Immunobiology and Immunotherapy of Multiple Myeloma

  • Madhav V. Dhodapkar
Part of the Contemporary Hematology book series (CH)

Clinical Heterogeneity of Myeloma

Multiple myeloma (MM) is a common B-cell malignancy characterized by clonal expansion of transformed plasma cells in the bone marrow.1 Natural history of MM is characterized by disease progression, and the development of anemia, lytic bone disease, and infections. However, although clonal expansion of transformed plasma cells is an essential prerequisite for the development of MM, the most common clinical outcome of such expansions in vivo in humans is not MM, but the development of monoclonal gammopathy of undetermined significance (MGUS). MGUS has been estimated to occur in up to 1–3% of the elderly population, and is commonly viewed as a pre-neoplastic state. However, most patients with MGUS will generally remain stable throughout their life, and only a small proportion (estimated at about 1% per year) will develop MM.2Another clinically distinct subset is patients with asymptomatic MM, who also have a relatively indolent course, but much higher...


Natural Killer Cell Multiple Myeloma Myeloma Cell Immune Escape Autologous Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



MVD was supported in part by funds from the National Institutes of Health, Dana Foundation, and Damon Runyon Cancer Research Fund.


  1. 1.
    Mitsiades CS, Mitsiades N, Munshi NC, Anderson KC. Focus on multiple myeloma. Cancer Cell 2004;6(5):439–44.PubMedGoogle Scholar
  2. 2.
    Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 2002;346(8):564–9.PubMedGoogle Scholar
  3. 3.
    Kyle RA, Remstein ED, Therneau TM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med 2007;356(25):2582–90.PubMedGoogle Scholar
  4. 4.
    Zhan F, Hardin J, Kordsmeier B, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002;99(5):1745–57.PubMedGoogle Scholar
  5. 5.
    Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004;64(4):1546–58.PubMedGoogle Scholar
  6. 6.
    Munshi NC. Immunoregulatory mechanisms in multiple myeloma. Hematol Oncol Clin North Am 1997;11(1):51–69.PubMedGoogle Scholar
  7. 7.
    Boon T, Van Der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med 1996;183:725–9.PubMedGoogle Scholar
  8. 8.
    Gilboa E. The makings of a tumor rejection antigen. Immunity 1999;11(3):263–70.PubMedGoogle Scholar
  9. 9.
    Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003;21:807–39.PubMedGoogle Scholar
  10. 10.
    Houghton AN, Gold JS, Blachere NE. Immunity against cancer: lessons learned from melanoma. Curr Opin Immunol 2001;13(2):134–40.PubMedGoogle Scholar
  11. 11.
    Houghton AN. Cancer antigens: immune recognition of self and altered self. J Exp Med 1994;180:1–4.PubMedGoogle Scholar
  12. 12.
    Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006;314(5797):268–74.PubMedGoogle Scholar
  13. 13.
    Sogn JA. Tumor immunology: the glass is half full. Immunity 1998;9(6):757–63.PubMedGoogle Scholar
  14. 14.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3(11):991–8.PubMedGoogle Scholar
  15. 15.
    Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes?. Curr Opin Immunol 2007;19(2):203–8.PubMedGoogle Scholar
  16. 16.
    Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000;74:181–273.PubMedGoogle Scholar
  17. 17.
    Zinkernagel RM. Immunity against solid tumors?. Int J Cancer 2001;93(1):1–5.PubMedGoogle Scholar
  18. 18.
    Pardoll D. T cells and tumors. Nature 2001;411:1010–2.PubMedGoogle Scholar
  19. 19.
    Huang AYC, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994;264:961–5.PubMedGoogle Scholar
  20. 20.
    Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001;19:47–64.PubMedGoogle Scholar
  21. 21.
    Ochsenbein A, Sierro S, Odermatt B, et al. Roles of tumor localization, second signals and cross priming in cytotoxic T cell induction. Nature 2001;411:1058–64.PubMedGoogle Scholar
  22. 22.
    Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106(3):255–8.PubMedGoogle Scholar
  23. 23.
    Hawiger D, Inaba K, Dorsett Y, et al. Dendritic cells induce peripheral T cell unrespon-siveness under steady state conditions in vivo. J Exp Med 2001;194(6):769–79.PubMedGoogle Scholar
  24. 24.
    Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 2002;196(8):1091–7.PubMedGoogle Scholar
  25. 25.
    Sotomayor EM, Borrello I, Rattis FM, et al. Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 2001;98(4):1070–7.PubMedGoogle Scholar
  26. 26.
    Staveley-O'Carroll K, Sotomayor E, Montgomery J, et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci 1998;95:1178–93.PubMedGoogle Scholar
  27. 27.
    Hanson HL, Donermeyer DL, Ikeda H, et al. Eradication of established tumors by CD8 + T cell adoptive immunotherapy. Immunity 2000;13(2):265–76.PubMedGoogle Scholar
  28. 28.
    Gilboa E. How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 1999;48(7):382–5.PubMedGoogle Scholar
  29. 29.
    Herber DL, Nagaraj S, Djeu JY, Gabrilovich DI. Mechanism and therapeutic reversal of immune suppression in cancer. Cancer Res 2007;67(11):5067–9.PubMedGoogle Scholar
  30. 30.
    Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 2004;16(2):157–62.PubMedGoogle Scholar
  31. 31.
    Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001;1(1):46–54.PubMedGoogle Scholar
  32. 32.
    Dhodapkar MV. Harnessing host immune responses to preneoplasia: promise and challenges. Cancer Immunol Immunother 2005;54(5):409–13.PubMedGoogle Scholar
  33. 33.
    Serra HM, Mant MJ, Ruether BA, Ledbetter JA, Pilarski LM. Selective loss of CD4 + CD45R + T cells in peripheral blood of multiple myeloma patients. J Clin Immunol 1988;8(4):259–65.PubMedGoogle Scholar
  34. 34.
    San Miguel JF, Garcia-Sanchez R, Gonzales A. Lymphoid subsets and prognostic factors in multiple myeloma. Br J Hem 1992;80:305–9.Google Scholar
  35. 35.
    Kay N, Leong T, Kyle RA, et al. Altered T cell repertoire usage in CD4 and CD8 subsets of multiple myeloma patients, a Study of the Eastern Cooperative Oncology Group (E9487). Leuk Lymphoma 1999;33(1–2):127–33.PubMedGoogle Scholar
  36. 36.
    Kay NE, Leong TL, Bone N, et al. Blood levels of immune cells predict survival in myeloma patients: results of an Eastern Cooperative Oncology Group phase 3 trial for newly diagnosed multiple myeloma patients. Blood 2001;98(1):23–8.PubMedGoogle Scholar
  37. 37.
    Kay NE, Leong T, Bone N, et al. T-helper phenotypes in the blood of myeloma patients on ECOG phase III trials E9486/E3A93. Br J Haematol 1998;100(3):459–63.PubMedGoogle Scholar
  38. 38.
    Brown R, Murray A, Pope B, et al. B7 + T cells in myeloma: an acquired marker of prior chronic antigen presentation. Leuk Lymphoma 2004;45(2):363–71.PubMedGoogle Scholar
  39. 39.
    Yi Q, Dabadgao S, Osterborg A, Bergenbrant S, Holm G. Myeloma bone marrow plasma cells: evidence for their capacity as antigen presenting cells. Blood 1997;5:1960–7.Google Scholar
  40. 40.
    Dhodapkar MV, Krasovsky J, Olson K. T cells from the tumor microenvironment of patients with progressive myeloma can generate strong tumor specific cyto-lytic responses to autologous tumor loaded dendritic cells. Proc Natl Acad Sci 2002;99:13009–13.PubMedGoogle Scholar
  41. 41.
    Brander C, Raje N, O'Connor PG, et al. Absence of biologically important Kaposi sarcoma-associated herpesvirus gene products and virus-specific cellular immune responses in multiple myeloma. Blood 2002;100(2):698–700.PubMedGoogle Scholar
  42. 42.
    Maecker B, Anderson KS, von Bergwelt-Baildon MS, et al. Viral antigen-specific CD8 + T-cell responses are impaired in multiple myeloma. Br J Haematol 2003;121(6):842–8.PubMedGoogle Scholar
  43. 43.
    Massaia M, Attisano C, Peola S, et al. Rapid generation of antiplasma cell activity in the bone marrow of myeloma patients by CD3-activated T cells. Blood 1993;82(6):1787–97.PubMedGoogle Scholar
  44. 44.
    Paglieroni TG, MacKenzie MR. In vitro cytotoxic response to human myeloma plasma cells by peripheral blood leukocytes from patients with multiple myeloma and benign monoclonal gammopathy. Blood 1979;54:226–37.PubMedGoogle Scholar
  45. 45.
    Bianchi A, Mariani S, Beggiato E, et al. Distribution of T-cell signalling molecules in human myeloma. Br J Haematol 1997;97(4):815–20.PubMedGoogle Scholar
  46. 46.
    Massaia M, Borrione P, Attisano C, et al. Dysregulated Fas and Bcl-2 expression leading to enhanced apoptosis in T cells of multiple myeloma patients. Blood 1995;85(12):3679–87.PubMedGoogle Scholar
  47. 47.
    Osterborg A, Henriksson L, Mellstedt H. Idiotype immunity (natural and vaccine-induced) in early stage multiple myeloma. Acta Oncol 2000;39(7):797–800.PubMedGoogle Scholar
  48. 48.
    Osterborg A, Yi Q, Bergenbrant S, Holm G, Lefvert AK, Mellstedt H. Idiotype-specific T cells in multiple myeloma stage I:an evaluation by four different functional tests. Br J Haematol 1995;89(1):110–6.PubMedGoogle Scholar
  49. 49 Wen.
    49 Wen T Mellstedt H, Jondal M. Presence of clonal T cell populations in chronic B lymphocytic leukemia and smoldering myeloma. J Exp Med 1990;171(3):659–66.Google Scholar
  50. 50.
    Wen YJ, Barlogie B, Yi Q. Idiotype-specific cytotoxic T lymphocytes in multiple myeloma:evidence for their capacity to lyse autologous primary tumor cells. Blood 2001;97(6):1750–5.PubMedGoogle Scholar
  51. 51.
