Advertisement

Epidemiology of Multiple Myeloma

  • Amelia A. Langston
  • Dixil Francis
Part of the Contemporary Hematology book series (CH)

Introduction

multiple myeloma represents about 0.8% of all cancer cases worldwide, with incidence rates ranging from 0.4 to 5 per 100,000 persons in different parts of the world.1 The highest rates of myeloma are observed in Australia, New Zealand, North America, northern and western Europe, while the lowest rates are seen in Asia. Modest increases in both incidence and mortality for myeloma have been observed over the last few decades, without an apparent explanation.1

As with other forms of cancer, there is great interest in the role of environmental, immunologic, and genetic risk factors for myeloma. Unlike some subtypes of leukemia and lymphoma for which environmental and/or infectious risk factors have been clearly defined, there are few generally accepted predisposing insults leading to the development of myeloma. There are anecdotal cases of myeloma occurring in spouses,2, 3, 4, 5, 6 as well as rare reports of community clusters of myeloma cases.7,8These observations imply the...

Keywords

Multiple Myeloma Primary Effusion Lymphoma Familial Melanoma Agricultural Health Study Occupational Radiation Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bray F, Ferlay J, Parkin M, Pisani P. Global Cancer Statistics, 2002. CA A Cancer Journal for Clinicians 2005;55(2).Google Scholar
  2. 2.
    Kyle RA, Greipp PR. Multiple myeloma. Houses and spouses. Cancer 1983;51(4):735–739.PubMedCrossRefGoogle Scholar
  3. 3.
    Kyle RA, Heath CW, Jr., Carbone P. Multiple myeloma in spouses. Archives of Internal Medicine 1971;127(5):944–946.PubMedCrossRefGoogle Scholar
  4. 4.
    Brugiatelli M, Comis M, Iacopino P, et al. Multiple myeloma in husband and wife. Acta Haematologica 1980;64(4):227–229.PubMedCrossRefGoogle Scholar
  5. 5.
    Kanoh T. Multiple myeloma in spouses. European Journal of Haematology 1988;41(4):397.PubMedCrossRefGoogle Scholar
  6. 6.
    Kanoh T, Ohno T, Usui T, Inamoto Y. Multiple myeloma in husband and wife. Nippon Ketsueki Gakkai Zasshi 1989;52(4):763–766.PubMedGoogle Scholar
  7. 7.
    Kyle RA, Finkelstein S, Elveback LR, Kurland LT. Incidence of monoclonal proteins in a Minnesota community with a cluster of multiple myeloma. Blood 1972;40(5):719–724.PubMedGoogle Scholar
  8. 8.
    Ende M. Multiple myeloma: A cluster in Virginia? Virginia Medical 1979; 106(2):115–116.PubMedGoogle Scholar
  9. 9.
    Howe HL, Wu X, Ries LA, et al. Annual report to the nation on the status of cancer, 1975–2003, featuring cancer among U.S.Hispanic/Latino populations. Cancer 2006;107(8):1711–1742.PubMedCrossRefGoogle Scholar
  10. 10.
    Schwartz J. Multinational trends in multiple myeloma. Annals of the New York Academy of Sciences 1990;609:215–224.PubMedCrossRefGoogle Scholar
  11. 11.
    Lewis DR, Pottern LM, Brown LM, et al. Multiple myeloma among blacks and whites in the United States: The role of chronic antigenic stimulation. Cancer Causes Control 1994;5(6):529–539.PubMedCrossRefGoogle Scholar
  12. 12.
    Kyle RA, Therneau TM, Rajkumar SV, et al. Prevalence of monoclonal gam-mopathy of undetermined significance. The New England Journal of Medicine 2006;354(13):1362–1369.PubMedCrossRefGoogle Scholar
  13. 13.
    Cesana C, Klersy C, Barbarano L, et al. Prognostic factors for malignant transformation in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Journal of Clinical Oncology 2002;20(6):1625–1634.PubMedCrossRefGoogle Scholar
  14. 14.
    Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. The New England Journal of Medicine 2002;346(8):564–569.PubMedCrossRefGoogle Scholar
  15. 15.
