Osteoporosis pp 207-239 | Cite as

Exercise in the Prevention of Osteoporosis-Related Fractures

  • Belinda R. Beck
  • Kerri M. Winters-Stone
Chapter
Part of the Contemporary Endocrinology book series (COE)

Summary

The prevention of osteoporotic fracture by exercise intervention requires a two-pronged approach, that is, the maximization of bone strength and the minimization of falls. The former is most effectively addressed before peak bone mass has been attained, so that the latter is the primary option for the older, osteoporotic individual. Intense animal and human research activity over the last 20 years has generated a wealth of data that has led to recommendations for exercise prescriptions to both enhance bone strength and minimize risk of falling. Whether those exercise protocols will be shown to effectively reduce actual fracture incidence requires the analysis of longer term data than is currently available.

Key Words

Exercise osteoporosis bone mass hip fracture bone strength physical activity 

References

  1. 1.
    Krolner B, Toft B. Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci (Lond) 1983;64:537–540.Google Scholar
  2. 2.
    Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE. Effect of prolonged bed rest on bone mineral. Metabolism 1970;19:1071–1084.PubMedCrossRefGoogle Scholar
  3. 3.
    Tilton FE, Degioanni JJ, Schneider VS. Long-term follow-up of Skylab bone demineralization. Aviat Space Environ Med 1980;51:1209–1213.PubMedGoogle Scholar
  4. 4.
    Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 1990;5:843–850.PubMedCrossRefGoogle Scholar
  5. 5.
    NASA. The effects of space travel on the musculoskeletal system, 1992.Google Scholar
  6. 6.
    Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int 2006;17:180–192.PubMedCrossRefGoogle Scholar
  7. 7.
    Lang TF, Leblanc AD, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res 2006;21:1224–1230.PubMedCrossRefGoogle Scholar
  8. 8.
    Courtney AC, Wachtel EF, Myers ER, Hayes WC. Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 1994;55:53–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Courtney AC, Wachtel EF, Myers ER, Hayes WC. Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 1995;77:387–395.PubMedGoogle Scholar
  10. 10.
    Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA. Etiology and prevention of age-related hip fractures. Bone 1996;18:77S–86S.PubMedCrossRefGoogle Scholar
  11. 11.
    Moro M, Hecker AT, Bouxsein ML, Myers ER. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int 1995;56:206–209.PubMedCrossRefGoogle Scholar
  12. 12.
    Myers ER, Hecker AT, Rooks DS, Hayes WC. Correlations of the failure load of the femur with densitometric and geometric properties from QDR. Transactions of the 38th Annual Meeting of the Orthopaedic Research Society 1992:115.Google Scholar
  13. 13.
    Myers ER, Sebeny EA, Hecker AT, et al. Correlations between photon absorption properties and failure load of the distal radius in vitro. Calcif Tissue Int 1991;49:292–297.PubMedCrossRefGoogle Scholar
  14. 14.
    Seeman E, Delmas PD. Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med 2006;354:2250–2261.PubMedCrossRefGoogle Scholar
  15. 15.
    Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES. Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res 2006;21:1197–1206.PubMedCrossRefGoogle Scholar
  16. 16.
    Ashe MC, Khan KM, Kontulainen SA, et al. Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 2006;17:1241–1251.PubMedCrossRefGoogle Scholar
  17. 17.
    Brodt MD, Pelz GB, Taniguchi J, Silva MJ. Accuracy of peripheral quantitative computed tomography (pQCT) for assessing area and density of mouse cortical bone. Calcif Tissue Int 2003;73:411–418.PubMedCrossRefGoogle Scholar
  18. 18.
    DiLeo C, Tarolo GL, Bagni B, et al. Peripheral quantitative Computed Tomography (PQCT) in the evaluation of bone geometry, biomechanics and mineral density in postmenopausal women. Radiol Med (Torino) 2002;103:233–241.Google Scholar
  19. 19.
    Jiang Y, Zhao J, Augat P, et al. Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 1998;13:1783–1790.PubMedCrossRefGoogle Scholar
  20. 20.
    Moisio KC, Podolskaya G, Bamhart B, Berzins A, Sumner DR. pQCT provides better prediction of canine femur breaking load than does DXA. J Musculoskelet Neuronal Interact 2003;3:240–245.PubMedGoogle Scholar
  21. 21.
    Siu WS, Qin L, Leung KS. pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength. J Bone Miner Metab 2003;21:316–322.PubMedCrossRefGoogle Scholar
  22. 22.
    Wosje KS, Binkley TL, Specker BL. Comparison of bone parameters by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography in Hutterite vs. non-Hutterite women aged 35–60 years. Bone 2001;29(2):192–197.PubMedCrossRefGoogle Scholar
  23. 23.
    Sakata S, Barkmann R, Lochmuller EM, Heller M, Gluer CC. Assessing bone status beyoned BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges. J Bone Miner Res 2004;19:924–930.PubMedCrossRefGoogle Scholar
  24. 24.
    Hong J, Hipp JA, Mulkern RV, Jaramillo D, Snyder BD. Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int 2000;66:74–78.PubMedCrossRefGoogle Scholar
  25. 25.
    Drinkwater BL. 1994 C. H. McCloy Research Lecture: does physical activity play a role in preventing osteoporosis? Res Q Exerc Sport 1994;65:197–206.PubMedGoogle Scholar
  26. 26.
    Winters-Stone KM, Snow CM. Musculoskeletal response to exercise is greatest in women with low initial values. Med Sci Sports Exerc 2003;35:1691–1696.PubMedCrossRefGoogle Scholar
  27. 27.
    Korpelainen R, Keinanen-Kiukaanniemi S, Heikkinen J, Vaananen K, Korpelainen J. Effect of impact exercise on bone mineral density in elderly women with low BMD: a population-based randomized controlled 30-month intervention. Osteoporos Int 2006;17:109–118.PubMedCrossRefGoogle Scholar
  28. 28.
    Carter DR. Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 1984;36:S 19–S24.PubMedCrossRefGoogle Scholar
  29. 29.
    Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996;11:218–225.PubMedCrossRefGoogle Scholar
  30. 30.
    Maddalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int 2000;66:399–404.PubMedCrossRefGoogle Scholar
  31. 31.
    Cussler EC, Lohman TG, Going SB, et al. Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc 2003;35:10–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Jamsa T, Vainionpaa A, Korpelainen R, Vihriala E, Leppaluoto J. Effect of daily physical activity on proximal femur. Clin Biomech (Bristol, Avon) 2006;21:1–7.CrossRefGoogle Scholar
  33. 33.
    Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ, Jr. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 1988;108:824–828.PubMedGoogle Scholar
  34. 34.
    Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res. 2000;15:2495–2503.PubMedCrossRefGoogle Scholar
  35. 35.