    Osterborg A, Masucci M, Bergenbrant S, Holm G, Lefvert AK, Mellstedt H. Generation of T cell clones binding F(ab')2 fragments of the idiotypic immu-noglobulin in patients with monoclonal gammopathy. Cancer Immunol Immunother 1991;34(3):157–62.PubMedGoogle Scholar
  52. 52.
    Yi Q, Osterborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK. Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood 1995;86 (8):3043–9.PubMedGoogle Scholar
  53. 53.
    Li Y, Bendandi M, Deng Y, et al. Tumor-specific recognition of human myeloma cells by idiotype-induced CD8(+) T cells. Blood 2000;96(8):2828–33.PubMedGoogle Scholar
  54. 54.
    Lim SH, Badros A, Lue C, Barlogie B. Distinct T-cell clonal expansion in the vicinity of tumor cells in plasmacytoma. Cancer 2001;91(5):900–8.PubMedGoogle Scholar
  55. 55.
    Halapi E, Werner A, Wahlstrom J, et al. T cell repertoire in patients with multiple myeloma and monoclonal gammopathy of undetermined significance:clonal CD8 + T cell expansions are found preferentially in patients with a low tumor burden. Eur J Immunol 1997;27(9):2245–52.PubMedGoogle Scholar
  56. 56.
    Yi Q, Eriksson I, He W, Holm G, Mellstedt H, Osterborg A. Idiotype-specific T lymphocytes in monoclonal gammopathies:evidence for the presence of CD4 + and CD8 + subsets. Br J Haematol 1997;96(2):338–45.PubMedGoogle Scholar
  57. 57.
    Romero P, Cerottini JC, Waanders GA. Novel methods to monitor antigen-specific cytotoxic T-cell responses in cancer immunotherapy. Mol Med Today 1998;4(7):305–12.PubMedGoogle Scholar
  58. 58.
    Noonan K, Matsui W, Serafini P, et al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res 2005;65(5):2026–34.PubMedGoogle Scholar
  59. 59.
    Wen YJ, Min R, Tricot G, Barlogie B, Yi Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma:promising effector cells for immunotherapy. Blood 2002;99(9):3280–5.PubMedGoogle Scholar
  60. 60.
    Dhodapkar MV, Krasovsky J, Osman K, Geller MD. Vigorous premalignancy specific effector T cell response in the bone marrow of patients with preneoplastic gammopathy. J Exp Med 2003;198:1753–7.PubMedGoogle Scholar
  61. 61.
    Spisek R, Kukreja A, Chen LC, et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 2007;204(4):831–40.PubMedGoogle Scholar
  62. 62.
    Pilarski LM, Andrews EJ, Mant MJ, Ruether BA. Humoral immune deficiency in multiple myeloma patients due to compromised B-cell function. J Clin Immunol 1986;6(6):491–501.PubMedGoogle Scholar
  63. 63.
    Hargreaves RM, Lea JR, Griffiths H. Immunologic factors and risk of infection in plateau phase myeloma. J Clin Path 1995;48:260–9.PubMedGoogle Scholar
  64. 64.
    Pilarski LM, Mant MJ, Ruether BA. Pre-B cells in peripheral blood of multiple myeloma patients. Blood 1985;66(2):416–22.PubMedGoogle Scholar
  65. 65.
    Pilarski LM, Mant MJ, Ruether BA, Belch A. Severe deficiency of B lymphocytes in peripheral blood from multiple myeloma patients. J Clin Invest 1984;74(4):1301–6.PubMedGoogle Scholar
  66. 66.
    Paglieroni T, MacKenzie MR, Caggiano V. Abnormalities in immunoregulatory CD5 + B cells precede the diagnosis of multiple myeloma. Ann N Y Acad Sci 1992;651:486–7.PubMedGoogle Scholar
  67. 67.
    Broder S, Humphrey R, Durm M, et al. Impaired synthesis of polyclonal (non-para-protein) immunoglobulins by circulating lymphocytes from patients with multiple myeloma. Role of suppressor cells. N Engl J Med 1975;293(18):887–92.PubMedGoogle Scholar
  68. 68.
    Ullrich S, Zolla-Pazner S. Immunoregulatory circuits in myeloma. Clin Haematol 1982;11(1):87–111.PubMedGoogle Scholar
  69. 69.
    Bellucci R, Wu CJ, Chiaretti S, et al. Complete response to donor lymphocyte infusion in multiple myeloma is associated with antibody responses to highly expressed antigens. Blood 2004;103(2):656–63.PubMedGoogle Scholar
  70. 70.
    Smyth MJ, Crowe NY, Hayakawa Y, Takeda K, Yagita H, Godfrey DI. NKT cells—conductors of tumor immunity?. Curr Opin Immunol 2002;14(2):165–71.PubMedGoogle Scholar
  71. 71.
    Girardi M, Oppenheim DE, Steele CR, et al. Regulation of cutaneous malignancy by gammadelta T cells. Science 2001;294(5542):605–9.PubMedGoogle Scholar
  72. 72.
    Coughlin CM, Salhany KE, Gee MS,. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 1998;9(1):25–34.PubMedGoogle Scholar
  73. 73.
    Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999;10(1):105–15.PubMedGoogle Scholar
  74. 74.
    Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteo-clastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000;408(6812):600–5.PubMedGoogle Scholar
  75. 75.
    Wilhelm M, Kunzmann V, Eckstein S, et al. Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 2003;102(1):200–6.PubMedGoogle Scholar
  76. 76.
    Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M. Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000;96(2):384–92.PubMedGoogle Scholar
  77. 77.
    Dhodapkar MV, Geller MD, Chang DH, et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 2003;197(12):1667–76.PubMedGoogle Scholar
  78. 78.
    Hoover RG, Lary C, Page R, et al. Autoregulatory circuits in myeloma. Tumor cell cytotoxicity mediated by soluble CD16. J Clin Invest 1995;95(1):241–7.PubMedGoogle Scholar
  79. 79.
    Mathiot C, Galon J, Tartour E, et al. Soluble CD16 in plasma cell dyscrasias. Leuk Lymphoma 1999;32(5–6):467–74.PubMedGoogle Scholar
  80. 80.
    Nielsen H, Nielsen HJ, Tvede N, et al. Immune dysfunction in multiple myeloma. Reduced natural killer cell activity and increased levels of soluble interleukin-2 receptors. APMIS 1991;99(4):340–6.PubMedGoogle Scholar
  81. 81.
    Uchida A, Yagita M, Sugiyama H. Strong natural killer (NK) cell activity in bone marrow of myeloma patients:accelerated maturation of bone marrow NK cells and their interaction with other NK cells. Int J Cancer 1984;34:375–81.PubMedGoogle Scholar
  82. 82.
    Osterborg A, Nilsson B, Bjorkholm M, Holm G, Mellstedt H. Natural killer cell activity in monoclonal gammopathies:relation to disease activity. Eur J Haematol 1990;45(3):153–7.PubMedGoogle Scholar
  83. 83.
    Garcia-Sanz R, Gonzalez M, Orfao A. Analysis of natural killer associated antigens in the peripheral blood and bone marrow of multiple myeloma patients:prognostic implications. Br J Hematology 1996;93:81–9.Google Scholar
  84. 84.
    Carbone E, Neri P, Mesuraca M, et al. HLA class I, NKG2D, and natural cytotox-icity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 2005;105(1):251–8.PubMedGoogle Scholar
  85. 85.
    Said JW, Rettig MR, Heppner K, et al. Localization of Kaposi's sarcoma-associated herpesvirus in bone marrow biopsy samples from patients with multiple myeloma. Blood 1997;90(11):4278–82.PubMedGoogle Scholar
  86. 86.
    Bahlis NJ, King AM, Kolonias D, et al. CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood 2007;109(11):5002–10.PubMedGoogle Scholar
  87. 87.
    Brown RD, Pope B, Murray A, et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7—1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 2001;98(10):2992–8.PubMedGoogle Scholar
  88. 88.
    Ratta M, Fagnoni F, Curti A, et al. Dendritic cells are functionally defective in multiple myeloma:the role of interleukin-6. Blood 2002;100(1):230–7.PubMedGoogle Scholar
  89. 89.
    Podar K, Anderson KC. The pathophysiological role of VEGF in hematological malignancies:therapeutic implications. Blood 2005;105(4):1383–1395.PubMedGoogle Scholar
  90. 90.
    Brown R, Murray A, Pope B, et al. Either interleukin-12 or interferon-gamma can correct the dendritic cell defect induced by transforming growth factor beta in patients with myeloma. Br J Haematol 2004;125(6):743–8.PubMedGoogle Scholar
  91. 91.
    Rettig MB, Ma HJ, Vescio RA, et al. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science 1997;276(5320):1851–4.PubMedGoogle Scholar
  92. 92.
    Yi Q, Ekman M, Anton D, et al. Blood dendritic cells from myeloma patients are not infected with Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). Blood 1998;92(2):402–4.PubMedGoogle Scholar
  93. 93.
    Raje N, Kica G, Chauhan D, et al. Kaposi's sarcoma-associated herpesvirus gene sequences are detectable at low copy number in primary amyloidosis. Amyloid 2000;7(2):126–32.PubMedGoogle Scholar
  94. 94.
    Raje N, Gong J, Chauhan D, et al. Bone marrow and peripheral blood dendritic cells from patients with multiple myeloma are phenotypically and functionally normal despite the detection of Kaposi's sarcoma herpesvirus gene sequences. Blood 1999;93(5):1487–95.PubMedGoogle Scholar
  95. 95.
    Kukreja A, Hutchinson A, Dhodapkar K, et al. Enhancement of clonogenic-ity of human multiple myeloma by dendritic cells. J Exp Med 2006;203(8):1859–65.PubMedGoogle Scholar
  96. 96.
    Prabhala RH, Neri P, Bae JE, et al. Dysfunctional T regulatory cells in multiple myeloma. Blood 2006;107(1):301–4.PubMedGoogle Scholar
  97. 97.
    Beyer M, Kochanek M, Giese T, et al. In vivo peripheral expansion of naive CD4 +CD25high FOXP3 +regulatory T cells in patients with multiple myeloma. Blood 2006;107(10):3940–9.PubMedGoogle Scholar
  98. 98.