    Kyle RA, Therneau TM, Rajkumar SV, et al.Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood 2003;102(10):3759–3764.PubMedCrossRefGoogle Scholar
  16. 16.
    Benjamin M, Reddy S, Brawley OW. Myeloma and race: A review of the literature. Cancer Metastasis Reviews 2003;22(1):87–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Francis D. Racial variation in the incidence, mortality, and survival rates of multiple myeloma patients through the eyes of the fundamental theory.2006.Google Scholar
  18. 18.
    Cohen HJ, Crawford J, Rao MK, Pieper CF, Currie MS. Racial differences in the prevalence of monoclonal gammopathy in a community-based sample of the elderly. Erratum in: The American Journal of Medicine 1998;105(5):362.Google Scholar
  19. 19.
    Singh J, Dudley AW, Jr., Kulig KA. Increased incidence of monoclonal gammopa-thy of undetermined significance in blacks and its age-related differences with whites on the basis of a study of 397 men and one woman in a hospital setting. The Journal of Laboratory and Clinical Medicine 1990;116(6):785–789.PubMedGoogle Scholar
  20. 20.
    Schechter GP, Shoff N, Chan C, McManus CD, Hawley HP. The frequency of monoclonalgammopathy of unknown significance in Black and Caucasian veterans in a hospital population.In: Obrams GI, Potter M, eds. Epidemiology and Biology of Multiple Myeloma. New York, N.Y.: Springer; 1991:83–85.Google Scholar
  21. 21.
    Landgren O, Gridley G, Turesson I, et al. Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African American and white veterans in the United States. Blood 2006;107(3):904–906.PubMedCrossRefGoogle Scholar
  22. 22.
    Baris D, Brown LM, Silverman DT, et al. Socioeconomic status and multiple myeloma among US blacks and whites. American Journal of Public Health 2000 ; 90 (8) : 1277–1281.PubMedCrossRefGoogle Scholar
  23. 23.
    Brown LM, Gridley G, Pottern LM, et al. Diet and nutrition as risk factors for multiple myeloma among blacks and whites in the United States. Cancer Causes Control 2001;12(2):117–125.PubMedCrossRefGoogle Scholar
  24. 24.
    Friedman GD, Herrinton LJ. Obesity and multiple myeloma. Cancer Causes Control 1994;5(5):479–483.PubMedCrossRefGoogle Scholar
  25. 25.
    Tavani A, Pregnolato A, Negri E, et al. Diet and risk of lymphoid neoplasms and soft tissue sarcomas. Nutrition and Cancer 1997;27(3):256–260.PubMedCrossRefGoogle Scholar
  26. 26.
    Fernandez E, Chatenoud L, La Vecchia C, Negri E, Franceschi S. Fish consumption and cancer risk. The American Journal of Clinical Nutrition 1999;70(1):85–90.PubMedGoogle Scholar
  27. 27.
    Fritschi L, Ambrosini GL, Kliewer EV, Johnson KC. Dietary fish intake and risk of leukaemia, multiple myeloma, and non-Hodgkin lymphoma. Cancer Epidemiology Biomarkers Prevention 2004;13(4):532–537.Google Scholar
  28. 28.
    Svensson BG, Mikoczy Z, Stromberg U, Hagmar L. Mortality and cancer incidence among Swedish fishermen with a high dietary intake of persistent orga-nochlorine compounds. Scandinavian Journal of Work, Environment & Health 1995;21(2):106–115.Google Scholar
  29. 29.
    Svensson BG, Nilsson A, Jonsson E, Schutz A, Akesson B, Hagmar L. Fish consumption and exposure to persistent organochlorine compounds, mercury, selenium and methylamines among Swedish fishermen. Scandinavian Journal of Work, Environment & Health 1995;21(2):96–105.Google Scholar
  30. 30.
    Heineman EF, Zahm SH, McLaughlin JK, Vaught JB, Hrubec Z. A prospective study of tobacco use and multiple myeloma: Evidence against an association. Cancer Causes Control 1992;3(1):31–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Fernberg P, Odenbro A, Bellocco R, et al. Tobacco use, body mass index, and the risk of leukemia and multiple myeloma: A nationwide cohort study in Sweden. Cancer Research 2007;67(12):5983–5986.PubMedCrossRefGoogle Scholar
  32. 32.