    Snow CM, Shaw JM, Winters KM, Witzke KA. Long-term exercise using weighted vests prevents hip. J Gerontol Med Sci 2000;55A(9):M489–M491.Google Scholar
  36. 36.
    Fuchs R, Snow C. Gains in hip bone mass from 7 months of high-impact jumping are maintained after 7 months of detraining. J Pediatr 2002;141:357–362.PubMedCrossRefGoogle Scholar
  37. 37.
    Kannus P, Haapasalo H, Sankelo M, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 1995;123:27–31.PubMedGoogle Scholar
  38. 38.
    Chien MY, Wu YT, Hsu AT, Yang RS, Lai JS. Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women. Calcif Tissue Int 2000;67:443–448.PubMedCrossRefGoogle Scholar
  39. 39.
    Iwamoto J, Takeda T, Otani T, Yabe Y. Effect of increased physical activity on bone mineral density in postmenopausal osteoporotic women. Keio J Med 1998;47:157–161.PubMedGoogle Scholar
  40. 40.
    Hatori M, Hasegawa A, Adachi H, et al. The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int 1993;52:411–414.PubMedCrossRefGoogle Scholar
  41. 41.
    Kohrt WM, Ehsani AA, Birge SJ, Jr. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Res 1997;12:1253–1261.PubMedCrossRefGoogle Scholar
  42. 42.
    Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA 1994;272:1909–1914.PubMedCrossRefGoogle Scholar
  43. 43.
    Taaffe DR, Robinson TL, Snow CM, Marcus R. High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res 1997;12:255–260.PubMedCrossRefGoogle Scholar
  44. 44.
    Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporos Int 1994;4:72–75.PubMedCrossRefGoogle Scholar
  45. 45.
    Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise [see comments]. J Bone Miner Res 1998;13:1805–1813.PubMedCrossRefGoogle Scholar
  46. 46.
    Raab DM, Smith EL, Crenshaw TD, Thomas DP. Bone mechanical properties after exercise training in young and old rats. J Appl Physiol 1990;68:130–134.PubMedGoogle Scholar
  47. 47.
    Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int 1992;50:306–313.PubMedCrossRefGoogle Scholar
  48. 48.
    Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 2002;17:1545–1554.PubMedCrossRefGoogle Scholar
  49. 49.
    Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 1984;66:397–402.PubMedGoogle Scholar
  50. 50.
    Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res 1994:165–174.Google Scholar
  51. 51.
    O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech 1982;15:767–781.PubMedCrossRefGoogle Scholar
  52. 52.
    Gross TS, Edwards JL, McLeod KJ, Rubin CT. Strain gradients correlate with sites of periosteal bone formation. J Bone Miner Res 1997;12:982–988.PubMedCrossRefGoogle Scholar
  53. 53.
    Osteoporosis prevention, diagnosis, and therapy. JAMA 2001;285:785–795.Google Scholar
  54. 54.
    Welten DC, Kemper HCG, Post GB, et al. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 1994;9:1089–1096.PubMedCrossRefGoogle Scholar
  55. 55.
    Boot AM, de Ridder MAJ, Pols HAP, Krenning EP, de Muinck Keizer-Schrama SMPF. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 1997;82:57–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Duppe H, Gardsell P, Johnell O, Nilsson BE, Ringsberg K. Bone mineral density, muscle strength and physical activity. A population-based study of 332 subjects aged 15–42 years. Acta Orthop Scan 1997;68:97–103.CrossRefGoogle Scholar
  57. 57.
    Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact- loading sports. Osteoporos Int 1998;8:152–158.PubMedCrossRefGoogle Scholar
  58. 58.
    Bass S, Pearce G, Bradney M, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 1998;13:500–507.PubMedCrossRefGoogle Scholar
  59. 59.
    Grimston SK, Willows ND, Hanley DA. Mechanical loading regime and its relationship to bone mineral density in children. Med Sci Sports Exerc 1993;25:1203–1210.PubMedGoogle Scholar
  60. 60.
    Gunnes M, Lehmann EH. Physical activity and dietary constituents as predictors of forearm cortical and trabecular bone gain in healthy children and adolescents: a prospective study. Acta Paediatr 1996;85: 19–25.PubMedCrossRefGoogle Scholar
  61. 61.
    Tsai SC, Kao CH, Wang SJ. Comparison of bone mineral density between athletic and non-athletic Chinese male adolescents. Kaohsiung J Med Sci 1996;12:573–580.PubMedGoogle Scholar
  62. 62.
    Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan Bone Mineral Accrual Study. J Bone Miner Res 1999;14:1672–1679.PubMedCrossRefGoogle Scholar
  63. 63.
    Khan KM, Bennell KL, Hopper JL, et al. Self-reported ballet classes undertaken at age 10–12 years and hip bone mineral density in later life. Osteoporos Int 1998;8:165–173.PubMedCrossRefGoogle Scholar
  64. 64.
    Daly RM, Rich PA, Klein R, Bass S. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: A prospective study in young male gymnasts [In Process Citation]. J Bone Miner Res 1999;14:1222–1230.PubMedCrossRefGoogle Scholar
  65. 65.
    Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC, Jr. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr 1994;125:201–207.PubMedCrossRefGoogle Scholar
  66. 66.
    Haapasalo H, Kannus P, Sievanen H, et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 1998;13:310–319.PubMedCrossRefGoogle Scholar
  67. 67.
    Nordstrom P, Nordstrom G, Thorsen K, Lorentzon R. Local bone mineral density, muscle strength, and exercise in adolescent boys: a comparitive study of two groups with different muscle strength and exercise levels. Calcif Tissue Int 1996;58:402–408.PubMedCrossRefGoogle Scholar
  68. 68.
    Rico H, Revilla M, Cardenas JL, et al. Influence of weight and seasonal changes and radiogrammetry and bone densitometry. Calcif Tissue Int 1994;54:385–388.PubMedCrossRefGoogle Scholar
  69. 69.
    Dalen N, Laftman P, Ohlsen H, Stromberg L. The effect of athletic activity on the bone mass in human diaphyseal bone. Orthopedics 1985;8:1139–1141.PubMedGoogle Scholar
  70. 70.
    Haapasalo H, Sievanen H, Kannus P, Heinenon A, Oja P, Vuori I. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res 1996;11:864–872.PubMedCrossRefGoogle Scholar
  71. 71.
    Moyer-Mileur L, Luetkemeier M, Boomer L, Chan GM. Effect of physical activity on bone mineralization in premature infants. J Pediatr 1995;127:620–625.PubMedCrossRefGoogle Scholar
  72. 72.
    Litmanovitz I, Dolfin T, Friedland O, et al. Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics 2003;112:15–19.PubMedCrossRefGoogle Scholar
  73. 73.
