Histone Deacetylase Inhibitors in Multiple Myeloma

  • Teru Hideshima
Part of the Contemporary Hematology book series (CH)

Histones and Histone Decaetylases

Histones are the main protein components of chromatin and have been found in the nuclei of all eukaryotic cells where they are complexed to DNA in chromatin and chromosomes. Histones are of relatively low molecular weight (10–20 kD) and can be grouped into five major classes. Two copies of H2A, H2B, H3, and H4 bind to about 200 base pairs of DNA to form the repeating structure of chromatin, the nucleosome, with H1 binding to the linker sequence. During transcription, the transcription factors have to bind to their specific binding site in the promoter region of DNA. When the DNA is in compact form, it is often difficult for proteins to access DNA, thereby limiting transcription. In contrast, when DNA is bundled into chromosomes, histones play a major role in restricting the binding of transcription factors to DNA. In activation of histones, the acetylation status of amino-terminus is crucial in their binding process to DNA. It is regulated by the...


Multiple Myeloma Chronic Lymphocytic Leukemia Maximum Tolerate Dose HDAC Inhibitor Hydroxamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Verdin, E., Dequiedt, F., and Kasler, H. G. Class II histone deacetylases: Versatile regulators. Trends Genet 19: 286–293, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Minucci, S. and Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer, 6: 38–51, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Bolden, J. E., Peart, M. J., and Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov, 5: 769–784, 2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A.., Marks, P. A., Breslow, R., and Pavletich, N. P., Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 401: 188–1893, 1999.PubMedCrossRefGoogle Scholar
  5. 5.
    Marks, P. A. and Jiang, X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle, 4: 549–551, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Marks, P. A. and Dokmanovic, M. Histone deacetylase inhibitors: Discovery and development as anticancer agents. Expert Opin Investig Drugs 14: 1497–1511, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Lin, R. J., Nagy, L., Inoue, S., Shao, W., Miller, W. H., Jr., and Evans, R. M. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature, 391: 811–814, 1998.PubMedCrossRefGoogle Scholar
  8. 8.
    Marks, P., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T., and Kelly, W. K. Histone deacetylases and cancer: Causes and therapies. Nat Rev Cancer, 1: 194–202, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Mitsiades, N., Mitsiades, C. S., Richardson, P. G., McMullan, C., Poulaki, V., Fanourakis, G., Schlossman, R., Chauhan, D., Munshi, N. C., Hideshima, T., Richon, V. M., Marks, P. A., and Anderson, K. C. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood, 101: 4055–4062, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Sowa, Y., Orita, T., Minamikawa, S., Nakano, K., Mizuno, T., Nomura, H., and Sakai, T. Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem Biophys Res Commun 241: 142–150, 1997.PubMedCrossRefGoogle Scholar
  11. 11.
    Archer, S. Y., Meng, S., Shei, A., and Hodin, R. A. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA, 95: 6791–6796, 1998.PubMedCrossRefGoogle Scholar
  12. 12.
    Sandor, V., Senderowicz, A., Mertins, S., Sackett, D., Sausville, E., Blagosklonny, M. V., and Bates, S. E. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer 83: 817–825, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Burgess, A. J., Pavey, S., Warrener, R., Hunter, L. J., Piva, T. J., Musgrove, E. A., Saunders, N., Parsons, P. G., and Gabrielli, B. G. Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol, 60: 828–837, 2001.PubMedGoogle Scholar
  14. 14.
    Qian, D. Z., Wang, X., Kachhap, S. K., Kato, Y., Wei, Y., Zhang, L., Atadja, P., and Pili, R. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res, 64: 6626–6634, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang, L., Sowa, Y., Sakai, T., and Pardee, A. B. Activation of the p21WAF1/CIP1 promoter independent of p53 by the histone deacetylase inhibitor suberoy-lanilide hydroxamic acid (SAHA) through the Sp1 sites. Oncogene, 19: 5712–5719, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Richon, V. M., Sandhoff, T. W., Rifkind, R. A., and Marks, P. A. Histone deacety-lase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97: 10014–10019, 2000.PubMedCrossRefGoogle Scholar
  17. 17.
    Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J., Poulaki, V., Shringarpure, R., Hideshima, T., Akiyama, M., Chauhan, D., Munshi, N., Gu, X., Bailey, C., Joseph, M., Libermann, T. A., Richon, V. M., Marks, P. A., and Anderson, K. C. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: Biological and clinical implications. Proc Natl Acad Sci USA 101: 540–545, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Fandy, T. E., Shankar, S., Ross, D. D., Sausville, E., and Srivastava, R. K. Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia, 7: 646–657, 2005.PubMedCrossRefGoogle Scholar
  19. 19.
    Kelly, W. K., Richon, V. M., O'Connor, O., Curley, T., MacGregor-Curtelli, B., Tong, W., Klang, M., Schwartz, L., Richardson, S., Rosa, E., Drobnjak, M., Cordon-Cordo, C., Chiao, J. H., Rifkind, R., Marks, P. A., and Scher, H. Phase I clinical trial of histone deacetylase inhibitor: Suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9: 3578–3588, 2003.PubMedGoogle Scholar
  20. 20.
    Kelly, W. K., O'Connor, O. A., Krug, L. M., Chiao, J. H., Heaney, M., Curley, T., MacGregore-Cortelli, B., Tong, W., Secrist, J. P., Schwartz, L., Richardson, S., Chu, E., Olgac, S., Marks, P. A., Scher, H., and Richon, V. M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol, 23: 3923–3931, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Krug, L. M., Curley, T., Schwartz, L., Richardson, S., Marks, P., Chiao, J., and Kelly, W. K. Potential role of histone deacetylase inhibitors in mesothelioma: Clinical experience with suberoylanilide hydroxamic acid. Clin Lung Cancer, 7: 257–261, 2006.PubMedCrossRefGoogle Scholar
  22. 22.
    Duvic, M., Talpur, R., Ni, X., Zhang, C., Hazarika, P., Kelly, C., Chiao, J. H., Reilly, J. F., Ricker, J. L., Richon, V. M., and Frankel, S. R. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood, 109: 31–39, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Remiszewski, S. W., Sambucetti, L. C., Bair, K. W., Bontempo, J., Cesarz, D., Chandramouli, N., Chen, R., Cheung, M., Cornell-Kennon, S., Dean, K., Diamantidis, G., France, D., Green, M. A., Howell, K. L., Kashi, R., Kwon P Lassota, P., Martin, M. S., Mou, Y., Perez, L. B., Sharma, S., Smith, T., Sorensen, E., Taplin, F., Trogani, N., Versace, R., Walker, H., Weltchek-Engler S Wood, A., Wu, A., and Atadja, P. N-hydroxy-3-phenyl-2-propenamides as novel inhibitors of human histone deacetylase with in vivo antitumor activity: Discovery of (2E)-N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)eth yl]amino]methyl]phenyl]-2-propenamide (NVP-LAQ824). J Med Chem 46: 4609–4624, 2003.PubMedCrossRefGoogle Scholar
  24. 24.
    Atadja, P., Gao, L., Kwon, P., Trogani, N., Walker, H., Hsu, M., Yeleswarapu L Chandramouli, N., Perez, L., Versace, R., Wu, A., Sambucetti, L., Lassota P Cohen, D., Bair, K., Wood, A., and Remiszewski, S. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res, 64: 689–695, 2004.PubMedCrossRefGoogle Scholar
  25. 25.
    Fiskus, W., Pranpat, M., Balasis, M., Herger, B., Rao, R., Chinnaiyan, A., Atadja, P., and Bhalla, K. Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Mol Cancer Ther, 5: 3096–3104, 2006.PubMedCrossRefGoogle Scholar
  26. 26.
    Guo, F., Sigua, C., Tao, J., Bali, P., George, P., Li, Y., Wittmann, S., Moscinski, L., Atadja, P., and Bhalla, K. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res, 64: 2580–2589, 2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosato, R. R., Maggio, S. C., Almenara, J. A., Payne, S. G., Atadja, P., Spiegel, S., Dent, P., and Grant, S. The histone deacetylase inhibitor LAQ824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide. Mol Pharmacol, 69: 216–225, 2006.PubMedGoogle Scholar
  28. 28.
