Advertisement

Reflections on the Mirror Neuron System: Their Evolutionary Functions Beyond Motor Representation

Chapter
Part of the Contemporary Neuroscience book series (CNEURO)

Abstract

The discovery of the mirror neuron system by Rizzolatti and his colleagues began with a chance observation, but has since inspired 15 years of research into the properties, functions, and dysfunction of this system. Though much has been learned about this system of neurons, many questions still remain. What defines a mirror neuron? What is the extent of its involvement in social behaviors? How do these neurons develop? What is the potential for therapeutic interventions targeting these neurons? We aim to explore these questions in the following chapter and suggest that the current characterization of this system maybe more restrictive than necessary. We suggest that mirror neurons are endowed with the precise properties allowing for complex remapping from one domain into another, which may lead to behaviors which arguably distinguish humans from all the other animals, namely our abilities to interact socially, understand others thoughts and emotions, communicate using complex language, and the ability to reflect on ourselves.

Keywords

Mirror Neuron Function Development Therapy 

References

  1. Adolphs, R., Tranel, D., Hamann, S., Young, A. W., Calder, A. J., Phelps, E. A., et al. (1999). Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia, 37, 1111–1117.PubMedCrossRefGoogle Scholar
  2. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (2002, December 15). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.Google Scholar
  3. Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Science, 4, 267–278.CrossRefGoogle Scholar
  4. Altschuler, E. L., Wisdom, S. B., Stone L., Foster, C., Galasko, D., Llewellyn, D. M. E., et al. (1999), Rehabilitation of hemiparesis after stroke with a mirror. Lancet, 353, 2035–2036.PubMedCrossRefGoogle Scholar
  5. Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral Brain Sciences, 28, 105–167.Google Scholar
  6. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.PubMedGoogle Scholar
  7. Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. (2000). A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157–166.PubMedCrossRefGoogle Scholar
  8. Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., et al. (2004). Neural circuits involved in the recognition of actions performed by nonconspecifics: An fMRI study. Journal of Cognitive Neuroscience, 16, 114–126.PubMedCrossRefGoogle Scholar
  9. Calder, A. J., Keane, J., Cole, J., Campbell, R., & Young, A. W. (2000). Facial expression recognition by people with Mobius syndrome. Cognitive Neuropsychology, 17, 73–87.PubMedCrossRefGoogle Scholar
  10. Calvert, G. A., & Campbell, R. (2003). Reading speech from still and moving faces: The neural substrates of visible speech. Journal of Cognitive Neuroscience, 15, 50–70.CrossRefGoogle Scholar
  11. Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.PubMedCrossRefGoogle Scholar
  12. Carr, L., Iacoboni, M., Dubeau, M. C., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences, USA, 100, 5497–5502.Google Scholar
  13. Condon, W. S., & Ogston, W. D. (1967). A segmentation of behavior. Journal of Psychiatric Research, 5, 221–235.CrossRefGoogle Scholar
  14. Darwin, C. (1965). The expression of emotions in man and animals. Chicago: University of Chicago Press. (Original work published 1872)Google Scholar
  15. Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., et al. (1997). Brain activity during observation of actions. Brain, 120, 1763–1777.PubMedCrossRefGoogle Scholar
  16. Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176–180.CrossRefGoogle Scholar
  17. Dohle, C., Puellen, J., Nakaten, A., Kuest, J., Rietz, C., Wullen, T., et al. (October, 2006). The effect of mirror therapy in the acute phase of stroke recovery. Poster Session Presented at the 36th Annual Meeting of the Society for Neuroscience, Atlanta, GA.Google Scholar
  18. Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Short communication: Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15, 399–402.PubMedCrossRefGoogle Scholar
  19. Fogassi, L., Gallese, V., Fadiga, L., & Rizzolatti, G. (November, 1998). Neurons responding to the sight of goal directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Poster Session Presented at the 28th Annual Meeting of the Society for Neuroscience, Los Angeles, CA.Google Scholar
  20. Gallese, V. (2004). Intentional attunement: The mirror neuron system and its role in interpersonal relations. Retrieved January 22, 2007, from http://www.interdisciplines.org/mirror/papers/1
  21. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolati, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.PubMedCrossRefGoogle Scholar
  22. Gallese, V., Fogassi, L., Fadiga, L., & Rizzolatti, G. (2002). Action representation and the inferior parietal lobule. In W. Prinz & B. Hommel (Eds.), Attention & performance XIX: Common mechanisms in perception and action (pp. 247–66). Oxford, England: Oxford University Press.Google Scholar
  23. Giraux, P., & Sirigu, A. (2003) Illusory movements of the paralysed limb restore motor cortex activity. Neuroimage, 20, S107–111.PubMedCrossRefGoogle Scholar
  24. Goel, V., Grafman, J., Sadato, N., & Hallett, M. (1995). Modeling other minds. NeuroReport, 6, 1741–1746.PubMedCrossRefGoogle Scholar
  25. Grezes, J., Fonlupt, P., Bertenthal, B., Delon-Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions? Neuroimage, 13, 775–785.PubMedCrossRefGoogle Scholar
  26. Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., et al.. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711–720.PubMedCrossRefGoogle Scholar
  27. Iacoboni, M., Koski, L., Brass, M., Bekkering, H., Woods, R. P., Dubeau, M.-C., et al. (2001). Re-afferent copies of imitated actions in the right superior temporal cortex. Proceedings of the National Academy of Sciences, USA, 98, 13995–13999.Google Scholar
  28. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79.PubMedCrossRefGoogle Scholar
  29. Johnson, S. C., Baxter, L. C., Wilder, L. S., Pipe, J. G., Heiserman, J. E., & Prigatano, G. P. (2002). Neural correlates of self-reflection. Brain, 125, 1808–1814.PubMedCrossRefGoogle Scholar
  30. Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–794.PubMedCrossRefGoogle Scholar
  31. Kendon, A. (1970). Movement coordination in social interaction: Some examples described. Acta Psychologica, 32, 101–125.CrossRefGoogle Scholar
  32. Kohler, W. (1929). Gestalt psychology. New York: Liveright.Google Scholar
  33. Kohler, W. (1947). Gestalt psychology (2nd ed.). New York: Liveright.Google Scholar
  34. Lawrence, A. D., Calder, A. J., McGowan, S. W., & Grasby, P. M. (2002). Selective disruption of the recognition of facial expressions of anger. Neuroreport, 13, 881–884.PubMedCrossRefGoogle Scholar
  35. Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 1–36.PubMedCrossRefGoogle Scholar
  36. McCabe, C. S., Haigh, R. C., Ring, E. F., Halligan, P. W., Wall, P. D., & Blake, D. R. (2003). A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1). Rheumatology, 42, 97–101.PubMedCrossRefGoogle Scholar
  37. Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198, 75–78.PubMedCrossRefGoogle Scholar
  38. Morrison, I., Lloyd, D., Di Pellegrino, G., & Roberts, N. (2004). Vicarious responses to pain in anterior cingulate cortex: Is empathy a multisensory issue? Cognitive, Affective, and Behavioral Neuroscience, 4, 270–278.CrossRefGoogle Scholar
  39. Oberman, L.M., & Ramachandran, V.S. (2007). The simulating social mind: The role of simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133, 310–327.Google Scholar
  40. Ochsner, K. N., Knierim, K., Ludlow, D., Hanelin, J., Ramachandran, T., & Mackey, S. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journalof Cognitive Neuroscience, 16, 1746–1772.CrossRefGoogle Scholar
  41. Ohala, J. J. (1996). Speech perception is hearing sounds, not tongues. Journal of the Acoustical Society of America, 99, 1718–1725.PubMedCrossRefGoogle Scholar
  42. Ramachandran, V. S. (2000). Mirror neurons and imitation learning as the driving force behind “the great leap forward” in human evolution. Retrieved August 25, 2006, from http://www.edge.org/documents/archive/edge69.html
  43. Ramachandran, V. S., & W. Hirstein (1998), The perception of phantom limbs: The D.O. Hebb lecture, Brain, 9(121), 1603–1630.CrossRefGoogle Scholar
  44. Ramachandran, V.S., & Hubbard, E.M. (2001). Synaesthesia – A window into perception, thought and language. Journal of Consciousness Studies, 8(12), 3–34.Google Scholar
  45. Ramachandran, V. S., & Rogers-Ramachandran, D. (1996a, August 8). Denial of disabilities in anosognosia. Nature, 382, 501.Google Scholar
  46. Ramachandran, V. S., & Rogers-Ramachandran, D. (1996b). Synaesthesia in phantom limbs induced with mirrors. Proceedings of the Royal Society of London, 263, 377–386.Google Scholar
  47. Reed, C. L., & Farah, M. J. (1995). The psychological reality of the body schema: A test with normal participants. Journal of Experimental Psychology: Human Perception and Performance, 21, 334–343.PubMedCrossRefGoogle Scholar
  48. Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004, February 20). Empathy for pain involves the affective but not sensory components of pain. Science, 303, 1157–1162.Google Scholar
  49. Sprengelmeyer, R., Young, A. W., Schroeder, U., Grossenbacher, P. G., Federlein, J., Buttner, T., et al. (1999). Knowing no fear. Proceedings: Biological Sciences, 266, 2451–2456.Google Scholar
  50. Sütbeyaz, S., Yavuzer, G., Sezer, N., & Koseoglu, F. (2007) Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 88, 555–559.PubMedCrossRefGoogle Scholar
  51. Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing: A neurophysiological study. Neuron, 31(1), 155–165.PubMedCrossRefGoogle Scholar
  52. Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, W. J. (2001). Functional neuroanatomy of biological motion perception in humans. Proceedings of the National Academy of Science, USA, 98, 11656–11661.Google Scholar
  53. Visalberghi, E., & Fragaszy, D. (2001). Do monkeys ape? Ten years after. In K. Dautenhahn & C. Nehaniv (Eds.), Imitation in animals and artifacts (pp. 471–499). Boston: M.I.T. Press.Google Scholar
  54. Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41, 989–994.PubMedCrossRefGoogle Scholar
  55. Whiten, A., & Ham, R. (1992). On the nature and evolution of imitation in the animal kingdom: Reappraisal of a century of research. In P. B. J. Slater, J. S. Rosenblatt, C. Beer, & M. Milinski (Eds.), Advances in the study of behavior (pp. 239–83). San Diego, CA: Academic Press.Google Scholar
  56. Wicker, B., Keysers, C., Plailly, J., Royet, J. P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655–664.PubMedCrossRefGoogle Scholar
  57. Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7, 701–702.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of NeurologyHarvard UniversityBostonUSA

Personalised recommendations