Advertisement

The Role of Bortezomib in the Treatment of Relapsed and Refractory Multiple Myeloma

  • Paul G. Richardson
  • Constantine S. Mitsiades
  • Robert Schlossman
  • Teru Hideshima
  • Irene Ghobrial
  • Nikhil C. Munshi
  • Kenneth C. Anderson
Part of the Contemporary Hematology book series (CH)

Introduction

Relapsed and refractory multiple myeloma (MM) represents an unmet medical need in the management of this disease. Relapsed and refractory MM is defined as patients who achieve minor response or better followed by progression or relapse and then progress on salvage therapy, or experience progression within 60 days of their last therapy.1, 2, 3, 4 Historically, in the prethalidomide/preb-ortezomib era, median overall survival (OS) of relapsed and refractory MM has been short at 6–9 months, while responses to salvage regimens were of the order of few weeks to several months. 4While comprehensive prognostic systems have been proposed for newly diagnosed MM, the identification and prospective validation of similar prognostic systems in the setting of relapsed and refractory MM are not as well developed. Nonetheless, patients with MM with chromosomal translocations t(4;14) or t(14;16), deletion of chromosomes 17 or 13, high β2 microglobulin, thrombocytopenia, and low serum...

Keywords

Overall Survival Multiple Myeloma Overall Response Rate Liposomal Doxorubicin Apex Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kane RC, Farrell AT, Sridhara R, Pazdur R. United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 2006; 12(10):2955–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Kane RC, Bross PF, Farrell AT, Pazdur R. Velcade: USFDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 2003; 8(6): 508–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Bross PF, Kane R, Farrell AT, et al. Approval summary for bortezomib for injection in the treatment of multiple myeloma. Clin Cancer Res 2004; 10(12 Pt 1): 3954–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Kumar SK, Therneau TM, Gertz MA, et al. Clinical course of patients with relapsed multiple myeloma. Mayo Clin Proc 2004; 79(7): 867–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Richardson PG, Mitsiades C, Schlossman R, Munshi N, Anderson K. New drugs for myeloma. Oncologist 2007; 12(6): 664–89.PubMedCrossRefGoogle Scholar
  6. 6.
    Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994; 79(1): 13–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Adams J, Behnke M, Chen S, et al. Potent and selective inhibitors of the protea-some: dipeptidyl boronic acids. Bioorg Med Chem Lett 1998; 8(4): 333–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Adams J, Palombella VJ, Elliott PJ. Proteasome inhibition: a new strategy in cancer treatment. Invest New Drugs 2000; 18(2): 109–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59(11): 2615–22.PubMedGoogle Scholar
  10. 10.
    Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 1999; 5(9): 2638–45.PubMedGoogle Scholar
  11. 11.
    Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61(7): 3071–6.PubMedGoogle Scholar
  12. 12.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002; 99(11): 4079–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4(5): 349–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Adams J. Development of the proteasome inhibitor PS-341. Oncologist 2002; 7(1): 9–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004; 5(5): 417–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Voorhees PM, Dees EC, O'Neil B, Orlowski RZ. The proteasome as a target for cancer therapy. Clin Cancer Res 2003; 9(17): 6316–25.PubMedGoogle Scholar
  17. 17.
    Hideshima T, Chauhan D, Hayashi T, et al. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 2003; 22(52): 8386–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101(4): 1530–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Mitsiades CS, Treon SP, Mitsiades N, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001; 98(3): 795–804.PubMedCrossRefGoogle Scholar
  20. 20.
    Ma MH, Yang HH, Parker K, et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 2003; 9(3): 1136–44.PubMedGoogle Scholar
  21. 21.
    Mitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003; 101(6): 2377–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Orlowski RZ, Stinchcombe TE, Mitchell BS, et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002; 20(22): 4420–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348(26): 2609–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Jagannath S, Barlogie B, Berenson J, et al. A phase 2 study of two doses of bort-ezomib in relapsed or refractory myeloma. Br J Haematol 2004; 127(2): 165–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexam-ethasone for relapsed multiple myeloma. N Engl J Med 2005; 352(24): 2487–98.PubMedCrossRefGoogle Scholar
  26. 26.
    Richardson P, Sonneveld P, Schuster M, et al. Bortezomib continues to demonstrate superior efficacy compared with high-dose dexamethasone in relapsed multiple myeloma: updated results of the APEX trial. Blood 2005; 106(11): 715A–6A.Google Scholar