    Banerjee D, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar K. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after DC injection of cytokine matured DCs in myeloma patients. Blood 2006;108(8):2655–2661.PubMedGoogle Scholar
  99. 99.
    Zhou G, Drake CG, Levitsky HI. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 2006;107(2):628–36.PubMedGoogle Scholar
  100. 100.
    Lynch RG, Graff RJ, Sirisinha S, Simms ES, Eisen HN. Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci USA 1972;69(6):1540–4.PubMedGoogle Scholar
  101. 101.
    Kwak LW, Thielemans K, Massaia M. Idiotypic vaccination as therapy for multiple myeloma. Semin Hematol 1999;36(1 Suppl 3):34–7.PubMedGoogle Scholar
  102. 102.
    Milburn GL, Lynch RG. Immunoregulation of murine myeloma in vitro. II. Suppression of MOPC-315 immunoglobulin secretion and synthesis by idiotype-specific suppressor T cells. J Exp Med 1982;155(3):852–62.PubMedGoogle Scholar
  103. 103.
    Abbas AK. T lymphocyte-mediated suppression of myeloma function in vitro. I. Suppression by allogeneically activated T lymphocytes. J Immunol 1979;123(5):2011–8.PubMedGoogle Scholar
  104. 104.
    Bogen B, Malissen B, Haas W. Idiotope-specific T cell clones that recognize syngeneic immunoglobulin fragments in the context of class II molecules. Eur J Immunol 1986;16(11):1373–8.PubMedGoogle Scholar
  105. 105.
    Bogen B. Peripheral T cell tolerance as a tumor escape mechanism:deletion of CD4 +T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol 1996;26(11):2671–9.PubMedGoogle Scholar
  106. 106.
    Lynch RG, Graff RJ, Sirisinha S. Myeloma proteins as tumor specific transplantation antigens. Proc Natl Acad Sci USA 1972;69:1540–4.PubMedGoogle Scholar
  107. 107.
    Daley MJ, Gebel HM, Lynch RG. Idiotype specific transplantation resist-snce to MOPC315:abrogation by post-immunization thymectomy. J Immunol 1978;120:1620–4.PubMedGoogle Scholar
  108. 108.
    Lauritzsen GF, Bogen B. The role of idiotype-specific, CD4 +T cells in tumor resistance against major histocompatibility complex class II molecule negative plasmacytoma cells. Cell Immunol 1993;148(1):177–88.PubMedGoogle Scholar
  109. 109.
    Dembic Z, Schenck K, Bogen B. Dendritic cells purified from myeloma are primed with tumor-specific antigen (idiotype) and activate CD4 +T cells. Proc Natl Acad Sci USA 2000;97(6):2697–702.PubMedGoogle Scholar
  110. 110.
    Dembic Z, Rottingen JA, Dellacasagrande J, Schenck K, Bogen B. Phagocytic dendritic cells from myelomas activate tumor-specific T cells at a single cell level. Blood 2001;97(9):2808–14.PubMedGoogle Scholar
  111. 111.
    Wen YJ, Barlogie B, Yi Q. Idiotype-specific cytotoxic T lymphocytes in multiple myeloma:evidence for their capacity to lyse autologous primary tumor cells. Blood 2001;97(6):1750–5.PubMedGoogle Scholar
  112. 112.
    Yi Q, Desikan R, Barlogie B, Munshi N. Optimizing dendritic cell-based immu-notherapy in multiple myeloma. Br J Haematol 2002;117(2):297–305.PubMedGoogle Scholar
  113. 113.
    Wen YJ, Ling M, Bailey-Wood R, Lim SH. Idiotypic protein-pulsed adherent peripheral blood mononuclear cell-derived dendritic cells prime immune system in multiple myeloma. Clin Cancer Res 1998;4(4):957–62.PubMedGoogle Scholar
  114. 114.
    Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica 2003;88(10):1139–49.PubMedGoogle Scholar
  115. 115.
    Chen YT, Old LJ. Cancer-testis antigens:targets for cancer immunotherapy. Cancer J Sci Am 1999;5(1):16–7.PubMedGoogle Scholar
  116. 116.
    van Baren N, Brasseur F, Godelaine D, et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 1999;94(4):1156–64.PubMedGoogle Scholar
  117. 117.
    Pellat-Deceunynck C, Mellerin MP, Labarriere N, et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol 2000;30(3):803–9.PubMedGoogle Scholar
  118. 118.
    Dhodapkar K, Krasovsky J, Williamson B, Dhodapkar M. Anti-tumor monoclonal antibodies enhance cross presentation of cellular antigens and the generation of tumor specific killer T cells by dendritic cells. J Exp Med 2002;195:125–33.PubMedGoogle Scholar
  119. 119.
    Tarte K, Zhan F, De Vos J, Klein B, Shaughnessy J. Gene expression profiling of plasma cells and plasmablasts:toward a better understanding of the late stages of B-cell differentiation. Blood 2003;102(2):592–600.PubMedGoogle Scholar
  120. 120.
    Dhodapkar MV, Osman K, Teruya-Feldstein J, et al. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 2003;3:9.PubMedGoogle Scholar
  121. 121.