    Weisberg, E., Catley, L., Kujawa, J., Atadja, P., Remiszewski, S., Fuerst, P., Cavazza, C., Anderson, K., and Griffin, J. D. Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia, 18: 1951–1963, 2004.PubMedCrossRefGoogle Scholar
  29. 29.
    Catley, L., Weisberg, E., Tai, Y. T., Atadja, P., Remiszewski, S., Hideshima, T., Mitsiades, N., Shringarpure, R., LeBlanc, R., Chauhan, D., Munshi, N., Schlossman, R., Richardson, P., Griffin, J., and Anderson, K. C. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood, 102: 2615–2622, 2003.PubMedCrossRefGoogle Scholar
  30. 30.
    George, P., Bali, P., Annavarapu, S., Scuto, A., Fiskus, W., Guo, F., Sigua, C., Sondarva, G., Moscinski, L., Atadja, P., and Bhalla, K. Combination of the shistone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood, 105: 1768–1776, 2005.PubMedCrossRefGoogle Scholar
  31. 31.
    Fiskus, W., Pranpat, M., Bali, P., Balasis, M., Kumaraswamy, S., Boyapalle, S., Rocha, K., Wu, J., Giles, F., Manley, P. W., Atadja, P., and Bhalla, K. Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells. Blood, 108: 645–652, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Geng, L., Cuneo, K. C., Fu, A., Tu, T., Atadja, P. W., and Hallahan, D. E. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Res, 66: 11298–11304, 2006.PubMedCrossRefGoogle Scholar
  33. 33.
    Yu, C., Friday, B. B., Lai, J. P., McCollum, A., Atadja, P., Roberts, L. R., and Adjei, A. A. Abrogation of MAPK and Akt signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin Cancer Res 13: 1140–1148, 2007.PubMedCrossRefGoogle Scholar
  34. 34.
    Qian, D. Z., Kato, Y., Shabbeer, S., Wei, Y., Verheul, H. M., Salumbides, B., Sanni, T., Atadja, P., and Pili, R. Targeting tumor angiogenesis with histone deacety-lase inhibitors: The hydroxamic acid derivative LBH589. Clin Cancer Re s, 12: 634–642, 2006.PubMedCrossRefGoogle Scholar
  35. 35.
    Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M., and Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100: 4389–4394, 2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Kawaguchi, Y., Kovacs, J. J., McLaurin, A., Vance, J. M., Ito, A., and Yao, T. P. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell, 115: 727–738, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Bali, P., Pranpat, M., Bradner, J., Balasis, M., Fiskus, W., Guo, F., Rocha, K., Kumaraswamy, S., Boyapalle, S., Atadja, P., Seto, E., and Bhalla, K. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: A novel basis of antileukemia activity of histone deacetylase inhibitors. J Biol Chem, 280: 26729–26734, 2005.PubMedCrossRefGoogle Scholar
  38. 38.
    Maiso, P., Carvajal-Vergara, X., Ocio, E. M., Lopez-Perez, R., Mateo, G., Gutierrez, N., Atadja, P., Pandiella, A., and San Miguel, J. F. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res, 66: 5781–5789, 2006.PubMedCrossRefGoogle Scholar
  39. 39.
    Catley, L., Weisberg, E., Kiziltepe, T., Tai, Y. T., Hideshima, T., Neri, P., Tassone, P., Atadja, P., Chauhan, D., Munshi, N. C., and Anderson, K. C. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood, 108: 3441–3449, 2006.PubMedCrossRefGoogle Scholar
  40. 40.
    Furumai, R., Matsuyama, A., Kobashi, N., Lee, K. H., Nishiyama, M., Nakajima, H., Tanaka, A., Komatsu, Y., Nishino, N., Yoshida, M., and Horinouchi, S. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res, 62: 4916–4921, 2002.PubMedGoogle Scholar
  41. 41.
    Rajgolikar, G., Chan, K. K., and Wang, H. C. Effects of a novel antitumor dep-sipeptide, FR901228, on human breast cancer cells. Breast Cancer Res Treat, 51: 29–38, 1998.PubMedCrossRefGoogle Scholar
  42. 42.