    Specker BL, Mulligan L, Ho M. Longitudinal study of calcium intake, physical activity, and bone mineral content in infants 6–18 months of age. J Bone Miner Res 1999;14:569–576.PubMedCrossRefGoogle Scholar
  74. 74.
    Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res 2003;18:885–892.PubMedCrossRefGoogle Scholar
  75. 75.
    Specker B, Binkley T, Fahrenwald N. Increased periosteal circumference remains present 12 months after an exercise intervention in preschool children. Bone 2004;35:1383–1388.PubMedCrossRefGoogle Scholar
  76. 76.
    Fuchs R, Bauer J, Snow C. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 2001;16:148–156.PubMedCrossRefGoogle Scholar
  77. 77.
    Bradney M, Pearce G, Naughton G, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study [see comments]. J Bone Miner Res 1998;13:1814–1821.PubMedCrossRefGoogle Scholar
  78. 78.
    MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone 2004;34:755–764.PubMedCrossRefGoogle Scholar
  79. 78a.
    Weeks BK, Young CM, and Beck BR. Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and girls: Results of the POWER PE study. Journal of Bone and Mineral Research, 2008;23(7):1002–1011.Google Scholar
  80. 79.
    Johannsen N, Binkley T, Englert V, Neiderauer G, Specker B. Bone response to jumping is site-specific in children: a randomized trial. Bone 2003;33:533–539.PubMedCrossRefGoogle Scholar
  81. 80.
    McKay HA, Petit MA, Schutz RW, Prior JC, Barr SI, Khan KM. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr 2000;136:156–162.PubMedCrossRefGoogle Scholar
  82. 81.
    Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 1997;12:1453–1462.PubMedCrossRefGoogle Scholar
  83. 82.
    MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics 2003;112:e447.PubMedCrossRefGoogle Scholar
  84. 83.
    Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 2002;17:363–372.PubMedCrossRefGoogle Scholar
  85. 84.
    Mackelvie KJ, McKay HA, Khan KM, Crocker PR. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 2001;139:501–508.PubMedCrossRefGoogle Scholar
  86. 85.
    Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc 2000;32:1051–1057.PubMedCrossRefGoogle Scholar
  87. 86.
    Nichols DL, Sanborn CF, Love AM. Resistance training and bone mineral density in adolescent females. J Pediatr 2001;139:494–500.PubMedCrossRefGoogle Scholar
  88. 87.
    Heinonen A, Sievanen H, Kannus P, Oja P, Pasanen M, Vuori I. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 2000;11:1010–1017.PubMedCrossRefGoogle Scholar
  89. 88.
    Snow-Harter C, Whalen R, Myburgh K, Arnaud S, Marcus R. Bone mineral density, muscle strength, and recreational exercise in men. J Bone Miner Res 1992;7:1291–1296.PubMedCrossRefGoogle Scholar
  90. 89.
    Madsen KL, Adams WC, Van Loan MD. Effects of physical activity, body weight and composition, and muscular strength on bone density in young women. Med Sci Sports Exerc 1998;30:114–120.PubMedGoogle Scholar
  91. 90.
    Pettersson U, Nordstrom P, Lorentzon R. A comparison of bone mineral density and muscle strength in young male adults with different exercise level. Calcif Tissue Int 1999;64:490–498.PubMedCrossRefGoogle Scholar
  92. 91.
    Karlsson MK, Hasserius R, Obrant KJ. Bone mineral density in athletes during and after career: A comparison between loaded and unloaded skeletal regions. Calcif Tissue Int 1996;59:245–248.PubMedCrossRefGoogle Scholar
  93. 92.
    Bennell KL, Malcolm SA, Khan KM, et al. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone 1997;20:477–484.PubMedCrossRefGoogle Scholar
  94. 93.
    Brahm H, Strom H, Piehl-Aulin K, Mallmin H, Ljunghall S. Bone metabolism in endurance trained athletes: a comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif Tissue Int 1997;61:448–454.PubMedCrossRefGoogle Scholar
  95. 94.
    Wittich A, Mautalen CA, Oliveri MB, Bagur A, Somoza F, Rotemberg E. Professional football (soccer) players have a markedly greater skeletal mineral content, density and size than age- and BMI-matched controls. Calcif Tissue Int 1998;63:112–117.PubMedCrossRefGoogle Scholar
  96. 95.
    Uusi-Rasi K, Sievanen H, Vuori I, Pasanen M, Heinonen A, Oja P. Associations of physical activity and calcium intake with bone mass and size in healthy women at different ages. J Bone Miner Res 1998;13:133–142.PubMedCrossRefGoogle Scholar
  97. 96.
    Tsuzuku S, Ikegami Y, Yabe K. Effects of high-intensity resistance training on bone mineral density in young male powerlifters. Calcif Tissue Int 1998;63:283–286.PubMedCrossRefGoogle Scholar
  98. 97.
    Sone T, Miyake M, Takeda N, Tomomitsu T, Otsuka N, Fukunaga M. Influence of exercise and degenerative vertebral changes on BMD: a cross-sectional study in Japanese men. Gerontology 1996;42:57–66.PubMedCrossRefGoogle Scholar
  99. 98.
    Calbet JA, Moysi JS, Dorado C, Rodriguez LP. Bone mineral content and density in professional tennis players. Calcif Tissue Int 1998;62:491–496.PubMedCrossRefGoogle Scholar
  100. 99.
    Block JE, Friedlander AL, Brooks GA, Steiger P, Stubbs HA, Genant HK. Determinants of bone density among athletes engaged in weight-bearing and non-weight-bearing activity. J Appl Physiol 1989;67:1100–1105.PubMedGoogle Scholar
  101. 100.
    Block JE, Genant HK, Black D. Greater vertebral bone mineral mass in exercising young men. West J Med 1986;145:39–42.PubMedGoogle Scholar
  102. 101.
    Colletti LA, Edwards J, Gordon L, Shary J, Bell NH. The effects of muscle-building exercise on bone mineral density of the radius, spine, and hip in young men. Calcif Tissue Int 1989;45:12–14.PubMedCrossRefGoogle Scholar
  103. 102.
    Karlsson MK, Johnell O, Obrant KJ. Bone mineral density in weight lifters. Calcif Tissue Int 1993;52:212–215.PubMedCrossRefGoogle Scholar
  104. 103.
    Mayoux-Benhamou MA, Leyge JF, Roux C, Revel M. Cross-sectional study of weight-bearing activity on proximal femur bone mineral density. Calcif Tissue Int 1999;64:179–183.PubMedCrossRefGoogle Scholar
  105. 104.
    Need AG, Wishard JM, Scopacasa F, Horowitz M, Morris HA, Nordin BE. Effect of physical activity on femoral bone density on men. Br Med J 1995;310:6993:1501–1502.Google Scholar
  106. 105.
