Advertisement

The Role of Potassium Channels in the Regulation of Neurotransmitter Release

  • Laurence O. TrussellEmail author
  • Michael T. Roberts
Part of the Contemporary Neuroscience book series (CNEURO)

Abstract

Neurotransmitter release is critically dependent on the duration of the presynaptic action potential. A variety of K+ channels play key roles in determining spike width. Moreover, K+ channels control how readily terminals can spike, and also suppress aberrant firing. Finally, K+ channels, through their control of the presynaptic resting potential, may impact presynaptic calcium levels and the spontaneous and evoked release of transmitter.

Keywords

Axon exocytosis transmitter release synapse potassium channel 

Notes

Acknowledgments

We wish to thank Drs. Paul Brehm, Hai Huang, and Sid Kuo for comments on the manuscript. This work was supported by National Institutes of Health (NIH) grants NS28901 and DC04450.

References

  1. 1.
    Katz B, Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol 1967;192(2):407–436.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Katz B, Miledi R. The release of acetylcholine from nerve endings by graded electric pulses. Proc R Soc Lond B Biol Sci 1967;167(6):23–38.CrossRefPubMedGoogle Scholar
  3. 3.
    Koketsu K. Action of tetraethylammonium chloride on neuromuscular transmission in frogs. Am J Physiol 1958;193(1):213–218.PubMedGoogle Scholar
  4. 4.
    Kusano K, Livengood DR, Werman R. Tetraethylammonium ions: effect of presynaptic injection on synaptic transmission. Science 1967;155(767):1257–1259.CrossRefPubMedGoogle Scholar
  5. 5.
    Borst JG, Sakmann B. Calcium influx and transmitter release in a fast CNS synapse. Nature 1996;383(6599):431–434.CrossRefPubMedGoogle Scholar
  6. 6.
    Llinas R, Sugimori M, Simon SM. Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc Natl Acad Sci U S A 1982;79(7):2415–2419.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Borst JG, Sakmann B. Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol 1998;506(pt 1):143–157.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Augustine GJ, Charlton MP, Smith SJ. Calcium entry into voltage-clamped presynaptic terminals of squid. J Physiol 1985;367:143–162.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dodge FA Jr, Rahamimoff R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol 1967;193(2):419–432.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Augustine GJ. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J Physiol 1990;431:343–364.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bollmann JH, Sakmann B. Control of synaptic strength and timing by the release-site Ca2+ signal. Nat Neurosci 2005;8(4):426–434.PubMedGoogle Scholar
  12. 12.
    Fedchyshyn MJ, Wang LY. Developmental transformation of the release modality at the calyx of Held synapse. J Neurosci 2005;25(16):4131–4140.CrossRefPubMedGoogle Scholar
  13. 13.
    Yang YM, Wang LY. Amplitude and kinetics of action potential-evoked Ca2+ current and its efficacy in triggering transmitter release at the developing calyx of held synapse. J Neurosci 2006;26(21):5698–5708.CrossRefPubMedGoogle Scholar
  14. 14.
    Wen H, Brehm P. Paired motor neuron-muscle recordings in zebrafish test the receptor blockade model for shaping synaptic current. J Neurosci 2005;25(35):8104–8111.CrossRefPubMedGoogle Scholar
  15. 15.
    Pattillo JM, Yazejian B, DiGregorio DA, Vergara JL, Grinnell AD, Meriney SD. Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses. Neuroscience 2001;102(1):229–240.CrossRefPubMedGoogle Scholar
  16. 16.
    Spencer AN, Przysiezniak J, Acosta-Urquidi J, Basarsky TA. Presynaptic spike broadening reduces junctional potential amplitude. Nature 1989;340(6235):636–638.CrossRefPubMedGoogle Scholar
  17. 17.
    Coetzee WA, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels. Ann N Y Acad Sci 1999;868:233–285.CrossRefPubMedGoogle Scholar
  18. 18.
    Trimmer JS, Rhodes KJ. Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 2004;66:477–519.CrossRefPubMedGoogle Scholar
  19. 19.
    Thesleff S. Aminopyridines and synaptic transmission. Neuroscience 1980;5(8): 1413–1419.CrossRefPubMedGoogle Scholar
  20. 20.
    Shimada H, Uta D, Nabekura J, Yoshimura M. Involvement of Kv channel subtypes on GABA release in mechanically dissociated neurons from the rat substantia nigra. Brain Res 2007; 1141:74–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Dodson PD, Forsythe ID. Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci 2004;27(4):210–217.CrossRefPubMedGoogle Scholar
  22. 22.
    Jackson MB. Presynaptic excitability. Int Rev Neurobiol 1995;38:201–251.CrossRefPubMedGoogle Scholar