  27. 27.
    Richardson PG, Briemberg H, Jagannath S, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 2006; 24(19): 3113–20.PubMedCrossRefGoogle Scholar
  28. 28.
    San Miguel JF, Richardson P, Sonneveld P, et al. Frequency, characteristics, and reversibility of peripheral neuropathy (PN) in the APEX trial. Blood 2005; 106(11): 111A.Google Scholar
  29. 29.
    Richardson P, Schlossman R, Munshi N, et al. A phase 1 trial of lenalidomide (REVLIMID (R)) with bortezomib (VELCADE (R)) in relapsed and refractory multiple myeloma. Blood 2005; 106(11): 110A–1A.Google Scholar
  30. 30.
    Richardson P. Jagannath S. Avigan DE, et al. Lenalidomide plus bortezomib (Rev-Vel) in relapsed and/or refractory multiple myeloma (MM): final results of a multicenter phase 1 trial Annual Meeting of the American Society of Hematology, Blood 2006; 108: 405.CrossRefGoogle Scholar
  31. 31.
    Oakervee HE, Popat R, Curry N, et al. PAD combination therapy (PS-341/bort-ezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 2005; 129(6): 755–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Lonial S, Waller EK, Richardson PG, et al. Risk factors and kinetics of thrombo-cytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 2005; 106(12): 3777–84.PubMedCrossRefGoogle Scholar
  33. 33.
    Lonial S, Richardson P, Sonneveld P, et al. Hematologic profiles in the phase 3 APEX trial. Blood 2005; 106(11): 970A.Google Scholar
  34. 34.
    Berenson JR, Jagannath S, Barlogie B, et al. Safety of prolonged therapy with bort-ezomib in relapsed or refractory multiple myeloma. Cancer 2005 ; 104 (10) : 2141–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Biehn SE, Moore DT, Voorhees PM, et al. Extended follow-up of outcome measures in multiple myeloma patients treated on a phase I study with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 2007; 86(3): 211–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Friedman J, Al-Zoubi A, Kaminski M, Kendall T, Jakubowiak A. A new model predicting at least a very good partial response in patients with multiple myeloma after 2 cycles of velcade-based therapy. Haematologica 2006; 91: 273. Abstract P.0741Google Scholar
  37. 37.
    Hollmig K, Stover J, Talamo G, et al. Bortezomib (VelcadeTM) plus Adriamycin TM plus thalidomide plus dexamethasone (VATD) as an effective regimen in patients with refractory or relapsed multiple myeloma (MM). Blood 2004; 104(11): 659A.Google Scholar
  38. 38.
    Jakubowiak AJ, Brackett L Kendall T, Friedman J, Kaminski MS. Combination therapy with velcade, doxil, and dexamethasone (VDD) for patients with relapsed/refractory multiple myeloma (MM). Blood 2005; 106(11): 378B.Google Scholar
  39. 39.
    Leoni F, Casini C, Breschi C, et al. Low dose bortezomib, dexamethasone, thalidomide plus liposomal doxorubicin in relapsed and refractory myeloma. Haematologica 2006; 9(s1): 281.Google Scholar
  40. 40.
    Orlowski RZ, Voorhees PM, Garcia RA, et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2005; 105(8): 3058–65.PubMedCrossRefGoogle Scholar
  41. 41.
    Padmanabhan S, Miller K, Musiel L, et al. Bortezomib (Velcade) in combination with liposomal doxorubicin (Doxil) and thalidomide is an active salvage regimen in patients with relapsed or refractory multiple myeloma: final results of a phase II trial. Haematologica 2006; 91(s1): 277.Google Scholar
  42. 42.
    Orlowski RZ, Zhuang SH, Parekh T, Xiu L, Harousseau JL. The combination of pegylated liposomal doxorubicin and bortezomib significantly improves time to progression of patients with relapsed/refractory multiple myeloma compared with bortezomib alone: results from a planned interim analysis of a randomized phase III study. Blood 2006; 108(11): 124A.Google Scholar
  43. 43.
    Berenson JR, Yang HH, Sadler K, et al. Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 2006; 24(6): 937–44.PubMedCrossRefGoogle Scholar
  44. 44.
    Palumbo A, Ambrosini MT, Benevolo G, et al. Bortezomib, melphalan, prednisone and thalidomide for relapsed multiple myeloma. Blood 2006; 108: 3560.CrossRefGoogle Scholar
  45. 45.
    Popat R, Oakervee HE, Foot N, et al. A phase I/II study of bortezomib and low dose intravenous melphalan (BM) for relapsed multiple myeloma. Blood 2005; 106(11): 718A.Google Scholar
  46. 46.
    Terpos E, Anagnostopoulos A, Heath D, et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide (VMDT) is an effective regimen for relapsed/refractory myeloma and reduces serum levels of Dickkopf-1, RANKL, MIP-1 alpha and angiogenic cytokines. Blood 2006; 108(11): 1010A–1A.Google Scholar
  47. 47.
    Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96(9): 2943–50.PubMedGoogle Scholar