    Doi, S., Soda, H., Oka, M., Tsurutani, J., Kitazaki, T., Nakamura, Y., Fukuda, M., Yamada, Y., Kamihira, S., and Kohno, S. The histone deacetylase inhibitor FR901228 induces caspase-dependent apoptosis via the mitochondrial pathway in small cell lung cancer cells. Mol Cancer Ther, 3: 1397–1402, 2004.PubMedGoogle Scholar
  43. 43.
    Zhang, Y., Adachi, M., Zhao, X., Kawamura, R., and Imai, K. Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino-methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int J Cancer, 110: 301–308, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    Sakimura, R., Tanaka, K., Nakatani, F., Matsunobu, T., Li, X., Hanada, M., Okada, T., Nakamura, T., Matsumoto, Y., and Iwamoto, Y. Antitumor effects of histone deacetylase inhibitor on Ewing's family tumors. Int J Cancer, 116: 784–792, 2005.PubMedCrossRefGoogle Scholar
  45. 45.
    Konstantinopoulos, P. A., Vandoros, G. P., and Papavassiliou, A. G. FK228 (depsipeptide): A HDAC inhibitor with pleiotropic antitumor activities. Cancer Chemother Pharmacol 58: 711–715, 2006.PubMedCrossRefGoogle Scholar
  46. 46.
    Kano, Y., Akutsu, M., Tsunoda, S., Izumi, T., Kobayashi, H., Mano, H., and Furukawa, Y. Cytotoxic effects of histone deacetylase inhibitor FK228 (depsipep-tide, formally named FR901228) in combination with conventional anti-leukemia/lymphoma agents against human leukemia/lymphoma cell lines. Invest New Drugs, 25: 31–40, 2007.PubMedCrossRefGoogle Scholar
  47. 47.
    Karam, J. A., Fan, J., Stanfield, J., Richer, E., Benaim, E. A., Frenkel, E., Antich, P., Sagalowsky, A. I., Mason, R. P., and Hsieh, J. T. The use of histone deacetylase inhibitor FK228 and DNA hyspomethylation agent 5-azacytidine in human bladder cancer therapy. Int J Cancer, 120: 1795–1802, 2007.PubMedCrossRefGoogle Scholar
  48. 48.
    Khan, S. B., Maududi, T., Barton, K., Ayers, J., and Alkan, S. Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol, 125: 156–161, 2004.PubMedCrossRefGoogle Scholar
  49. 49.
    Sandor, V., Bakke, S., Robey, R. W., Kang, M. H., Blagosklonny, M. V., Bender, J., Brooks, R., Piekarz, R. L., Tucker, E., Figg, W. D., Chan, K. K., Goldspiel, B., Fojo, A. T., Balcerzak, S. P., and Bates, S. E. Phase I trial of the histone deacety-lase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 8: 718–728, 2002.PubMedGoogle Scholar
  50. 50.
    Marshall, J. L., Rizvi, N., Kauh, J., Dahut, W., Figuera, M., Kang, M. H., Figg, W. D., Wainer, I., Chaissang, C., Li, M. Z., and Hawkins, M. J. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol 2: 325–332, 2002.PubMedCrossRefGoogle Scholar
  51. 51.
    Byrd, J. C., Marcucci, G., Parthun, M. R., Xiao, J. J., Klisovic, R. B., Moran, M., Lin, T. S., Liu, S., Sklenar, A. R., Davis, M. E., Lucas, D. M., Fischer, B., Shank, R., Tejaswi, S. L., Binkley, P., Wright, J., Chan, K. K., and Grever, M. R. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood, 105: 959–967, 2005.PubMedCrossRefGoogle Scholar
  52. 52.
    Robey, R. W., Zhan, Z., Piekarz, R. L., Kayastha, G. L., Fojo, T., and Bates, S. E. Increased MDR1 expression in normal and malignant peripheral blood mono-nuclear cells obtained from patients receiving depsipeptide (FR901228, FK228, NSC630176). Clin Cancer Res 12: 1547–1555, 2006.PubMedCrossRefGoogle Scholar
  53. 53.
    Stadler, W. M., Margolin, K., Ferber, S., McCulloch, W., and Thompson, J. A. A phase II study of depsipeptide in refractory metastatic renal cell cancer. Clin Genitourin Cancer, 5: 57–60, 2006.PubMedCrossRefGoogle Scholar
  54. 54.