    Batchu RB, Moreno AM, Szmania S, et al. High-level expression of cancer/testis antigen NY-ESO-1 and human granulocyte-macrophage colony-stimulating factor in dendritic cells with a bicistronic retroviral vector. Hum Gene Ther 2003;14(14):1333–45.PubMedGoogle Scholar
  122. 122.
    Dhodapkar MV, Osman K, Feldstein J, et al. Expression of cancer-testis antigens (MAGE-A1, -A3, -A4, CT-7 and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 2003;3:9–16.PubMedGoogle Scholar
  123. 123.
    van Rhee F, Szmania SM, Zhan F, et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 2005;105(10):3939–44.PubMedGoogle Scholar
  124. 124.
    Jungbluth AA, Ely S, Diliberto M, et al. The Cancer-Testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma cell proliferation. Blood 2005;106(1):167–174.PubMedGoogle Scholar
  125. 125.
    Sahota SS, Goonewardena CM, Cooper CD, et al. PASD1 is a potential multiple myeloma-associated antigen. Blood 2006;108(12):3953–5.PubMedGoogle Scholar
  126. 126.
    Brossart P, Schneider A, Dill P, et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res 2001;61(18):6846–50.PubMedGoogle Scholar
  127. 127.
    Treon SP, Mollick JA, Urashima M,. Muc-1 core protein is expressed on multiple myeloma cells and is induced by dexamethasone. Blood 1999;93(4):1287–98.PubMedGoogle Scholar
  128. 128.
    Mileshkin L, Prince HM, Seymour JF, Biagi JJ. Serum MUC-1 as a marker of disease status in multiple myeloma patients receiving thalidomide. Br J Haematol 2003;123(4):747–8;author reply 8.PubMedGoogle Scholar
  129. 129.
    Choi C, Witzens M, Bucur M, et al. Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of multiple myeloma patients. Blood 2005;105(5):2132–2134.PubMedGoogle Scholar
  130. 130.
    Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999;10(6):673–9.PubMedGoogle Scholar
  131. 131.
    Qian J, Xie J, Hong S, et al. DKK1 is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood 2007;110(5):1587–1594.PubMedGoogle Scholar
  132. 132.
    Rew SB, Peggs K, Sanjuan I, et al. Generation of potent antitumor CTL from patients with multiple myeloma directed against HM1. 24. Clin Cancer Res 2005;11(9):3377–84.PubMedGoogle Scholar
  133. 133.
    Jalili A, Ozaki S, Hara T, et al. Induction of HM1. 24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma. Blood 2005;106(10):3538–45.PubMedGoogle Scholar
  134. 134.
    Hundemer M, Schmidt S, Condomines M, et al. Identification of a new HLA-A2-restricted T-cell epitope within HM1. 24 as immunotherapy target for multiple myeloma. Exp Hematol 2006;34(4):486–96.PubMedGoogle Scholar
  135. 135.
    Dhodapkar MV, Krasovsky J, Osman K, Geller MD. Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 2003;198(11):1753–7.PubMedGoogle Scholar
  136. 136.
    Milazzo C, Reichardt VL, Muller MR, Grunebach F, Brossart P. Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA. Blood 2003;101(3):977–82.PubMedGoogle Scholar
  137. 137.
    Hayashi T, Hideshima T, Akiyama M, et al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood 2003;102(4):1435–42.PubMedGoogle Scholar
  138. 138.
    Raje N, Hideshima T, Davies FE, et al. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol 2004;125(3):343–52.PubMedGoogle Scholar
  139. 139.
    Qian J, Wang S, Yang J, et al. Targeting heat shock proteins for immunotherapy in multiple myeloma:generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96. Clin Cancer Res 2005;11(24 Pt 1):8808–15.PubMedGoogle Scholar
  140. 140.
    Jiang X, Kanai H, Hiromura K, Sawamura M, Yano S. Increased intra-platelet and urinary transforming growth factor-beta in patients with multiple myeloma. Acta Hematol 1995;94:1–6.Google Scholar
  141. 141.
    Matthes T, Werner-Farve C, Tang H, Zang X, Kindler V, Zubler RH. Cytokine gene expression during in vitro response of human B lymphocytes:kinetics of B cell tumor necrosis factor alpha, interleukin-6, interleukin-10, and transforming growth factor-beta 1 mRNAs. J Exp Med 1993;178:521–8.PubMedGoogle Scholar
  142. 142.
    Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM. Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 1999;66(6):981–8.PubMedGoogle Scholar
  143. 143.
    Cook G, Campbell JD. Immune regulation in multiple myeloma:the host-tumour conflict. Blood Rev 1999;13(3):151–62.PubMedGoogle Scholar
  144. 144.
    Urashima M, Ogata A, Chauhan D, et al. Transforming growth factor-beta1:differential effects on multiple myeloma versus normal B cells. Blood 1996;87 (5):1928–38.PubMedGoogle Scholar
  145. 145.
    Campbell JD, Cook G, Robertson SE, et al. Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF beta is reversed by IL-15. J Immunol 2001;167(1):553–61.PubMedGoogle Scholar
  146. 146.
    Ameglio F, Alvino S, Trento E. Serum interleukin-10 levels in patients affected with multiple myeloma:correlation with the monoclonal component and disease progression. Int J Oncol 1995;6:1189–92.PubMedGoogle Scholar
  147. 147.