  23. 23.
    Li W, Kaczmarek LK, Perney TM. Localization of two high-threshold potassium channel subunits in the rat central auditory system. J Comp Neurol 2001;437(2):196–218.CrossRefPubMedGoogle Scholar
  24. 24.
    Ishikawa T, Nakamura Y, Saitoh N, Li WB, Iwasaki S, Takahashi T. Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J Neurosci 2003; 23(32):10445–10453.PubMedGoogle Scholar
  25. 25.
    Wang LY, Kaczmarek LK. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 1998;394(6691):384–388.CrossRefPubMedGoogle Scholar
  26. 26.
    Brooke RE, Atkinson L, Batten TF, Deuchars SA, Deuchars J. Association of potassium channel Kv3.4 subunits with pre- and post-synaptic structures in brainstem and spinal cord. Neuroscience 2004;126(4):1001–1010.CrossRefPubMedGoogle Scholar
  27. 27.
    Baranauskas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ. Kv3.4 subunits enhance the repo-larizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat Neurosci 2003;6(3):258–266.CrossRefPubMedGoogle Scholar
  28. 28.
    Southan AP, Robertson B. Electrophysiological characterization of voltage-gated K(+) currents in cerebellar basket and Purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals. J Neurosci 2000;20(1):114–122.PubMedGoogle Scholar
  29. 29.
    Southan AP, Robertson B. Modulation of inhibitory post-synaptic currents (IPSCs) in mouse cerebellar Purkinje and basket cells by snake and scorpion toxin K+ channel blockers. Br J Pharmacol 1998;125(6):1375–1381.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tan YP, Llano I. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J Physiol 1999;520(pt 1):65–78.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Brooke RE, Atkinson L, Edwards I, Parson SH, Deuchars J. Immunohistochemical localisation of the voltage gated potassium ion channel subunit Kv3.3 in the rat medulla oblongata and thoracic spinal cord. Brain Res 2006;1070(1):101–115.CrossRefPubMedGoogle Scholar
  32. 32.
    Chang S Y, Zagha E, Kwon ES, et al. Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain. J Comp Neurol 2007;502(6):953–972.CrossRefPubMedGoogle Scholar
  33. 33.
    Goldberg EM, Watanabe S, Chang SY, et al. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse. J Neurosci 2005;25(21):5230–5235.CrossRefPubMedGoogle Scholar
  34. 34.
    Matsukawa H, Wolf AM, Matsushita S, Joho RH, Knopfel T. Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. J Neurosci 2003;23(20):7677–7684.PubMedGoogle Scholar
  35. 35.
    Nakamura Y, Takahashi T. Developmental changes in potassium currents at the rat calyx of Held presynaptic terminal. J Physiol 2007;581(pt 3):1101–1112.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Southan AP, Robertson B. Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels. J Neurosci 1998;18(3):948–955.PubMedGoogle Scholar
  37. 37.
    Smart SL, Lopantsev V, Zhang CL, et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 1998;20(4):809–819.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang CL, Messing A, Chiu S Y. Specific alteration of spontaneous GABAergic inhibition in cerebellar purkinje cells in mice lacking the potassium channel Kv1. 1. J Neurosci 1999; 19(8):2852–2864.PubMedGoogle Scholar
  39. 39.
    Timpe LC, Schwarz TL, Tempel BL, Papazian DM, Jan YN, Jan LY. Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 1988;331(6152):143–145.CrossRefPubMedGoogle Scholar
  40. 40.
    Jan YN, Jan LY, Dennis MJ. Two mutations of synaptic transmission in Drosophila. Proc R Soc Lond B Biol Sci 1977;198(1130):87–108.CrossRefPubMedGoogle Scholar
  41. 41.
    Jackson MB, Konnerth A, Augustine GJ. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc Natl Acad Sci U S A 1991;88(2):380–384.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bielefeldt K, Rotter JL, Jackson MB. Three potassium channels in rat posterior pituitary nerve terminals. J Physiol 1992;458:41–67.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Geiger JR, Jonas P. Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 2000;28(3):927–939.CrossRefPubMedGoogle Scholar
  44. 44.
    Shu Y, Yu Y, Yang J, McCormick DA. Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci U S A 2007;104(27):11453–11458.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 2006;441(7094):761–765.CrossRefPubMedGoogle Scholar
  46. 46.
    Bond CT, Maylie J, Adelman JP. SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol 2005;15(3):305–311.CrossRefPubMedGoogle Scholar
  47. 47.
    Latorre R, Brauchi S. Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biol Res 2006;39(3):385–401.CrossRefPubMedGoogle Scholar