    Plumb, J. A., Finn, P. W., Williams, R. J., Bandara, M. J., Romero, M. R., Watkins, C. J., La Thangue, N. B., and Brown, R. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol Cancer Ther, 2: 721–728, 2003.PubMedGoogle Scholar
  55. 55.
    Qian, X., LaRochelle, W. J., Ara, G., Wu, F., Petersen, K. D., Thougaard, A., Sehested, M., Lichenstein, H. S., and Jeffers, M. Activity of PXD101, a histone deacetylase inhibitor, in preclinical ovarian cancer studies. Mol Cancer Ther, 5: 2086–2095, 2006.PubMedCrossRefGoogle Scholar
  56. 56.
    Sullivan, D., Singhal, S., Schuster, M., Berenson, J., Gimsing, P., Wislö, F., Waage, A., Alsina, M., Gerwien, R., Clarke, A., Moller, K., and Ooi, C. E. A phase II study of PXD101 in advanced multiple myeloma. Blood, 108: 1023a, 2006.Google Scholar
  57. 57.
    Suzuki, T., Ando, T., Tsuchiya, K., Fukazawa, N., Saito, A., Mariko, Y., Yamashita, T., and Nakanishi, O. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem, 42: 3001–3003, 1999.PubMedCrossRefGoogle Scholar
  58. 58.
    Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., Ando, T., Suzuki, T., Tsuruo, T., and Nakanishi, O. A synthetic inhibitor of histone deacetylase, MS-27–275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 96: 4592–4597, 1999.PubMedCrossRefGoogle Scholar
  59. 59.
    Jaboin, J., Wild, J., Hamidi, H., Khanna, C., Kim, C. J., Robey, R., Bates, S. E., and Thiele, C. J. MS-27#x0026;ndash;275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62: 6108–6115, 2002.PubMedGoogle Scholar
  60. 60.
    Maggio, S. C., Rosato, R. R., Kramer, L. B., Dai, Y., Rahmani, M., Paik, D. S., Czarnik, A. C., Payne, S. G., Spiegel, S., and Grant, S. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res 64: 2590–2600, 2004.PubMedCrossRefGoogle Scholar
  61. 61.
    Qian, D. Z., Wei, Y. F., Wang, X., Kato, Y., Cheng, L., and Pili, R. Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models. Prostate, 67: 1182–1193, 2007.PubMedCrossRefGoogle Scholar
  62. 62.
    Lucas, D. M., Davis, M. E., Parthun, M. R., Mone, A. P., Kitada, S., Cunningham, K. D., Flax, E. L., Wickham, J., Reed, J. C., Byrd, J. C., and Grever, M. R. The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia, 18: 1207–1214, 2004.PubMedCrossRefGoogle Scholar
  63. 63.
    Miller, C. P., Ban, K., Dujka, M. E., McConkey, D. J., Munsell, M., Palladino, M., and Chandra, J. NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood, 110: 267–277, 2007.PubMedCrossRefGoogle Scholar
  64. 64.
    Gojo, I., Jiemjit, A., Trepel, J. B., Sparreboom, A., Figg, W. D., Rollins, S., Tidwell, M. L., Greer, J., Chung, E. J., Lee, M. J., Gore, S. D., Sausville, E. A., Zwiebel, J., and Karp, J. E. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood, 109: 2781–2790, 2007.PubMedGoogle Scholar
  65. 65.
    Ryan, Q. C., Headlee, D., Acharya, M., Sparreboom, A., Trepel, J. B., Ye, J., Figg, W. D., Hwang, K., Chung, E. J., Murgo, A., Melillo, G., Elsayed, Y., Monga, M., Kalnitskiy, M., Zwiebel, J., and Sausville, E. A. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 23: 3912–3922, 2005.PubMedCrossRefGoogle Scholar
  66. 66.
    Garcia-Mata, R., Gao, Y. S., and Sztul, E. Hassles with taking out the garbage: Aggravating aggresomes. Traffic, 3: 388–396, 2002.PubMedCrossRefGoogle Scholar
  67. 67.
    Hideshima, H., Bradner, J. E., Wong, J., D., C., Richardson, P., Schreiber, S. L., and Anderson, K. C. Small molecule inhibition of proteasome and aggresome function induces synergistic anti-tumor activity in multiple myeloma. Proc Natl Acad Sci USA, 102: 8567–8572, 2005.PubMedCrossRefGoogle Scholar
  68. 68.
    Feng, R., Hager, J. H., Hassig, C. A., Scranton, S. A., Payne, J. E., Mapara, M. Y., Roodman, D., and Lentzsch, S. A novel, mercaptoketone-based HDAC inhibitor, KD5170 exerts marked inhibition of osteoclast formation and anti-Myeloma activity in vitro. Blood, 108: 991a, 2006.Google Scholar
  69. 69.
    Butler, L. M., Webb, Y., Agus, D. B., Higgins, B., Tolentino, T. R., Kutko, M. C., LaQuaglia, M. P., Drobnjak, M., Cordon-Cardo, C., Scher, H. I., Breslow, R., Richon, V. M., Rifkind, R. A., and Marks, P. A. Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. Clin Cancer Res, 7: 962–870, 2001.PubMedGoogle Scholar
  70. 70.
    Kutko, M. C., Glick, R. D., Butler, L. M., Coffey, D. C., Rifkind, R. A., Marks, P. A., Richon, V. M., and LaQuaglia, M. P. Histone deacetylase inhibitors induce growth suppression and cell death in human rhabdomyosarcoma in vitro. Clin Cancer Res, 9: 5749–5755, 2003.PubMedGoogle Scholar
  71. 71.
    LoRusso, P. M., Demchik, L., Foster, B., Knight, J., Bissery, M. C., Polin, L. M., Leopold, W. R., 3rd, and Corbett, T. H. Preclinical antitumor activity of CI-994. Invest New Drugs, 14: 349–356, 1996.PubMedCrossRefGoogle Scholar
  72. 72.
    Graziano, M. J., Pilcher, G. D., Walsh, K. M., Kasali, O. B., and Radulovic, L. Preclinical toxicity of a new oral anticancer drug, CI-994 (acetyldinaline), in rats and dogs. Invest New Drugs, 15: 295–310, 1997.PubMedCrossRefGoogle Scholar
  73. 73.
    Piekarz, R. and Bates, S. A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr Pharm Des 10: 2289–2298, 2004.PubMedCrossRefGoogle Scholar
  74. 74.
    Loprevite, M., Tiseo, M., Grossi, F., Scolaro, T., Semino, C., Pandolfi, A., Favoni, R., and Ardizzoni, A. In vitro study of CI-994, a histone deacetylase inhibitor, in non-small cell lung cancer cell lines. Oncol Res, 15: 39–48, 2005.PubMedGoogle Scholar
  75. 75.
    Yu, C., Rahmani, M., Conrad, D., Subler, M., Dent, P., and Grant, S. The protea-some inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood, 102: 3765–3774, 2003.PubMedCrossRefGoogle Scholar
  76. 76.
    Denlinger, C. E., Keller, M. D., Mayo, M. W., Broad, R. M., and Jones, D. R. Combined proteasome and histone deacetylase inhibition in non-small cell lung cancer. J Thorac Cardiovasc Surg, 127: 1078–1086, 2004.PubMedCrossRefGoogle Scholar
  77. 77.
    Sutheesophon, K., Kobayashi, Y., Takatoku, M. A., Ozawa, K., Kano, Y., Ishii, H., and Furukawa, Y. Histone deacetylase inhibitor depsipeptide (FK228) induces apoptosis in leukemic cells by facilitating mitochondrial translocation of Bax, which is enhanced by the proteasome inhibitor bortezomib. Acta Haematol 115: 78–90, 2006.PubMedCrossRefGoogle Scholar
  78. 78.
    Emanuele, S., Lauricella, M., Carlisi, D., Vassallo, B., D'Anneo, A., Di Fazio, P., Vento, R., and Tesoriere, G. SAHA induces apoptosis in hepatoma cells and syn-ergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis, 12(7): 1327–1338, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Teru Hideshima
    • 1
  1. 1.Department of Medical Oncology, Jerome Lipper Multiple Myeloma CenterDana-Farber Cancer Institute and Harvard Medical SchoolBostonUSA

Personalised recommendations