    Gabrilovich DI, Chen HI, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996;2:1096–103.PubMedGoogle Scholar
  148. 148.
    Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000;1(6):510–4.PubMedGoogle Scholar
  149. 149.
    Xie J, Wang Y, Freeman ME, 3rd, Barlogie B, Y i Q Beta 2-microglobulin as a negative regulator of the immune system:high concentrations of the protein inhibit in vitro generation of functional dendritic cells. Blood 2003;101(10):4005–12.PubMedGoogle Scholar
  150. 150.
    Serafini P, Meckel K Kelso M,. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006;203(12):2691–702.PubMedGoogle Scholar
  151. 151.
    Villunger A, Egle A, Marschitz I, et al. Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells:a potential mechanism of tumor-induced suppression of immune surveillance. Blood 1997;90(1):12–20.PubMedGoogle Scholar
  152. 152.
    Barlogie B, Shaughnessy J, Tricot G, et al. Treatment of multiple myeloma. Blood 2004;103(1):20–32.PubMedGoogle Scholar
  153. 153.
    Bruno B, Rotta M, Patriarca F,. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007;356(11):1110–20.PubMedGoogle Scholar
  154. 154.
    Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect:proof of principle. Blood 1996;87(3):1196–8.PubMedGoogle Scholar
  155. 155.
    Lokhorst HM, Schattenberg A, Cornelissen JJ,. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation:predictive factors for response and long-term outcome. J Clin Oncol 2000;18(16):3031–7.PubMedGoogle Scholar
  156. 156.
    Kwak LW, Taub DD, Duffey PL, et al. Transfer of myeloma idiotype-specific immunity from an actively immunised marrow donor. Lancet 1995;345(8956):1016–20.PubMedGoogle Scholar
  157. 157.
    van Bergen CA, Kester MG, Jedema I, et al. Multiple myeloma-reactive T cells recognize an activation-induced minor histocompatibility antigen encoded by the ATP-dependent interferon-responsive (ADIR) gene. Blood 2007;109(9):4089–96.PubMedGoogle Scholar
  158. 158.
    Atanackovic D, Arfsten J, Cao Y,. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007;109(3):1103–12.PubMedGoogle Scholar
  159. 159.
    Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341(21):1565–71.PubMedGoogle Scholar
  160. 160.
    Haslett PA, Corral LG, Albert M, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8 +subset. J Exp Med 1998;187(11):1885–92.PubMedGoogle Scholar
  161. 161.
    LeBlanc R, Hideshima T, Catley LP, et al. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 2004;103(5):1787–90.PubMedGoogle Scholar
  162. 162.
    Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98(1):210–6.PubMedGoogle Scholar
  163. 163.
    Chang DH, Liu N, Klimek V, et al. Enhancement of ligand dependent activation of human natural killer T cells by lenalidomide:therapeutic implications. Blood 2006;108(2):618–621.PubMedGoogle Scholar
  164. 164.
    Lake RA, Robinson BW. Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer 2005;5(5):397–405.PubMedGoogle Scholar
  165. 165.
    Lake RA, van der Most RG. A better way for a cancer cell to die. N Engl J Med 2006;354(23):2503–4.PubMedGoogle Scholar
  166. 166.
    Casares N, Pequignot MO, Tesniere A, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005;202(12):1691–701.PubMedGoogle Scholar
  167. 167.
    Spisek R, Dhodapkar MV. Towards a better way to die with chemotherapy:role of heat shock proteins on dying tumor cells. Cell Cycle 2007;6(16):1962–1965.PubMedGoogle Scholar
  168. 168.
    Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC) mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells:therapeutic implications. Blood 2007;109(Jun 1):4839–45.PubMedGoogle Scholar
  169. 169.
    Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007;13(1):54–61.PubMedGoogle Scholar
  170. 170.
    North RJ, Awwad M. T cell suppression as an obstacle to immunologically-mediated tumor regression:elimination of suppression results in regression. Prog Clin Biol Res 1987;244:345–58.PubMedGoogle Scholar
  171. 171.
    Barker E, Mokyr MB. Importance of Lyt-2 +T-cells in the resistance of melpha-lan-cured MOPC- 315 tumor bearers to a challenge with MOPC-315 tumor cells. Cancer Res 1988;48(17):4834–42.PubMedGoogle Scholar
  172. 172.
    Barker E, Mokyr MB. Some characteristics of the in vivo antitumor immunity exhibited by mice cured of a large MOPC-315 tumor by a low dose of melphalan. Cancer Immunol Immunother 1987;25(3):215–24.PubMedGoogle Scholar
  173. 173.
    Maloney DG, Donovan K, Hamblin TJ. Antibody therapy for treatment of multiple myeloma. Semin Hematol 1999;36(1 Suppl 3):30–3.PubMedGoogle Scholar
  174. 174.
    Ono K, Ohtomo T, Yoshida K, et al. The humanized anti-HM1. 24 antibody effectively kills multiple myeloma cells by human effector cell-mediated cytotoxicity. Mol Immunol 1999;36(6):387–95.PubMedGoogle Scholar
  175. 175.
    Stevenson GT. CD38 as a therapeutic target. Mol Med 2006;12(11–12):345–6.PubMedGoogle Scholar
  176. 176.