    Nilsson BE, Westlin NE. Bone density in athletes. Clin Orthop Relat Res 1971;77:179–182.PubMedGoogle Scholar
  107. 106.
    Leichter I, Simkin A, Margulies JY, et al. Gain in mass density of bone following strenuous physical activity. J Orthop Res 1989;7:86–90.PubMedCrossRefGoogle Scholar
  108. 107.
    MacDougall JD, Webber CE, Martin J, et al. Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol 1992;73:1165–1170.PubMedGoogle Scholar
  109. 108.
    Suominen H, Rahkila P. Bone mineral density of the calcaneus in 70- to 80-yr-old male athletes and a population sample. Med Sci Sports Exerc 1991;23:1227–1233.PubMedGoogle Scholar
  110. 109.
    Hutchinson TM, Whalen RT, Cleet TM, Vogel JM, Arnaud SB. Factors in daily physical activity related to calcaneal mineral density in men. Med Sci Sports Exerc 1995;27:745–750.PubMedGoogle Scholar
  111. 110.
    Hamdy RC, Anderson JS, Whalen KE, Harvill LM. Regional differences in bone density of young men involved in different exercises. Med Sci Sports Exerc 1994;26:884–888.PubMedGoogle Scholar
  112. 111.
    Aloia JF, Cohn SH, Babu T, Abesamis C, Kalici N, Ellis K. Skeletal mass and body composition in marathon runners. Metabolism 1978;27:1793–1796.PubMedCrossRefGoogle Scholar
  113. 112.
    Flodgren G, Hedelin R, Henriksson-Larsen K. Bone mineral density in flatwater sprint kayakers. Calcif Tissue Int 1999;64:374–379.PubMedCrossRefGoogle Scholar
  114. 113.
    Myburgh KH, Charette S, Zhou L, Steele CR, Arnaud S, Marcus R. Influence of recreational activity and muscle strength on ulnar bending stiffness in men. Med Sci Sports Exerc 1993;25:592–596.PubMedGoogle Scholar
  115. 114.
    Dalen N, Olsson KE. Bone mineral content and physical activity. Acta Orthop Scand 1974;45:170–174.PubMedCrossRefGoogle Scholar
  116. 115.
    Michel BA, Bloch DA, Fries JF. Weight-bearing exercise, overexercise, and lumbar bone density over age 50 years. Arch Int Med 1989;149:2325–2329.CrossRefGoogle Scholar
  117. 116.
    Taaffe DR, Snow-Harter C, Connolly DA, Robinson TL, Brown MD, Marcus R. Differential effects of swimming versus weight-bearing activity on bone mineral status on eumenorrheic athletes. J Bone Miner Res 1995;10:586–593.PubMedCrossRefGoogle Scholar
  118. 117.
    Orwoll ES, Ferar J, Ovaitt SK, McClung MR, Huntington K. The relationship of swimming exercise to bone mass in men and women. Arch Int Med 1989;149:2197–2200.CrossRefGoogle Scholar
  119. 118.
    Ashizawa N, Nonaka K, Michikami S, et al. Tomographical description of tennis-loaded radius: reciprocal relation between bone size and volumetric BMD. J Appl Physiol 1999;86:1347–1351.PubMedGoogle Scholar
  120. 119.
    Krahl H, Michaelis U, Pieper H-G, Quack G, Montag M. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med 1994;22:751–757.PubMedCrossRefGoogle Scholar
  121. 120.
    Smith R, Rutherford OM. Spine and total body bone mineral density and serum testosterone levels in male athletes. Eur J Appl Physiol 1993;67:330–334.CrossRefGoogle Scholar
  122. 121.
    Ryan AS, Elahi D. Loss of bone mineral density in women athletes during aging. Calcif Tissue Int 1998;63:287–292.PubMedCrossRefGoogle Scholar
  123. 122.
    Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int 1995;57:325–328.PubMedCrossRefGoogle Scholar
  124. 123.
    Glynn NW, Meilahn EN, Charron M, Anderson SJ, Kuller LH, Cauley JA. Determinants of bone mineral density in older men. J Bone Miner Res. 1995;10:1769–1777.PubMedCrossRefGoogle Scholar
  125. 124.
    Pollock ML, Mengelkoch LJ, Graves JE, et al. Twenty-year follow-up of aerobic power and body composition of older track athletes. J Appl Physiol 1997;82:1508–1516.PubMedGoogle Scholar
  126. 125.
    Greendale GA, Barrett-Connor E, Edelstein S, Ingles S, Haile R. Lifetime leisure exercise and osteoporosis. The Rancho Bernardo study. Am J Epidemiol 1995;141:951–959.PubMedGoogle Scholar
  127. 126.
    Ulrich CM, Georgiou CC, Gillis DE, Snow CM. Lifetime physical activity is associated with bone mineral density in premenopausal women. J Womens Health 1999;8:365–375.PubMedCrossRefGoogle Scholar
  128. 127.
    Bassey E, Ramsdale S. Increase in femoral bone mineral density in young women following high impact exercise. Osteoporos Int 1994;4:72–75.PubMedCrossRefGoogle Scholar
  129. 128.
    Friedlander AL, Genant HK, Sadowsky S, Byl NN, Gluer CC. A two-year program of aerobics and weight-training enhances BMD of young women. J Bone Miner Res 1995;10:574.PubMedCrossRefGoogle Scholar
  130. 129.
    Heinonen A, Sievanen H, Kannus P, Oja P, Vuori I. Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women. J Bone Miner Res 1996;11:490–501.PubMedCrossRefGoogle Scholar
  131. 130.
    Lohman T, Going S, Pamenter R, et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995;10:1015.PubMedCrossRefGoogle Scholar
  132. 131.
    Snow-Harter C, Bouxsein M, Lewis BT, Carter DR, Marcus R. Effects of resistance and endurance exercise on bone mineral status of young women: A randomized exercise intervention trial. J Bone Miner Res 1992;7:761–769.PubMedCrossRefGoogle Scholar
  133. 132.
    Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res 2000;15:2495–2503.PubMedCrossRefGoogle Scholar
  134. 133.
    Snow CM, Williams DP, LaRiviere J, Fuchs RK, Robinson TL. Bone gains and losses follow seasonal training and detraining in gymnasts. Calcif Tissue Int 2001;69:7–12.PubMedCrossRefGoogle Scholar
  135. 134.
    Beck BR, Doecke JD. Seasonal bone mass of college and senior female field hockey players. J Sports Med Phys Fitness 2005;45:347–354.PubMedGoogle Scholar
  136. 135.