    Adami J, Nyren O, Bergstrom R, et al. Smoking and the risk of leukemia, lym-phoma, and multiple myeloma (Sweden). Cancer Causes Control 1998 ; 9 (1) : 49–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Brown LM, Everett GD, Gibson R, Burmeister LF, Schuman LM, Blair A Smoking and risk of non-Hodgkin ' s lymphoma and multiple myeloma. Cancer Causes Control 1992;3(1):49–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Nieters A, Deeg E, Becker N. Tobacco and alcohol consumption and risk of lym-phoma: Results of a population-based case-control study in Germany. International Journal of Cancer 2006;118(2):422–430.CrossRefGoogle Scholar
  35. 35.
    Nishiyama H, Anderson RE, Ishimaru T, Ishida K, Ii Y, Okabe N. The incidence of malignant lymphoma and multiple myeloma in Hiroshima and Nagasaki atomic bomb survivors, 1945–1965. Cancer 1973;32(6):1301–1309.PubMedCrossRefGoogle Scholar
  36. 36.
    Ichimaru M, Ishimaru T, Mikami M, Matsunaga M. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950–76: relationship to radiation dose absorbed by marrow. Journal of the National Cancer Institute 1982;69(2):323–328.PubMedGoogle Scholar
  37. 37.
    Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III.Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiation Research 1994;137(2 Suppl):S68–S97.PubMedCrossRefGoogle Scholar
  38. 38.
    Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi k. Studies of the mortality of atomic bomb survivours. Report 12, part I.Cancer: 1950–1990. Radiation Research 1996;146(1):1–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Neriishi K, Nakashima E, Suzuki G. Monoclonal gammopathy of undetermined significance in atomic bomb survivors: Incidence and transformation to multiple myeloma. British Journal of Haematology 2003;121(3):405–410.PubMedCrossRefGoogle Scholar
  40. 40.
    Weiss HA, Darby SC, Doll R. Cancer mortality following X-ray treatment for ankylosing spondylitis. International Journal of Cancer 1994;59(3):327–338.CrossRefGoogle Scholar
  41. 41.
    Darby SC, Reeves G, Key T, Doll R, Stovall M. Mortality in a cohort of women given X-ray therapy for metropathia haemorrhagica. International Journal of Cancer 1994;56(6):793–801.CrossRefGoogle Scholar
  42. 42.
    van Kaick G, Dalheimer A, Hornik S, et al. The German Thorotrast study: Recent results and assessment of risks. Radiation Research 1999;152(6 Suppl):S64–S71.CrossRefGoogle Scholar
  43. 43.
    Stebbings JH, Lucas HF, Stehney AF. Mortality from cancersofmajor sitesinfemale radium dial workers. American Journal of Industrial Medicine 1984;5(6):435–459.PubMedCrossRefGoogle Scholar
  44. 44.
    Smith PG, Douglas AJ. Mortality of workers at the Sellafield plant of British Nuclear Fuels. British Medical Journal (Clinical research ed) 1986;293(6551):845–854.PubMedCrossRefGoogle Scholar
  45. 45.
    Gilbert ES, Petersen GR, Buchanan JA. Mortality of workers at the Hanford site: 1945–1981. Health Physics 1989;56(1):11–25.Google Scholar
  46. 46.
    Cardis E, Gilbert ES, Carpenter L, et al. Effects of low doses and low dose rates of external ionizing radiation: Cancer mortality among nuclear industry workers in three countries. Radiation Research 1995;142(2):117–132.PubMedCrossRefGoogle Scholar
  47. 47.
    Cardis E, Vrijheid M, Blettner M, et al. The 15-Country Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry: Estimates of radiation-related cancer risks. Radiation Research 2007;167(4):396–416.PubMedCrossRefGoogle Scholar
  48. 48.
    Douglas AJ, Omar RZ, Smith PG. Cancer mortality and morbidity among workers at the Sellafield plant of British Nuclear Fuels. British Journal of Cancer 1994;70(6):1232–1243.PubMedCrossRefGoogle Scholar
  49. 49.
    Muirhead CR, Goodill AA, Haylock RG, et al. Occupational radiation exposure and mortality: Second analysis of the national registry for radiation workers. Journal of Radiological Protection 1999;19(1):3–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Omar RZ, Barber JA, Smith PG. Cancer mortality and morbidity among plutonium workers at the Sellafield plant of British Nuclear Fuels. British Journal of Cancer 1999;79(7–8):1288–1301.PubMedCrossRefGoogle Scholar
  51. 51.
    Iwasaki T, Murata M, Ohshima S, et al. Second analysis of mortality of nuclear industry workers in Japan, 1986–1997. Radiation Research 2003;159(2):228–238.PubMedCrossRefGoogle Scholar
  52. 52.
    Acquavella J, Olsen G, Cole P, et al. Cancer among farmers: A meta-analysis. Annals of Epidemiology 1998;8(1):64–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Blair A, Zahm SH, Pearce NE, Heineman EF, Fraumeni JF, Jr. Clues to cancer etiology from studies of farmers. Scandinavian Journal of Work, Environment & Health 1992;18(4):209–215.Google Scholar
  54. 54.
    Khuder SA, Mutgi AB.Meta-analyses of multiple myeloma and farming. American Journal of Industrial Medicine 1997;32(5):510–516.PubMedCrossRefGoogle Scholar
  55. 55.
    Alexander DD, Mink PJ, Adami HO, et al. Multiple myeloma: A review of the epi-demiologic literature. International Journal of Cancer 2007;120(Suppl 12):40–61.CrossRefGoogle Scholar
  56. 56.
    Rusiecki JA, De Roos A, Lee WJ, et al. Cancer incidence among pesticide applicators exposed to atrazine in the agricultural health study. Journal of the National Cancer Institute 2004;96(18):1375–1382.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee WJ, Hoppin JA, Blair A, et al. Cancer incidence among pesticide applicators exposed to alachlor in the agricultural health study. American Journal of Epidemiology 2004;159(4):373–380.PubMedCrossRefGoogle Scholar
  58. 58.
    De Roos AJ, Blair A, Rusiecki JA, et al. Cancer incidence among glyphosate-exposed pesticide applicators in the agricultural health study. Environmental Health Perspectives 2005;113(1):49–54.PubMedCrossRefGoogle Scholar
  59. 59.
    Blair A, Sandler DP, Tarone R, et al. Mortality among participants in the agricultural health study. Annals of Epidemiology 2005;15(4):279–285.PubMedCrossRefGoogle Scholar
  60. 60.
    Steenland K, Piacitelli L, Deddens J, Fingerhut M, Chang LI.Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of the National Cancer Institute 1999;91(9):779–786.PubMedCrossRefGoogle Scholar
  61. 61.
    Bertazzi PA, Consonni D, Bachetti S, et al. Health effects of dioxin exposure: A 20-year mortality study. American Journal of Epidemiology 2001;153(11): 1031–1044.PubMedCrossRefGoogle Scholar
  62. 62.
    t Mannetje A, McLean D, Cheng S, Boffetta P, Colin D, Pearce N. Mortality in New Zealand workers exposed to phenoxy herbicides and dioxins. Occupational and Environmental Medicine 2005;62(1):34–40.CrossRefGoogle Scholar
  63. 63.
    Chen R, Seaton A. A meta-analysis of mortality among workers exposed to organic solvents. Occupational Medicine (Oxford, England) 1996;46(5):337–344.PubMedGoogle Scholar
  64. 64.
    Satin KP, Bailey WJ, Newton KL, Ross AY, Wong O. Updated epidemiological study of workers at two California petroleum refineries, 1950–95. Occupational and Environmental Medicine 2002;59(4):248–256.PubMedCrossRefGoogle Scholar
  65. 65.
    Collingwood KW, Raabe GK, Wong O. An updated cohort mortality study of workers at a northeastern United States petroleum refinery. International Archives of Occupational and Environmental Health 1996;68(5):277–288.PubMedCrossRefGoogle Scholar
  66. 66.