    Lim SH, Zhang Y, Wang Z, Varadarajan R, Periman P, Esler WV. Rituximab administration following autologous stem cell transplantation for multiple myeloma is associated with severe IgM deficiency. Blood 2004;103(5):1971–2.PubMedGoogle Scholar
  177. 177.
    Musto P, Carella AM, Jr., Greco MM, et al. Short progression-free survival in myeloma patients receiving rituximab as maintenance therapy after autologous transplantation. Br J Haematol 2003;123(4):746–7.PubMedGoogle Scholar
  178. 178.
    Matsui W, Huff CA, Wang Q, et al. Characterization of clonogenic multiple myeloma cells. Blood 2004;103(6):2332–6.PubMedGoogle Scholar
  179. 179.
    Clynes R. Antitumor antibodies in the treatment of cancer:Fc receptors link opsonic antibody with cellular immunity. Hematol Oncol Clin North Am 2006;20(3):585–612.PubMedGoogle Scholar
  180. 180.
    Dhodapkar KM, Dhodapkar MV. Recruiting dendritic cells to improve antibody therapy of cancer. Proc Natl Acad Sci USA 2005;102(18):6243–4.PubMedGoogle Scholar
  181. 181.
    Osterborg A, Yi Q, Henriksson L, et al. Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses. Blood 1998;91(7):2459–66.PubMedGoogle Scholar
  182. 182.
    Rasmussen T, Hansson L, Osterborg A, Johnsen HE, Mellstedt H. Idiotype vaccination in multiple myeloma induced a reduction of circulating clonal tumor B cells. Blood 2003;101(11):4607–10.PubMedGoogle Scholar
  183. 183.
    King CA, Spellerberg MB, Zhu D, et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 1998;4(11):1281–6.PubMedGoogle Scholar
  184. 184.
    Stritzke J, Zunkel T, Steinmann J, Schmitz N, Uharek L, Zeis M. Therapeutic effects of idiotype vaccination can be enhanced by the combination of granulo-cyte-macrophage colony-stimulating factor and interleukin 2 in a myeloma model. Br J Haematol 2003;120(1):27–35.PubMedGoogle Scholar
  185. 185.
    Coscia M, Mariani S, Battaglio S, et al. Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia 2004;18(1):139–45.PubMedGoogle Scholar
  186. 186.
    Reichardt VL, Brossart P. Dendritic cells in clinical trials for multiple myeloma. Methods Mol Med 2005;109:127–36.PubMedGoogle Scholar
  187. 187.
    Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S,. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2000;6(6):621–7.PubMedGoogle Scholar
  188. 188.
    Abdalla AO, Hansson L, Eriksson I, et al. Idiotype protein vaccination in combination with adjuvant cytokines in patients with multiple myeloma—evaluation of T-cell responses by different read-out systems. Haematologica 2007;92(1):110–4.PubMedGoogle Scholar
  189. 189.
    Hansson L, Abdalla AO, Moshfegh A, et al. Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res 2007;13(5):1503–10.PubMedGoogle Scholar
  190. 190.
    Vasir B, Borges V, Wu Z, et al. Fusion of dendritic cells with multiple myeloma cells results in maturation and enhanced antigen presentation. Br J Haematol 2005;129(5):687–700.PubMedGoogle Scholar
  191. 191.
    Mariani S, Coscia M, Even J, et al. Severe and long-lasting disruption of T-cell receptor diversity in human myeloma after high-dose chemotherapy and autolo-gous peripheral blood progenitor cell infusion. Br J Haematol 2001;113(4):1051–9.PubMedGoogle Scholar
  192. 192.
    Brown RD, Yuen E, Nelson M, Gibson J, Joshua D. The prognostic significance of T cell receptor beta gene rearrangements and idiotype-reactive T cells in multiple myeloma. Leukemia 1997;11(8):1312–7.PubMedGoogle Scholar
  193. 193.
    Rapoport AP, Stadtmauer EA, Aqui N, et al. Restoration of immunity in lympho-penic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 2005;11(11):1230–7.PubMedGoogle Scholar
  194. 194.
    Frohn C, Hoppner M, Schlenke P, Kirchner H, Koritke P, Luhm J. Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 2002;119(3):660–4.PubMedGoogle Scholar
  195. 195.
    Luhm J, Brand JM, Koritke P, Hoppner M, Kirchner H, Frohn C. Large-scale generation of natural killer lymphocytes for clinical application. J Hematother Stem Cell Res 2002;11(4):651–7.PubMedGoogle Scholar
  196. 196.
    Azuma T, Otsuki T, Kuzushima K, Froelich CJ, Fujita S, Yasukawa M. Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes. Clin Cancer Res 2004;10(21):7402–12.PubMedGoogle Scholar
  197. 197.
    Grube M, Moritz S, Obermann EC, et al. CD8 +T cells reactive to survivin antigen in patients with multiple myeloma. Clin Cancer Res 2007;13(3):1053–60.PubMedGoogle Scholar
  198. 198.
    Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 2002;195(1):125–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Madhav V. Dhodapkar
    • 1
  1. 1.Laboratory of Tumor Immunology and ImmunotherapyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations