007;109:4995–5001.PubMedCrossRefGoogle Scholar
  88. 88.
    Fonseca R, Van Wier SA, Chng WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia. 2006;20:2034–2040.PubMedCrossRefGoogle Scholar
  89. 89.
    Shaughnessy JD, Jr., Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–2284.PubMedCrossRefGoogle Scholar
  90. 90.
    Chang H, Qi X, Trieu Y, et al. Multiple myeloma patients with CKS1B gene amplification have a shorter progression-free survival post-autologous stem cell transplantation. Br J Haematol. 2006;135:486–491.PubMedCrossRefGoogle Scholar
  91. 91.
    Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: A workshop report. Cancer Res. 2004;64:1546–1558.PubMedCrossRefGoogle Scholar
  92. 92.
    Stewart AK, Bergsagel PL, Greipp PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia. 2007;21:529–534.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Esteban Braggio
    • 1
  • Michael Sebag
    • 1
  • Rafael Fonseca
    • 1
  1. 1.Mayo ClinicScottsdaleUSA

Personalised recommendations