    Raabe GK, Collingwood KW, Wong O. An updated mortality study of workers at a petroleum refinery in Beaumont, Texas. American Journal of Industrial Medicine 1998;33(1):61–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Huebner WW, Chen VW, Friedlander BR, et al. Incidence of lymphohaemat-opoietic malignancies in a petrochemical industry cohort: 1983–94 follow up. Occupational and Environmental Medicine 2000;57(9):605–614.PubMedCrossRefGoogle Scholar
  68. 68.
    Huebner WW, Wojcik NC, Rosamilia K, Jorgensen G, Milano CA. Mortality updates (1970–1997) of two refinery/petrochemical plant cohorts at Baton Rouge, Louisiana, and Baytown, Texas. Journal of Occupational and Environmental Medicine/American College of Occupational and Environmental Medicine 2004;46(12):1229–1245.PubMedGoogle Scholar
  69. 69.
    Gun RT, Pratt NL, Griffith EC, Adams GG, Bisby JA, Robinson KL. Update of a prospective study of mortality and cancer incidence in the Australian petroleum industry. Occupational and Environmental Medicine 2004;61(2):150–156.PubMedCrossRefGoogle Scholar
  70. 70.
    Tsai SP, Chen VW, Fox EE, et al. Cancer incidence among refinery and petrochemical employees in Louisiana, 1983–1999. Annals of Epidemiology 2004;14(9):722–730.PubMedCrossRefGoogle Scholar
  71. 71.
    Fordyce EJ, Wang Z, Kahn AR, et al. Risk of cancer among women with AIDS in New York City. AIDS & Public Policy Journal 2000;15(3–4):95–104.Google Scholar
  72. 72.
    Goedert JJ, Cote TR, Virgo P, et al. Spectrum of AIDS-associated malignant disorders. Lancet 1998;351(9119):1833–1839.PubMedCrossRefGoogle Scholar
  73. 73.
    Grulich AE, Li Y, McDonald A, Correll PK, Law MG, Kaldor JM. Rates of non-AIDS-defining cancers in people with HIV infection before and after AIDS diagnosis. AIDS (London, England) 2002;16(8):1155–1161.PubMedCrossRefGoogle Scholar
  74. 74.
    Grulich AE, Wan X, Law MG, Coates M, Kaldor JM. Risk of cancer in people with AIDS. AIDS (London, England) 1999;13(7):839–843.PubMedCrossRefGoogle Scholar
  75. 75.
    Biggar RJ, Kirby KA, Atkinson J, McNeel TS, Engels E. Cancer risk in elderly persons with HIV/AIDS. Journal of Acquired Immune Deficiency Syndromes 2004;36(3):861–868.PubMedCrossRefGoogle Scholar
  76. 76.
    Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi ' s sarcoma. Science (New York, NY) 1994;266(5192):1865–1869.PubMedCrossRefGoogle Scholar
  77. 77.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi ' s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. The New England Journal of Medicine 1995;332(18):1186–1191.PubMedCrossRefGoogle Scholar
  78. 78.
    Memar OM, Rady PL, Tyring SK. Human herpesvirus-8: Detection of novel her-pesvirus-like DNA sequences in Kaposi ' s sarcoma and other lesions. Journal of Molecular Medicine (Berlin, Germany) 1995;73(12):603–609.PubMedCrossRefGoogle Scholar
  79. 79.
    Patel M, Mahlangu J, Patel J, et al. Kaposi sarcoma-associated herpesvirus/human herpesvirus 8 and multiple myeloma in South Africa. Diagnostic Molecular Pathology 2001;10(2):95–99.PubMedCrossRefGoogle Scholar
  80. 80.
    Brander C, Raje N, O'Connor PG, et al. Absence of biologically important Kaposi sarcoma-associated herpesvirus gene products and virus-specific cellular immune responses in multiple myeloma. Blood 2002;100(2):698–700.PubMedCrossRefGoogle Scholar
  81. 81.