    Kato T, Terashima T, Yamashita T, Hatanaka Y, Honda A, Umemura Y. Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol 2006;100:839–843.PubMedCrossRefGoogle Scholar
  137. 136.
    Vainionpaa A, Korpelainen R, Leppaluoto J, Jamsa T. Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int 2005;16:191–197.PubMedCrossRefGoogle Scholar
  138. 137.
    Heinonen A, Kannus P, Sievanen H, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures [see comments]. Lancet 1996;348:1343–1347.PubMedCrossRefGoogle Scholar
  139. 138.
    Heinonen A, Kannus P, Sievanen H, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 1996;348:1343–1347.PubMedCrossRefGoogle Scholar
  140. 139.
    Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J. Bone Miner Res 2000;15:2495–2503.PubMedCrossRefGoogle Scholar
  141. 140.
    Dornemann TM, McMurray RG, Renner JB, Anderson JJ. Effects of high-intensity resistance exercise on bone mineral density and muscle strength of 40–50-year-old women. J Sports Med Phys Fitness 1997;37:246–251.PubMedGoogle Scholar
  142. 141.
    Heinonen A, Oja P, Sievanen H, Pasanen M, Vuori I. Effect of two training regimens on bone mineral density in healthy perimenopausal women: A randomized controlled trial. J Bone Miner Res 1998;13:483–490.PubMedCrossRefGoogle Scholar
  143. 142.
    Pruitt LA, Jackson RD, Bartells RL, Lehnhard HJ. Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 1992;7:179–185.PubMedCrossRefGoogle Scholar
  144. 143.
    Grove KA, Londeree BR. Bone density in postmenopausal women: high impact vs low impact exercise. Med Sci Sports Exerc 1992;24:1190–1194.PubMedGoogle Scholar
  145. 144.
    Wu J, Oka J, Tabata I, et al. Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women: a 1-year randomized placebo-controlled trial. J Bone Miner Res 2006;21:780–789.PubMedCrossRefGoogle Scholar
  146. 145.
    Maddalozzo G, Maddalozzo GF, Widrick JJ, Cardinal BJ, Winters-Stone KM, Hoffman MA, Snow CM. The effects of hormone replacement therapy and resistance training on spine bone mineral density in early postmenopausal women. Bone 2007;40(5):1244–1251.Google Scholar
  147. 146.
    Cussler EC, Going SB, Houtkooper LB, et al. Exercise frequency and calcium intake predict 4-year bone changes in postmenopausal women. Osteoporos Int 2005;16:2129–2141.PubMedCrossRefGoogle Scholar
  148. 147.
    Revel M, Mayoux-Benhamou MA, Rabourdin JP, Bagheri F, Roux C. One-year psoas training can prevent lumbar bone loss in postmenopausal women: a randomized controlled trial. Calcif Tissue Int 1993;53:307–311.PubMedCrossRefGoogle Scholar
  149. 148.
    Smidt GL, Lin SY, O'Dwyer KD, Blanpied PR. The effect of high-intensity trunk exercise on bone mineral density of postmenopausal women. Spine 1992;17:280–285.PubMedCrossRefGoogle Scholar
  150. 149.
    Engelke K, Kemmler W, Lauber D, Beeskow C, Pintag R, Kalender WA. Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Osteoporos Int 2006;17:133–142.PubMedCrossRefGoogle Scholar
  151. 150.
    Pruitt LA, Taaffe DR, Marcus R. Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 1995;10:1788–1795.PubMedCrossRefGoogle Scholar
  152. 151.
    Sinaki M, Wahner HW, Offord KP, Hodgson SF. Efficacy of nonloading exercises in prevention of vertebral bone loss in postmenopausal women: a controlled trial. Mayo Clin Proc 1989;64:762–769.PubMedGoogle Scholar
  153. 152.
    Bassey EJ, Ramsdale SJ. Weight-bearing exercise and ground reaction forces: A 12-month randomized controlled trial of effects on bone mineral density in healthy postmenopausal women. Bone 1995;16: 469–476.PubMedGoogle Scholar
  154. 153.
    Martyn-St James M, Carroll S. High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int 2006;17:1225–1240.PubMedCrossRefGoogle Scholar
  155. 154.
    Liu-Ambrose TY, Khan KM, Eng JJ, Heinonen A, McKay HA. Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom 2004;7:390–398.PubMedCrossRefGoogle Scholar
  156. 155.
    Karinkanta S, Heinonen A, Sievanen H, et al. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int 2006.Google Scholar
  157. 156.
    Welsh L, Rutherford OM. Hip bone mineral density is improved by high-impact aerobic exercise in postmenopausal women and men over 50 years. Eur J Appl Physiol Occup Physiol 1996;74:511–517.PubMedCrossRefGoogle Scholar
  158. 157.
    Krolner B, Toft B, Nielsen SP, Tondevold E. Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clinical Science 1983;64:541–546.PubMedGoogle Scholar
  159. 158.
    Vainionpaa A, Korpelainen R, Sievanen H, Vihriala E, Leppaluoto J, Jamsa T. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone 2006.Google Scholar
  160. 159.
    Williams JA, Wagner J, Wasnich R, Heilbrun L. The effect of long-distance running upon appendicular bone mineral content. Med Sci Sports Exerc 1984;16:223–227.PubMedGoogle Scholar
  161. 160.
    Rundgren A, Aniansson A, Ljungberg P, Wetterqvist H. Effects of a training programme for elderly people on mineral content of the heel bone. Arch Gerontol Geriatr 1984;3:243–248.PubMedCrossRefGoogle Scholar
  162. 161.
    Chubak J, Ulrich CM, Tworoger SS, et al. Effect of exercise on bone mineral density and lean mass in postmenopausal women. Med Sci Sports Exerc 2006;38:1236–1244.PubMedCrossRefGoogle Scholar
  163. 162.
    Bravo G, Gauthier P, Roy PM, Payette H, Gaulin P. A weight-bearing, water-based exercise program for osteopenic women: its impact on bone, functional fitness, and well-being. Arch Phys Med Rehabil 1997;78:1375–1380.PubMedCrossRefGoogle Scholar
  164. 163.
    Cavanaugh DJ, Cann CE. Brisk walking does not stop bone loss in postmenopausal women. Bone 1988;9:201–204.PubMedCrossRefGoogle Scholar
  165. 164.
    Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 2006;21:1464–1474.PubMedCrossRefGoogle Scholar
  166. 165.
    Johnell O, Eisman J. Whole lotta shakin' goin' on. J Bone Miner Res 2004;19:1205–1207.PubMedCrossRefGoogle Scholar
  167. 166.
    Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 2004;19:343–351.PubMedCrossRefGoogle Scholar
  168. 167.
    Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 2004;19:352–359.PubMedCrossRefGoogle Scholar
  169. 168.