  48. 48.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced by immu-nomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002; 99(12): 4525–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Zangari M, Barlogie B, Burns MJ, et al. Velcade (V)-thalidomide (T)-dexamethasone (D) for advanced and refractory multiple myeloma (MM): long-term follow-up of phase I-II trial UARK 2001–37: superior outcome in patients with normal cytoge-netics and no prior T. Blood 2005; 106(11): 717A.Google Scholar
  50. 50.
    Terpos E, Anagnostopoulos A, Kastritis E, et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide (VMDT) is an effective treatment for relapsed/refractory myeloma: results of a phase II clinical trial. Blood 2005; 106(11): 110A.Google Scholar
  51. 51.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99(22): 14374–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006; 107(3): 1092–100.PubMedCrossRefGoogle Scholar
  53. 53.
    Richardson PG, Chanan-Khan AA, Alsina M, et al. Safety and activity of KOS-953 in patients with relapsed refractory multiple myeloma (MM): interim results of a phase 1 trial. Blood 2005; 106(11): 109a.Google Scholar
  54. 54.
    Richardson P, Chanan-Khan A, Lonial S, et-al. A multicenter phase 1 clinical trial of tanespimycin (KOS-953) + bortezomib (BZ): encouraging activity and manageable toxicity in heavily pre-treated patients with relapsed refractory multiple myeloma (MM). In: Annual Meeting of the American Society of Hematology; 2006; Orlando FL.Google Scholar
  55. 55.
    Mateos MV, Hernandez JM, Hernandez MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multi-center phase 1/2 study. Blood 2006; 108(7): 2165–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Hrusovsky I, Heidtmann HH. Combination therapy of bortezomib with low-dose bendamustine in elderly patients with advanced multiple myeloma. Blood 2005; 106(11): 363B–B.Google Scholar
  57. 57.
    Richardson PG, Sonneveld P, Schuster MW, et al. Safety and efficacy of bort-ezomib in high-risk and elderly patients with relapsed myeloma. J Clin Oncology 2005; 23(16): 568S.Google Scholar
  58. 58.
    Richardson PG, Barlogie B, Berenson J, et al. Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. Blood 2005; 106(9): 2977–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Jagannath S, Richardson PG, Sonneveld P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 2007; 21(1): 151–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Drach J, Kuenburg E, Sagaster V, et al. Short survival, despite promising response rates, after bortezomib treatment of multiple myeloma patients with a 13q-deletion. Blood 2005; 106(11): 152A.Google Scholar
  61. 61.
    Drach J, Sagaster V, Odelga V, et al. Amplification of 1q21 is associated with poor outcome after treatment with bortezomib in relapsed/refractory multiple myeloma. Blood 2006; 108(11): 970A–1A.Google Scholar
  62. 62.
    Kropff MH, Bisping G, Wenning D, et al. Bortezomib in combination with dexamethasone for relapsed multiple myeloma. Leuk Res 2005; 29(5): 587–90.PubMedCrossRefGoogle Scholar
  63. 63.
    Chang H, Trieu Y, Qi X, Xu W, Stewart KA, Reece D. Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res 2007; 31(6): 779–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Zangari M, Yaccoby S, Cavallo F, Esseltine D, Tricot G. Response to bortezomib and activation of osteoblasts in multiple myeloma. Clin Lymphoma Myeloma 2006; 7(2): 109–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Knudsen LM, Hippe E, Hjorth M, Holmberg E, Westin J. Renal function in newly diagnosed multiple myeloma—a demographic study of 1353 patients. The Nordic Myeloma Study Group. Eur J Haematol 1994; 53(4): 207–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Knudsen LM, Hjorth M, Hippe E. Renal failure in multiple myeloma: reversibility and impact on the prognosis. Nordic Myeloma Study Group. Eur J Haematol 2000; 65(3): 175–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Jagannath S, Barlogie B, Berenson JR, et al. Bortezomib in recurrent and/or refractory multiple myeloma. Cancer 2005; 103(6): 1195–200.PubMedCrossRefGoogle Scholar
  68. 68.
    Mulkerin D, Remick S, Ramanathan R, et al. A dose-escalating and pharmacologic study of bortezomib in adult cancer patients with impaired renal function. J Clin Oncol 2006; 24(18): 87S.Google Scholar
  69. 69.
    Chanan-Khan A, Kaufman J, Mehta J et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 2007; 109(6): 2604–6.CrossRefGoogle Scholar
  70. 70.
    Mohrbacher A, Levine AM. Reversal of advanced renal dysfunction on bortezomib treatment in multiple myeloma patients. J Clin Oncol 2005; 23(16): 612S.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul G. Richardson
    • 1
  • Constantine S. Mitsiades
    • 1
  • Robert Schlossman
    • 1
  • Teru Hideshima
    • 2
  • Irene Ghobrial
    • 1
  • Nikhil C. Munshi
    • 1
  • Kenneth C. Anderson
    • 3
  1. 1.Dana-Farber Cancer InstituteBostonUSA
  2. 2.Department of Medical Oncology, Jerome Lipper Multiple Myeloma CenterDana-Farber Cancer Institute and Harvard Medical SchoolBostonUSA
  3. 3.Department of Medical OncologyDana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA

Personalised recommendations