Proteasome Inhibitors as Therapy in Multiple Myeloma

  • Dharminder Chauhan
  • Dharminder Ajita
  • Dharminder Singh
  • Kenneth Anderson
Part of the Contemporary Hematology book series (CH)

Ubiquitin-Proteasome System: Constitution and Function

Normal cellular homeostasis requires balanced regulation of protein synthesis and degradation. Intracellular protein degradation occurs majorly via a multi-subunit complex called the proteasome.1, 2, 3, 4 Initial studies by Ciechanover, Hershko, and Rose demonstrated that ATP-dependent conjugation of proteins with polypeptide (ubiquitin) mediates protein degradation.5, 6, 7, 8, 9, 10, 11 The role of ubiq-uitin in cellular protein turnover was further established in later studies.6,11

Proteolysis is mediated via the 26S multi-subunit proteasome complex12, 13, 14, 15 consisting of 19S units flanking a barrel-shaped 20S proteasome core.16, 17, 18The 19S units of the 26S proteasome complex regulate entry of ubiqui-tinated proteins into the 20S core chamber. 2, 19,20 Protein ubiquitination is facilitated through several enzymatic reactions: E1 ubiquitin enzyme first activates ubiquitin and then links it to the ubiquitin-conjugating...


Multiple Myeloma Cystic Fibrosis Transmembrane Conductance Regulator Proteasome Inhibitor Proteasomal Activity Boronic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This investigation was supported by NIH grants CA 50947, CA 78373, and CA10070; the Myeloma Research Fund; and LeBow Family Fund to Cure Myeloma.