    Beck BR, Kent K, Holloway L, Marcus R. Novel, high frequency, low strain, mechanical loading for premenopausal women with low bone mass: early findings. J Bone Miner Metab 2006;24(6):505–507.PubMedCrossRefGoogle Scholar
  170. 169.
    Shaw JM, Snow CM. Weighted vest exercise improves indices of fall risk in older women. J Gerontol A Biol Sci Med Sci 1998;53:M53–M58.PubMedGoogle Scholar
  171. 170.
    Nevill AM, Burrows M, Holder RL, Bird S, Simpson D. Does lower-body BMD develop at the expense of upper-body BMD in female runners? Med Sci Sports Exerc 2003;35:1733–1739.PubMedCrossRefGoogle Scholar
  172. 171.
    Simkin A, Ayalon J, Leichter I. Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int 1987;40:59–63.PubMedCrossRefGoogle Scholar
  173. 172.
    Ayalon J, Simkin A, Leichter I, Raifmann S. Dynamic bone loading exercises for postmenopausal women: effect on the density of the distal radius. Arch Phys Med Rehabil 1987;68:280–283.PubMedGoogle Scholar
  174. 173.
    Notelovitz M, Martin D, Tesar R, et al. Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 1991;6:583–590.PubMedCrossRefGoogle Scholar
  175. 174.
    Going S, Lohman T, Houtkooper L, et al. Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int 2003;14: 637–643.PubMedCrossRefGoogle Scholar
  176. 175.
    Kohrt WM, Ehsani AA, Birge SJ, Jr. HRT preserves increases in bone mineral density and reductions in body fat after a supervised exercise program. J Appl Physiol 1998;84:1506–1512.PubMedGoogle Scholar
  177. 176.
    Heikkinen J, Kurttila-Matero E, Kyllonen E, Vuori J, Takala T, Vaananen HK. Moderate exercise does not enhance the positive effect of estrogen on bone mineral density in postmenopausal women. Calcif Tissue Int 1991;49:S83–S84.PubMedCrossRefGoogle Scholar
  178. 177.
    Heikkinen J, Kyllonen E, Kurttila-Matero E, et al. HRT and exercise: effects on bone density, muscle strength and lipid metabolism. A placebo controlled 2-year prospective trial on two estrogen-progestin regimens in healthy postmenopausal women. Maturitas 1997;26:139–149.PubMedCrossRefGoogle Scholar
  179. 178.
    Judge JO, Kleppinger A, Kenny A, Smith JA, Biskup B, Marcella G. Home-based resistance training improves femoral bone mineral density in women on hormone therapy. Osteoporos Int 2005;16:1096–1108.PubMedCrossRefGoogle Scholar
  180. 179.
    Valimaki VV, Loyttyniemi E, Valimaki MJ. Quantitative ultrasound variables of the heel in Finnish men aged 18–20 yr: predictors, relationship to bone mineral content, and changes during military service. Osteoporos Int 2006;17:1763–1771.PubMedCrossRefGoogle Scholar
  181. 180.
    Margulies JY, Simkin A, Leichter I, et al. Effect of intense physical activity on the bone-mineral content in the lower limbs of young adults. J Bone Joint Surg 1986;68:1090–1093.PubMedGoogle Scholar
  182. 181.
    Nordstrom A, Olsson T, Nordstrom P. Sustained benefits from previous physical activity on bone mineral density in males. J Clin Endocrinol Metab 2006;91:2600–2604.PubMedCrossRefGoogle Scholar
  183. 182.
    Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res 1996;11:1539–1544.PubMedCrossRefGoogle Scholar
  184. 183.
    Courteix D, Jaffre C, Lespessailles E, Benhamou L. Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: a double-blind randomised placebo-controlled trial. Int J Sports Med 2005;26:332–338.PubMedCrossRefGoogle Scholar
  185. 184.
    Iuliano-Burns S, Saxon L, Naughton G, Gibbons K, Bass SL. Regional specificity of exercise and calcium during skeletal growth in girls: a randomized controlled trial. J Bone Miner Res 2003;18:156–162.PubMedCrossRefGoogle Scholar
  186. 185.
    Stear SJ, Prentice A, Jones SC, Cole TJ. Effect of a calcium and exercise intervention on the bone mineral status of 16–18-y-old adolescent girls. Am J Clin Nutr 2003;77:985–992.PubMedGoogle Scholar
  187. 186.
    Prince R, Devine A, Dick I, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 1995;10:1068–1075.PubMedCrossRefGoogle Scholar
  188. 187.
    Loucks AB, Laughlin GA, Mortola JF, Girton L, Nelson JC, Yen SS. Hypothalamic-pituitary-thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab 1992;75:514–518.PubMedCrossRefGoogle Scholar
  189. 188.
    Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res 2004;19:1231–1240.PubMedCrossRefGoogle Scholar
  190. 189.
    Tomten SE, Falch JA, Birkeland KI, Hemmersbach P, Hostmark AT. Bone mineral density and menstrual irregularities. A comparative study on cortical and trabecular bone structures in runners with alleged normal eating behavior. Int J Sports Med 1998;19:92–97.PubMedCrossRefGoogle Scholar
  191. 190.
    Zanker CL, Cooke CB. Energy balance, bone turnover, and skeletal health in physically active individuals. Med Sci Sports Exerc 2004;36:1372–1381.PubMedCrossRefGoogle Scholar
  192. 191.
    Loucks AB, Stachenfeld NS, DiPietro L. The female athlete triad: do female athletes need to take special care to avoid low energy availability? Med Sci Sports Exerc 2006;38:1694–1700.PubMedCrossRefGoogle Scholar
  193. 192.
    Loucks AB. Refutation of "the myth of the female athlete triad". Br J Sports Med 2007;41:55–57; author reply 57–58.PubMedCrossRefGoogle Scholar
  194. 193.
    DiPietro L, Stachenfeld NS. The myth of the female athlete triad. Br J Sports Med 2006;40:490–493.PubMedCrossRefGoogle Scholar
  195. 194.
    Robinson TL, Snow-Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res 1995;10:26–35.PubMedCrossRefGoogle Scholar
  196. 195.
    Constantini NW, Warren MP. Special problems of the female athlete. Baillieres Clin Rheumatol 1994;8:199–219.PubMedCrossRefGoogle Scholar
  197. 196.
    Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol 1994;266:R817–R823.PubMedGoogle Scholar
  198. 197.
    Hartard M, Bottermann P, Bartenstein P, Jeschke D, Schwaiger M. Effects on bone mineral density of low-dosed oral contraceptives compared to and combined with physical activity. Contraception 1997;55: 87–90.PubMedCrossRefGoogle Scholar
  199. 198.
    Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes [editorial]. Osteoporos Int 1997;7:311–315.PubMedCrossRefGoogle Scholar
  200. 199.