    Drabick JJ, Davis BJ, Lichy JH, Flynn J, Byrd JC. Human herpesvirus 8 genome is not found in whole bone marrow core biopsy specimens of patients with plasma cell dyscrasias. Annals of Hematology 2002;81(6):304–307.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhu YX, Li ZH, Voralia M, Stewart AK. Antigenic open reading frames from HHV-8 are present in multiple myeloma patients and normal individuals at similar frequency. Leukemia & Lymphoma 2002;43(2):369–375.CrossRefGoogle Scholar
  83. 83.
    Tedeschi R, Luostarinen T, De Paoli P, et al. Joint Nordic prospective study on human herpesvirus 8 and multiple myeloma risk. British Journal of Cancer 2005;93(7):834–837.PubMedCrossRefGoogle Scholar
  84. 84.
    Cohen HJ, Bernstein RJ, Grufferman S. Role of immune stimulation in the etiology of multiple myeloma: A case control study. American Journal of Hematology 1987;24(2):119–126.PubMedCrossRefGoogle Scholar
  85. 85.
    Linet MS, Harlow SD, McLaughlin JK. A case-control study of multiple myeloma in whites: Chronic antigenic stimulation, occupation, and drug use. Cancer Research 1987;47(11):2978–2981.PubMedGoogle Scholar
  86. 86.
    Koepsell TD, Daling JR, Weiss NS, et al. Antigenic stimulation and the occurrence of multiple myeloma. American Journal of Epidemiology 1987;126(6):1051–1062.PubMedGoogle Scholar
  87. 87.
    Gramenzi A, Buttino I, D ' Avanzo B, Negri E, Franceschi S, La Vecchia C. Medical history and the risk of multiple myeloma. British Journal of Cancer 1991;63(5):769–772.PubMedCrossRefGoogle Scholar
  88. 88.
    Landgren O, Rapkin JS, Mellemkjaer L, Gridley G, Goldin LR, Engels EA. Respiratory tract infections in the pathway to multiple myeloma: A population-based study in Scandinavia. Haematologica 2006;91(12):1697–1700.PubMedGoogle Scholar
  89. 89.
    Brown LM, Linet MS, Greenberg RS, et al. Multiple myeloma and family history of cancer among blacks and whites in the U.S. Cancer 1999;85(11):2385–2390.PubMedCrossRefGoogle Scholar
  90. 90.
    Bourguet CC, Grufferman S, Delzell E, DeLong ER, Cohen HJ. Multiple myeloma and family history of cancer. A case-control study. Cancer 1985;56(8):2133–2139.PubMedCrossRefGoogle Scholar
  91. 91.
    Eriksson M, Hallberg B. Familial occurrence of hematologic malignancies and other diseases in multiple myeloma: A case-control study. Cancer Causes Control 1992;3(1):63–67.PubMedCrossRefGoogle Scholar
  92. 92.
    Dong C, Hemminki K. Second primary neoplasms among 53 159 haematolym-phoproliferative malignancy patients in Sweden, 1958–1996: A search for common mechanisms. British Journal of Cancer 2001;85(7):997–1005.PubMedCrossRefGoogle Scholar
  93. 93.
    Landgren O, Linet MS, McMaster ML, Gridley G, Hemminki K, Goldin LR. Familial characteristics of autoimmune and hematologic disorders in 8,406 multiple myeloma patients: A population-based case-control study. International Journal of Cancer 2006;118(12):3095–3098.CrossRefGoogle Scholar
  94. 94.
    Paltiel O, Schmit T, Adler B, et al. The incidence of lymphoma in first-degree relatives of patients with Hodgkin disease and non-Hodgkin lymphoma: Results and limitations of a registry-linked study. Cancer 2000;88(10):2357–2366.PubMedCrossRefGoogle Scholar
  95. 95.
    Grosbois B, Jego P, Attal M, et al. Familial multiple myeloma: Report of fifteen families. British Journal of Haematology 1999;105(3):768–770.PubMedCrossRefGoogle Scholar
  96. 96.
    Cutting RJ, Snowden JA. Myeloma in monozygotic twin. British Journal of Haematology 2006 ; 134 (6) : 646.PubMedCrossRefGoogle Scholar
  97. 97.