  1. 1.
    Rock K, Gramm C, Rothstein L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994;78(5):761–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003;426(6968):895–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 2007;35(Pt. 1):12–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004;4(5):349–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Ciechanover A, Elias S, Heller H, Ferber S, Hershko A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulo-cytes. J Biol Chem 1980;255(16):7525–8.PubMedGoogle Scholar
  6. 6.
    Ciechanover A, Finley D, Varshavsky A. The ubiquitin-mediated proteolytic pathway and mechanisms of energy-dependent intracellular protein degradation. J Cell Biochem 1984;24(1):27–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Ciechanover A, Heller H, Elias S, Haas AL, Hershko A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci U S A 1980;77(3):1365–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Ciechanover A, Schwartz AL. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci U S A 1998;95(6):2727–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Ciehanover A, Hod Y, Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 1978;81(4):1100–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci U S A 1980;77(4):1783–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Hershko A, Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem 1982;51:335–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Wilk S, Orlowski M Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem 1983;40(3):842–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Hough R, Pratt G, Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 1987;262(17):8303–13.PubMedGoogle Scholar
  14. 14.
    Waxman L, Fagan JM, Goldberg AL. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J Biol Chem 1987;262(6):2451–7.PubMedGoogle Scholar
  15. 15.
    Eytan E, Ganoth D, Armon T, Hershko A. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc Natl Acad Sci U S A 1989;86(20):7751–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Ganoth D, Leshinsky E, Eytan E, Hershko A. A multicomponent system that degrades proteins conjugated to ubiquitin. Resolution of factors and evidence for ATP-dependent complex formation. J Biol Chem 1988;263(25):12412–9.PubMedGoogle Scholar
  17. 17.
    Arrigo A-P, Suhan JP, Welch WJ. Dynamic changes in the structure and intracel-lular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 1988;8:5059–71.PubMedGoogle Scholar
  18. 18.
    Arrigo AP, Tanaka K, Goldberg AL, Welch WJ. Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 1988;331(6152):192–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Peters J, Franke W, Kleinschmidt J. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 1994;269(10):7709–18.PubMedGoogle Scholar
  20. 20.
    Gray C, Slaughter C, DeMartino G. PA28 activator protein forms regulatory caps on proteasome stacked rings. J Mol Biol 1994;236(1):7–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 2005;12(9):1191–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983;258(13):8206–14.PubMedGoogle Scholar
  23. 23.
    Wilkinson K, Urban M, Haas A. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem 1980;255(16):7529–32.PubMedGoogle Scholar
  24. 24.
    Hough R, Pratt G, Rechsteiner M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J Biol Chem 1986;261(5):2400–8.PubMedGoogle Scholar
  25. 25.
    Swaminathan S, Amerik A, Hochstrasser M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol Biol Cell 1999;10(8):2583–94.PubMedGoogle Scholar
  26. 26.
    Pickart CM. Back to the future with ubiquitin. Cell 2004;116(2):181–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Arendt C, Hochstrasser M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci U S A 1997;94(14):7156–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf D. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 1997;272(40):25200–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 2006;281(13):8582–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8(8):739–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Glotzer M, Murray A, Kirschner M. Cyclin is degraded by the ubiquitin pathway. Nature 1991;349(6305):132–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Pagano M, Tam S, Theodoras A, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995;269(5224):682–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhao J, Tenev T, Martins L, Downward J, Lemoine N. The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci 2000;113(Pt. 23):4363–71.PubMedGoogle Scholar
  34. 34.
    Finley D, Sadis S, Monia B, et al. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol Cell Biol 1994;14(8):5501–9.PubMedGoogle Scholar
  35. 35.
    Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59(11):2615–22.PubMedGoogle Scholar
  36. 36.
    Dantuma N, Lindsten K, Glas R, Jellne M, Masucci M. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 2000;18(5):538–43.PubMedCrossRefGoogle Scholar
  37. 37.
    Masdehors P, Omura S, Merle-Beral H, et al. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br J Haematol 1999;105(3):752–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Drexler HC, Risau W, Konerding MA. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. Faseb J 2000;14(1):65–77.PubMedGoogle Scholar
  39. 39.
    Kudo Y, Takata T, Ogawa I, et al. p27Kip1 accumulation by inhibition of proteas-ome function induces apoptosis in oral squamous cell carcinoma cells. Clin Cancer Res 2000;6(3):916–23.PubMedGoogle Scholar
  40. 40.
    Bogner C, Schneller F, Hipp S, Ringshausen I, Peschel C, Decker T. Cycling B-CLL cells are highly susceptible to inhibition of the proteasome: involvement of p27, early D-type cyclins, Bax, and caspase-dependent and -independent pathways. Exp Hematol 2003;31(3):218–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001;61(7):3071–6.PubMedGoogle Scholar
  42. 42.
    Chauhan D, Catley L, Li G, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 2005;8(5):407–19.PubMedCrossRefGoogle Scholar
  43. 43.
    Adams J. Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 2003;8(7):307–15.PubMedCrossRefGoogle Scholar
  44. 44.
    Chauhan D, Hideshima T, Anderson KC. Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol 2005;45:465–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Chauhan D, Hideshima T, Mitsiades C, Richardson P, Anderson KC. Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther 2005;4(4):686–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Vinitsky A, Michaud C, Powers JC, Orlowski M. Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 1992 ; 31 (39) : 9421–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Omura S, Fujimoto T, Otoguro K, et al. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J Antibiot (Tokyo) 1991;44(1):113–6.Google Scholar
  48. 48.
    Fenteany G, Standaert R, Lane W, Choi S, Corey E, Schreiber S. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 1995;268(5211):726–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Fenteany G, Standaert R, Reichard G, Corey E, Schreiber S. A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line. Proc Natl Acad Sci U S A 1994;91(8):3358–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Adams J, Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 2004;22(2):304–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004;3(1):17–26.PubMedCrossRefGoogle Scholar
  52. 52.
    Van WC. Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 2007;13(4):1076–82.CrossRefGoogle Scholar
  53. 53.
    Stancovski I, Baltimore D. NF-κ B activation: the I κB kinase revealed? Cell 1997;91:299–302.PubMedCrossRefGoogle Scholar
  54. 54.
    Haefner B. NF-kappa B: arresting a major culprit in cancer. Drug Discov Today 2002;7(12):653–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin proteasome pathway is required for processing the NF-kB1 precursor protein and the activation of NF-kB. Cell 1994;78:773–85.PubMedCrossRefGoogle Scholar
  56. 56.
    Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 1995;83(1):129–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Chauhan D, Uchiyama H, Urashima M, Yamamoto K, Anderson KC. Regulation of interleukin 6 in multiple myeloma and bone marrow stromal cells. Stem Cells 1995;13(Suppl 2):35–9.PubMedGoogle Scholar
  58. 58.
    Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996;87(3):1104–12.PubMedGoogle Scholar
  59. 59.
    Ni H, Ergin M, Huang Q, et al. Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apop-tosis. Br J Haematol 2001;115(2):279–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002;99(11):4079–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Landowski TH, Olashaw NE, Agrawal D, Dalton WS. Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene 2003;22(16):2417–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and Ikappa Balpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 2003;101(3):1053–62.PubMedCrossRefGoogle Scholar
  63. 63.
    LeBlanc R, Catley LP, Hideshima T, et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002;62(17):4996–5000.PubMedGoogle Scholar
  64. 64.
    Orlowski RZ, Stinchcombe TE, Mitchell BS, et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002;20(22):4420–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Richardson P, Blood E, Mitsiades CS, et al. A randomized phase 2 trial of lena-lidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006;15:3458–64.CrossRefGoogle Scholar
  66. 66.
    Richardson PG, Barlogie B, Berenson J, et al. Extended follow-up of a phase II trial in relapsed, refractory multiple myeloma: final time-to-event results from the SUMMIT trial. Cancer 2006;106(6):1316–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Jagannath S, Durie B, Wolf JL, et al. A phase 2 study of Bortezomib as first line therapy in patients with multiple myeloma. Blood 2004;104:abstr 333.Google Scholar
  68. 68.
    Jagannath S, Barlogie B, Berenson J, et al. A phase 2 study of two doses of bort-ezomib in relapsed or refractory myeloma. Br J Haematol 2004;127(2):165–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Jagannath S, Barlogie B, Berenson JR, et al. Bortezomib in recurrent and/or refractory multiple myeloma: initial experience in patients with impaired renal function. Cancer 2005;103:1195–200.PubMedCrossRefGoogle Scholar
  70. 70.
    RichardsonPG,SonneveldP,SchusterMW,et al.Bortezomiborhigh-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352(24):2487–98.PubMedCrossRefGoogle Scholar
  71. 71.
    Richardson P, Barlogie B, Berenson JR, et al. Clinical factors predictive of outcome with Bortezomib in patients with relapsed, refractory multiple myeloma. Blood 2005;106:2977–81.PubMedCrossRefGoogle Scholar
  72. 72.
    Berenson J, Jagannath S, Barlogie B, et al. Safety of prolonged therapy with Bortezomib in relapsed or refractory multiple myeloma. Cancer 2005;104:2141–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Lonial S, Waller EK, Richardson P, et al. Risk factors and kinetics of thrombocyto-penia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 2005;106:3777–84.PubMedCrossRefGoogle Scholar
  74. 74.
    Richardson PG, Briemberg H Jagannath S, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 2006;24(19):3113–20.PubMedCrossRefGoogle Scholar
  75. 75.
    Richardson PG, Hideshima T, Mitsiades C, Anderson KC. The emerging role of novel therapies for the treatment of relapsed myeloma. J Natl Compr Canc Netw 2007;5(2):149–62.PubMedGoogle Scholar
  76. 76.
    Richardson PG, Sonneveld P, Schuster M, et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 2007;110(10):3557–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002;28:28.Google Scholar
  78. 78.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 2002;99(22):14374–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Chauhan D, Li G, Shringarpure R, et al. Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 2003;63(19):6174–7.PubMedGoogle Scholar
  80. 80.
    Chauhan D, Li G, Hideshima T, et al. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 2003;278(20):17593–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Chauhan D, Guilan L, Sattler M, et al. Superoxide-dependent and independent mitochondrial signaling during apoptosis in multiple myeloma (MM) cells. Oncogene 2003;22(40):6296–300.PubMedCrossRefGoogle Scholar
  82. 82.
    Chauhan D, Anderson KC. Mechanisms of cell death and survival in multiple myeloma (MM): therapeutic implications. Apoptosis 2003;8(4):337–43.PubMedCrossRefGoogle Scholar
  83. 83.
    Mitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemothera-peutic agents: therapeutic applications. Blood 2003;101(6):2377–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002;2(12):927–37.PubMedCrossRefGoogle Scholar
  85. 85.
    Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003;101(4):1530–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Obeng EA, Boise LH. Caspase-12 and caspase-4 are not required for cas-pase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem 2005;280(33):29578–87.PubMedCrossRefGoogle Scholar
  87. 87.
    Obeng EA, Carlson LM, Gutman DM, Harrington WJ, Jr., Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006;107(12):4907–16.PubMedCrossRefGoogle Scholar
  88. 88.
    Nawrocki ST, Carew JS, Dunner K, Jr., et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 2005;65(24):11510–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2(9):647–56.PubMedCrossRefGoogle Scholar
  90. 90.
    Chauhan D, Velankar M, Brahmandam M, et al. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 2007;26(16):2374–80.PubMedCrossRefGoogle Scholar
  91. 91.
    Chauhan D, Neri P, Velankar M, et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 2007;109(3):1220–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Mulligan G, Mitsiades C, Bryant B, et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007;109(8):3177–88.PubMedCrossRefGoogle Scholar
  93. 93.
    Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006;107(3):1092–100.PubMedCrossRefGoogle Scholar
  94. 94.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002;99(12):4525–30.PubMedCrossRefGoogle Scholar
  95. 95.
    Hideshima T, Bradner JE, Wong J, et al. Small-molecule inhibition of protea-some and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 2005;102(24):8567–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Catley L, Weisberg E, Kiziltepe T, et al. Aggresome induction by protea-some inhibitor bortezomib and {alpha}-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006;108(10):3441–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Nawrocki ST, Carew JS, Pino MS, et al. Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 2006;66(7):3773–81.PubMedCrossRefGoogle Scholar
  98. 98.
    Munshi NC, Hideshima T, Carrasco D, et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood 2004;103(5):1799–806.PubMedCrossRefGoogle Scholar
  99. 99.
    Berkers CR, Verdoes M, Lichtman E,. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat Methods 2005;2(5):357–62.PubMedCrossRefGoogle Scholar
  100. 100.
    Altun M, Galardy P, Shringapure R, et al. Effects of PS 341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res 2005 ; 65 : 7896–901.PubMedGoogle Scholar
  101. 101.
    Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenica l W Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel micro-bial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 2003;42(3):355–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Macherla VR, Mitchell SS, Manam RR, et al. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 2005;48(11):3684–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Groll M, Huber R, Potts BC. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. J Am Chem Soc 2006;128(15):5136–41.PubMedCrossRefGoogle Scholar
  104. 104.
    Ruiz S, Krupnik Y, Keating M, Chandra J, Palladino M, McConkey D. The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bort-ezomib in lymphocytes from patients with chronic lymphocytic leukemia. Mol Cancer Ther 2006;5(7):1836–43.PubMedCrossRefGoogle Scholar
  105. 105.
    Miller CP, Ban K, Dujka ME, et al. NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 2007;110(1):267–77.PubMedCrossRefGoogle Scholar
  106. 106.
    Oberdorf J, Carlson EJ, Skach WR. Redundancy of mammalian proteasome beta subunit function during endoplasmic reticulum associated degradation. Biochemistry 2001;40(44):13397–405.PubMedCrossRefGoogle Scholar
  107. 107.
    Demo SD, Kirk CJ, Aujay MA, et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 2007;67(13):6383–91.PubMedCrossRefGoogle Scholar
  108. 108.
    Stapnes C, Doskeland AP, Hatfield K, et al. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 2007;136(6):814–28.PubMedCrossRefGoogle Scholar
  109. 109.
    Chauhan D, Hideshima T, Anderson KC. A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Br J Cancer 2006;95(8):961–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dharminder Chauhan
    • 1
  • Dharminder Ajita
    • 2
  • Dharminder Singh
    • 2
  • Kenneth Anderson
    • 3
  1. 1.Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Myeloma ResearchDana-Farber Cancer InstituteBostonUSA
  2. 2.Dana-Farber Cancer InstituteBostonUSA
  3. 3.Department of Medical Oncology, Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA

Personalised recommendations