    Burr DB, Yoshikawa T, Teegarden D, et al. Exercise and oral contraceptive use suppress the normal age-related increase in bone mass and strength of the femoral neck in women 18–31 years of age. Bone 2000;27:855–863.PubMedCrossRefGoogle Scholar
  201. 200.
    MacConnie SE, Barkan A, Lampman RM, Schork MA, Beitins IZ. Decreased hypothalmic gonadotrophin-releasing hormone secretion in male marathon runners. N Eng J Med 1986;315:411–417.CrossRefGoogle Scholar
  202. 201.
    Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab 1993;77:770–775.PubMedCrossRefGoogle Scholar
  203. 202.
    Rowland TW, Morris AH, Kelleher JF, Haag BL, Reiter EO. Serum testosterone response to training in adolescent runners. Am J Dis Child 1987;141:881–883.PubMedGoogle Scholar
  204. 203.
    Wheeler GD, Wall SR, Belcastro AN, Cumming DC. Reduced serum testosterone and prolactin levels in male distance runners. Journal of the American Medical Association 1984;252:514–516.PubMedCrossRefGoogle Scholar
  205. 204.
    Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc 1988;20:60–65.PubMedCrossRefGoogle Scholar
  206. 205.
    Cooper CS, Taaffe DR, Guido D, Packer E, Holloway L, Marcus R. Relationship of chronic endurance exercise to the somatotropic and sex hormone status of older men. Eur J Endocrinol 1998;138:517–523.PubMedCrossRefGoogle Scholar
  207. 206.
    Fiore CE, Cottini E, Fargetta C, di Salvio G, Foti R, Raspagliesi M. The effects of muscle-building execise on forearm bone mineral content and osteoblast activity in drug-free and anabolic steroids self-administering young men. Bone Miner 1991;13:77–83.PubMedCrossRefGoogle Scholar
  208. 207.
    Yarasheski KE, Campbell JA, Kohrt WM. Effect of resistance exercise and growth hormone on bone density in older men. Clin Endocrinol 1997;47:223–229.CrossRefGoogle Scholar
  209. 208.
    Taaffe DR, Pruitt L, Riem J, et al. Effect of recombinant human growth hormone on the muscle strength response to resistance exercise in elderly men. J Clin Endocrinol Metab 1994;79:1361–1366.PubMedCrossRefGoogle Scholar
  210. 209.
    Taaffe DR, Jin IH, Vu TH, Hoffman AR, Marcus R. Lack of effect of recombinant growth hormone (GH) on muscle morphology and GH-insulin-like growth factor expression in resistance-trained elderly men. J Clin Endocrinol Metab 1996;81:421–425.PubMedCrossRefGoogle Scholar
  211. 210.
    Gregg EW, Cauley JA, Seeley DG, Ensrud KE, Bauer DC. Physical activity and osteoporotic fracture risk in older women. Study of Osteoporotic Fractures Research Group [see comments]. Ann Intern Med 1998;129:81–88.PubMedGoogle Scholar
  212. 211.
    Jaglal SB, Kreiger N, Darlington G. Past and recent physical activity and risk of hip fracture. Am J Epidemiol 1993;138:107–118.PubMedGoogle Scholar
  213. 212.
    Jaglal SB, Kreiger N, Darlington GA. Lifetime occupational physical activity and risk of hip fracture in women. Ann Epidemiol 1995;5:321–324.PubMedCrossRefGoogle Scholar
  214. 213.
    Schwartz AV, Kelsey JL, Sidney S, Grisso JA. Characteristics of falls and risk of hip fracture in elderly men. Osteoporos Int 1998;8:240–246.PubMedCrossRefGoogle Scholar
  215. 214.
    Feskanich D, Willett W, Colditz G. Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA 2002;288:2300–2306.PubMedCrossRefGoogle Scholar
  216. 215.
    Korpelainen R, Korpelainen J, Heikkinen J, Vaananen K, Keinanen-Kiukaanniemi S. Lifelong risk factors for osteoporosis and fractures in elderly women with low body mass index – a population-based study. Bone 2006;39:385–391.PubMedCrossRefGoogle Scholar
  217. 216.
    Sinaki M, Lynn SG. Reducing the risk of falls through proprioceptive dynamic posture training in osteoporotic women with kyphotic posturing: a randomized pilot study. Am J Phys Med Rehabil 2002;81:241–246.PubMedCrossRefGoogle Scholar
  218. 217.
    Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002;359:1761–1767.PubMedCrossRefGoogle Scholar
  219. 218.
    Norton R, Campbell AJ, Lee-Joe T, Robinson E, Butler M. Circumstances of falls resulting in hip fractures among older people. J Am Geriatr Soc 1997;45:1108–1112.PubMedGoogle Scholar
  220. 219.
    Cummings SR, Black DM, Nevitt MC, et al. Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group [see comments]. JAMA 1990;263: 665–668.PubMedCrossRefGoogle Scholar
  221. 220.
    Whipple RH, Wolfson LI, Amerman PM. The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. J Am Geriatr Soc 1987;35:13–20.PubMedGoogle Scholar
  222. 221.
    Aniansson A, Zetterberg C, Hedberg M, Henriksson KG. Impaired muscle function with aging. A background factor in the incidence of fractures of the proximal end of the femur. Clin Orthop 1984:193–201.Google Scholar
  223. 222.
    Dargent-Molina P, Favier F, Grandjean H, et al. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. [published erratum appears in Lancet 1996 Aug 10;348(9024):416]. Lancet 1996;348:145–149.PubMedCrossRefGoogle Scholar
  224. 223.
    Maki BE, Holliday PJ, Topper AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol 1994;49:M72–M84.PubMedGoogle Scholar
  225. 224.
    Greig AM, Bennell KL, Briggs AM, Wark JD, Hodges PW. Balance impairment is related to vertebral fracture rather than thoracic kyphosis in individuals with osteoporosis. Osteoporos Int 2006.Google Scholar
  226. 225.
    Chan B, Marshall L, Winters K, Faulkner K, Schwartz A, Orwoll E. Incident falls and physical activity and physical performance among older men: The osteoporotic fractures in men (MrOS) study. Am J Epidemiol. 2007;165(6):696–703.PubMedCrossRefGoogle Scholar
  227. 226.
    Drinkwater BL. Exercise in the prevention of osteoporosis. Osteoporos Int 1993;3:169–171.PubMedCrossRefGoogle Scholar
  228. 227.
    Allen SH. Exercise considerations for postmenopausal women with osteoporosis. Arthritis Care Res 1994;7:205–214.PubMedCrossRefGoogle Scholar
  229. 228.