  48. 48.
    Solaro CR, Prakriya M, Ding JP, Lingle CJ. Inactivating and noninactivating Ca(2+)- and voltage-dependent K+ current in rat adrenal chromaffin cells. J Neurosci 1995;15(9):6110–6123.PubMedGoogle Scholar
  49. 49.
    Bartschat DK, Blaustein MP. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain. J Physiol 1985;361:441–457.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hu H, Shao LR, Chavoshy S, et al. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 2001;21(24):9585–9597.PubMedGoogle Scholar
  51. 51.
    Knaus HG, Schwarzer C, Koch RO, et al. Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 1996;16(3):955–963.PubMedGoogle Scholar
  52. 52.
    Misonou H, Menegola M, Buchwalder L, et al. Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol 2006;496(3):289–302.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sailer CA, Kaufmann WA, Kogler M, et al. Immunolocalization of BK channels in hippocampal pyramidal neurons. Eur J Neurosci 2006;24(2):442–454.CrossRefPubMedGoogle Scholar
  54. 54.
    Sausbier U, Sausbier M, Sailer CA, et al. Ca2+ -activated K+ channels of the BK-type in the mouse brain. Histochem Cell Biol 2006;125(6):725–741.CrossRefPubMedGoogle Scholar
  55. 55.
    Raffaelli G, Saviane C, Mohajerani MH, Pedarzani P, Cherubini E. BK potassium channels control transmitter release at CA3–CA3 synapses in the rat hippocampus. J Physiol 2004;557(pt 1):147–157.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    MacKinnon R, Reinhart PH, White MM. Charybdotoxin block of Shaker K+ channels suggests that different types of K+ channels share common structural features. Neuron 1988;1 (10):997–1001.CrossRefPubMedGoogle Scholar
  57. 57.
    Mallart A. A calcium-activated potassium current in motor nerve terminals of the mouse. J Physiol 1985;368:577–591.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Anderson AJ, Harvey AL, Rowan EG, Strong PN. Effects of charybdotoxin, a blocker of Ca2+-activated K+ channels, on motor nerve terminals. Br J Pharmacol 1988;95(4):1329–1335.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hevron E, David G, Arnon A, Yaari Y. Acetylcholine modulates two types of presynaptic potassium channels in vertebrate motor nerve terminals. Neurosci Lett 1986;72(1):87–92.CrossRefPubMedGoogle Scholar
  60. 60.
    Lindgren CA, Moore JW. Identification of ionic currents at presynaptic nerve endings of the lizard. J Physiol 1989;414:201–222.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Morita K, Barrett EF. Evidence for two calcium-dependent potassium conductances in lizard motor nerve terminals. J Neurosci 1990;10(8):2614–2625.PubMedGoogle Scholar
  62. 62.
    Sivaramakrishnan S, Bittner GD, Brodwick MS. Calcium-activated potassium conductance in presynaptic terminals at the crayfish neuromuscular junction. J Gen Physiol 1991;98(6): 1161–1179.CrossRefPubMedGoogle Scholar
  63. 63.
    Sivaramakrishnan S, Brodwick MS, Bittner GD. Presynaptic facilitation at the crayfish neu-romuscular junction. Role of calcium-activated potassium conductance. J Gen Physiol 1991;98(6):1181–1196.CrossRefPubMedGoogle Scholar
  64. 64.
    Robitaille R, Charlton MP. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J Neurosci 1992;12(1):297–305.PubMedGoogle Scholar
  65. 65.
    Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 1993;11(4):645–655.CrossRefPubMedGoogle Scholar
  66. 66.
    Yazejian B, DiGregorio DA, Vergara JL, Poage RE, Meriney SD, Grinnell AD. Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neuro-transmitter release at cultured Xenopus nerve-muscle synapses. J Neurosci 1997;17 (9):2990–3001.PubMedGoogle Scholar
  67. 67.
    Yazejian B, Sun XP, Grinnell AD. Tracking presynaptic Ca2+ dynamics during neurotrans-mitter release with Ca2+-activated K+ channels. Nat Neurosci 2000;3(6):566–571.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang ZW, Saifee O, Nonet ML, Salkoff L. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 2001;32(5): 867–881.CrossRefPubMedGoogle Scholar
  69. 69.
    Fettiplace R, Fuchs PA. Mechanisms of hair cell tuning. Annu Rev Physiol 1999; 61:809–834.CrossRefPubMedGoogle Scholar
  70. 70.
    Fuchs PA. Time and intensity coding at the hair cell’s ribbon synapse. J Physiol 2005;566 (pt 1):7–12.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Moser T, Neef A, Khimich D. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse. J Physiol 2006;576(pt 1):55–62.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Issa NP, Hudspeth AJ. Clustering of Ca2+ channels and Ca(2+)-activated K+ channels at fluo-rescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci U S A 1994;91(16):7578–7582.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Roberts WM, Jacobs RA, Hudspeth AJ. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 1990;10(11):3664–3684.PubMedGoogle Scholar
  74. 74.
    Samaranayake H, Saunders JC, Greene MI, Navaratnam DS. Ca(2+) and K(+) (BK) channels in chick hair cells are clustered and colocalized with apical-basal and tonotopic gradients. J Physiol 2004;560(pt 1):13–20.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Housley GD, Marcotti W, Navaratnam D, Yamoah EN. Hair cells–beyond the transducer. J Membr Biol 2006;209(2–3):89–118.CrossRefPubMedGoogle Scholar
  76. 76.
    Kros CJ, Ruppersberg JP, Rusch A. Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 1998;394(6690):281–284.CrossRefPubMedGoogle Scholar
  77. 77.
    Oliver D, Taberner AM, Thurm H, et al. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 2006;26(23):6181–6189.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Skinner LJ, Enee V, Beurg M, et al. Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea. J Neurophysiol 2003;90(1):320–332.CrossRefPubMedGoogle Scholar
  79. 79.
    Pyott SJ, Glowatzki E, Trimmer JS, Aldrich RW. Extrasynaptic localization of inactivating calcium-activated potassium channels in mouse inner hair cells. J Neurosci 2004;24 (43):9469–9474.CrossRefPubMedGoogle Scholar
  80. 80.
    Pyott SJ, Meredith AL, Fodor AA, Vazquez AE, Yamoah EN, Aldrich RW. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits. J Biol Chem 2007;282 (5):3312–3324.CrossRefPubMedGoogle Scholar
  81. 81.
    Edgington DR, Stuart AE. Properties of tetraethylammonium ion-resistant K+ channels in the photoreceptor membrane of the giant barnacle. J Gen Physiol 1981;77(6):629–646.CrossRefPubMedGoogle Scholar
  82. 82.
    Stockbridge N, Ross WN. Localized Ca2+ and calcium-activated potassium conductances in terminals of a barnacle photoreceptor. Nature 1984;309(5965):266–268.CrossRefPubMedGoogle Scholar
  83. 83.
    Burrone J, Lagnado L. Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina. J Physiol 1997;505(pt 3):571–584.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Sakaba T, Ishikane H, Tachibana M. Ca2+-activated K+ current at presynaptic terminals of goldfish retinal bipolar cells. Neurosci Res 1997;27(3):219–228.CrossRefPubMedGoogle Scholar
  85. 85.
    Llobet A, Cooke A, Lagnado L. Exocytosis at the ribbon synapse of retinal bipolar cells studied in patches of presynaptic membrane. J Neurosci 2003;23(7):2706–2714.PubMedGoogle Scholar
  86. 86.
    Palmer MJ. Modulation of Ca(2+)-activated K+ currents and Ca(2+)-dependent action potentials by exocytosis in goldfish bipolar cell terminals. J Physiol 2006;572(pt 3):747–762.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Xu JW, Slaughter MM. Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse. J Neurosci 2005;25(33):7660–7668.CrossRefPubMedGoogle Scholar
  88. 88.
    Macleish PR, Nurse CA. Ion channel compartments in photoreceptors: evidence from salamander rods with intact and ablated terminals. J Neurophysiol 2007;98(1):86–95.CrossRefPubMedGoogle Scholar
  89. 89.
    Awatramani GB, Price GD, Trussell LO. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 2005;48(1):109–121.CrossRefPubMedGoogle Scholar
  90. 90.
    Bal R, Oertel D. Hyperpolarization-activated, mixed-cation current (I(h) ) in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 2000;84(2):806–817.PubMedGoogle Scholar
  91. 91.
    Bal R, Oertel D. Potassium currents in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 2001;86(5):2299–2311.PubMedGoogle Scholar
  92. 92.
    Jones SW. On the resting potential of isolated frog sympathetic neurons. Neuron 1989;3(2):153–161.CrossRefPubMedGoogle Scholar
  93. 93.
    Plant LD, Rajan S, Goldstein SA. K2P channels and their protein partners. Curr Opin Neurobiol 2005;15(3):326–333.CrossRefPubMedGoogle Scholar
  94. 94.
    Aller MI, Veale EL, Linden AM, et al. Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons. J Neurosci 2005;25(49):11455–11467.CrossRefPubMedGoogle Scholar
  95. 95.
    Kim JH, Sizov I, Dobretsov M, von Gersdorff H. Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the alpha3 Na(+)/K(+)-ATPase. Nat Neurosci 2007;10(2):196–205.CrossRefPubMedGoogle Scholar
  96. 96.
    Alle H, Geiger JR. Combined analog and action potential coding in hippocampal mossy fibers. Science 2006;311(5765):1290–1293.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  1. 1.Oregon Hearing Research Center / Vollum InstitutePortlandUSA
  2. 2.Oregon Hearing Research Center/Vollum InstituteOregon Health and Science UniversityPortlandUSA

Personalised recommendations