    Judson IR, Wiltshaw E, Newland AC. Multiple myeloma in a pair of monozygotic twins: The first reported case. British Journal of Haematology 1985;60(3):551–554.PubMedCrossRefGoogle Scholar
  98. 98.
    Ogawa M, Wurster DH, McIntyre OR. Multiple myeloma in one of a pair of monozygotic twins. Acta Haematologica 1970;44(5):295–304.PubMedCrossRefGoogle Scholar
  99. 99.
    Jeannet M, Magnin C.HL-A antigens in haematological malignant diseases. European Journal of Clinical Investigation 1971;2(1):39–42.PubMedCrossRefGoogle Scholar
  100. 100.
    Bertrams J, Kuwert E, Bohme U, et al.HL-A antigens in Hodgkin's disease and multiple myeloma. Increased frequency of W18 in both diseases. Tissue Antigens 1972;2(1):41–46.PubMedCrossRefGoogle Scholar
  101. 101.
    Smith G, Walford RL, Fishkin B, Carter PK, Tanaka K.HL-A phenotypes, immunoglobulins and K and L chains in multiple myeloma. Tissue Antigens 1974;4(4):374–377.PubMedGoogle Scholar
  102. 102.
    Mason DY, Cullen P.HL-A antigen frequencies in myeloma. Tissue Antigens 1975;5(4):238–245.PubMedCrossRefGoogle Scholar
  103. 103.
    Saleun JP, Youinou P, Le Goff P, Le Menn G, Morin JF. HLA antigens and monoclonal gammopathy. Tissue Antigens 1979;13(3):233–235.PubMedCrossRefGoogle Scholar
  104. 104.
    Leech SH, Bryan CF, Elston RC, Rainey J, Bickers JN, Pelias MZ. Genetic studies in multiple myeloma.1. Association with HLA-Cw5. Cancer 1983;51(8):1408–1411.PubMedCrossRefGoogle Scholar
  105. 105.
    Pottern LM, Gart JJ, Nam JM, et al. HLA and multiple myeloma among black and white men: Evidence of a genetic association. Cancer Epidemiology Biomarkers Prevention 1992;1(3):177–182.Google Scholar
  106. 106.
    Lynch HT, Sanger WG, Pirruccello S, Quinn-Laquer B, Weisenburger DD Familial multiple myeloma: A family study and review of the literature. Journal of the National Cancer Institute 2001;93(19):1479–1483.PubMedCrossRefGoogle Scholar
  107. 107.
    Shoenfeld Y, Berliner S, Shaklai M, Gallant LA, Pinkhas J. Familial multiple myeloma. A review of thirty-seven families. Postgraduate Medical Journal 1982;58(675):12–16.PubMedCrossRefGoogle Scholar
  108. 108.
    Lynch HT, Watson P, Tarantolo S, et al. Phenotypic heterogeneity in multiple myeloma families. Journal of Clinical Oncology 2005;23(4):685–693.PubMedCrossRefGoogle Scholar
  109. 109.
    Deshpande HA, Hu XP, Marino P, Jan NA, Wiernik PH. Anticipation in familial plasma cell dyscrasias. British Journal of Haematology 1998;103(3):696–703.CrossRefGoogle Scholar
  110. 110.
    Sobol H, V e y N Sauvan R, Philip N, Noguchi T, Eisinger F.Re: Familial multiple myeloma: A family study and review of the literature. Journal of the National Cancer Institute 2002;94(6):461–462; author reply 3.PubMedGoogle Scholar
  111. 111.
    Struewing JP, Hartge P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. The New England Journal of Medicine 1997;336(20):1401–1408.PubMedCrossRefGoogle Scholar
  112. 112.
    Dilworth D, Liu L, Stewart AK, Berenson JR, Lassam N, Hogg D. Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood 2000;95(5):1869–1871.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Amelia A. Langston
    • 1
  • Dixil Francis
    • 1
  1. 1.Winship Cancer InstituteEmory University School of MedicineAtlantaUSA

Personalised recommendations