    Korpelainen R, Keinanen-Kiukaanniemi S, Heikkinen J, Vaananen K, Korpelainen J. Effect of exercise on extraskeletal risk factors for hip fractures in elderly women with low BMD: a population-based randomized controlled trial. J Bone Miner Res 2006;21:772–779.PubMedCrossRefGoogle Scholar
  230. 229.
    Madureira MM, Takayama L, Gallinaro AL, Caparbo VF, Costa RA, Pereira RM. Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: a randomized controlled trial. Osteoporos Int 2006.Google Scholar
  231. 230.
    Robertson MC, Campbell AJ, Gardner MM, Devlin N. Preventing injuries in older people by preventing falls: a meta-analysis of individual-level data. J Am Geriatr Soc 2002;50:905–911.PubMedCrossRefGoogle Scholar
  232. 231.
    Mileva KN, Naleem AA, Biswas SK, Marwood S, Bowtell JL. Acute effects of a vibration-like stimulus during knee extension exercise. Med Sci Sports Exerc 2006;38:1317–1328.PubMedCrossRefGoogle Scholar
  233. 232.
    Englund U, Littbrand H, Sondell A, Pettersson U, Bucht G. A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int 2005;16:1117–1123.PubMedCrossRefGoogle Scholar
  234. 233.
    Devereux K, Robertson D, Briffa NK. Effects of a water-based program on women 65 years and over: a randomised controlled trial. Aust J Physiother 2005;51:102–108.PubMedGoogle Scholar
  235. 234.
    Wolfson L, Judge J, Whipple R, King M. Strength is a major factor in balance, gait, and the occurrence of falls. J Gerontol A Biol Sci Med Sci 1995;50:64–67.PubMedGoogle Scholar
  236. 235.
    Lord SR, Ward JA, Williams P, Strudwick M. The effect of a 12-month exercise trial on balance, strength, and falls in older women: a randomized controlled trial. J Am Geriatr Soc 1995;43:1198–1206.PubMedGoogle Scholar
  237. 236.
    Lord SR, Tiedemann A, Chapman K, et al. The effect of an individualized fall prevention program on fall risk and falls in older people: a randomized, controlled trial. J Am Geriatr Soc 2005;53:1296–1304.PubMedCrossRefGoogle Scholar
  238. 237.
    Barnett A, Smith B, Lord SR, Williams M, Baumand A. Community-based group exercise improves balance and reduces falls in at-risk older people: a randomised controlled trial. Age Ageing 2003;32: 407–414.PubMedCrossRefGoogle Scholar
  239. 238.
    Lord SR, Castell S, Corcoran J, et al. The effect of group exercise on physical functioning and falls in frail older people living in retirement villages: a randomized, controlled trial. J Am Geriatr Soc 2003;51:1685–1692.PubMedCrossRefGoogle Scholar
  240. 239.
    Campbell AJ, Robertson MC, Gardner MM, Norton RN, Tilyard MW, Buchner DM. Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ 1997;315:1065–1069.PubMedGoogle Scholar
  241. 240.
    Jensen J, Nyberg L, Rosendahl E, Gustafson Y, Lundin-Olsson L. Effects of a fall prevention program including exercise on mobility and falls in frail older people living in residential care facilities. Aging Clin Exp Res 2004;16:283–292.PubMedGoogle Scholar
  242. 241.
    Latham NK, Anderson CS, Lee A, Bennett DA, Moseley A, Cameron ID. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). J Am Geriatr Soc 2003;51:291–299.PubMedCrossRefGoogle Scholar
  243. 242.
    Shimada H, Obuchi S, Furuna T, Suzuki T. New intervention program for preventing falls among frail elderly people: the effects of perturbed walking exercise using a bilateral separated treadmill. Am J Phys Med Rehabil 2004;83:493–499.PubMedCrossRefGoogle Scholar
  244. 243.
    Wolf SL, Barnhart HX, Kutner NG, McNeely E, Coogler C, Xu T. Selected as the best paper in the 1990s: Reducing frailty and falls in older persons: an investigation of tai chi and computerized balance training. J Am Geriatr Soc 2003;51:1794–1803.PubMedCrossRefGoogle Scholar
  245. 244.
    Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone 1998;23:399–407.PubMedCrossRefGoogle Scholar
  246. 245.
    Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 2003;31:45–50.PubMedCrossRefGoogle Scholar
  247. 246.
    Hsieh YF, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 2001;16:918–924.PubMedCrossRefGoogle Scholar
  248. 247.
    Rockwell JC, Sorensen AM, Baker S, et al. Weight training decreases vertebral bone density in premenopausal women: a prospective study. J Clin Endocrinol Metab 1990;71:988–993.PubMedCrossRefGoogle Scholar
  249. 248.
    Nelson ME, Fisher EC, Dilmanian FA, Dallal GE, Evans WJ. A 1-y walking program and increased dietary calcium in postmenopausal women: effects on bone. Am J Clin Nutr 1991;53:1304–1311.PubMedGoogle Scholar
  250. 249.
    Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 1997;12:1480–1485.PubMedCrossRefGoogle Scholar
  251. 250.
    Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 2001;204:3389–3399.PubMedGoogle Scholar
  252. 251.
    Fuchs RK, Williams DP, Snow C. Response of growing bones to a jumping protocol of reduced repetitions: a randomized controlled trial, 23rd Annual Meeting of the American Society for Bone and Mineral Research, Phoenix, AR, J Bone Miner Res.2001;16(Suppl 1).Google Scholar
  253. 252.
    Vainionpaa A KR, Vihriala E, Rinta-Paavola A, Leppaluoto J, Jamsa T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int 2006;17:455–463.PubMedCrossRefGoogle Scholar
  254. 253.
    Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 2004;36:1985–1996.PubMedCrossRefGoogle Scholar
  255. 254.
    Karlsson M. Does exercise reduce the burden of fractures? A review. Acta Orthop Scand 2002;73: 691–705.PubMedCrossRefGoogle Scholar
  256. 255.
    Strotmeyer ES, Cauley JA, Schwartz AV, et al. Reduced peripheral nerve function is related to lower hip BMD and calcaneal QUS in older white and black adults: the Health, Aging, and Body Composition Study. J Bone Miner Res 2006;21:1803–1810.PubMedCrossRefGoogle Scholar
  257. 256.
    Whalen RT, Carter DR, Steele CR. Influence of physical activity on the regulation of bone density. J Biomech 1988;21:825–837.PubMedCrossRefGoogle Scholar
  258. 257.
    Turner C, Robling A. Designing exercise regimens to increase bone strength. Exercise and Sport Sciences Reviews 2003;331:45–50.CrossRefGoogle Scholar
  259. 258.
    Mayoux-Benhamou MA, Roux C, Perraud A, Fermanian J, Rahali-Kachlouf H, Revel M. Predictors of compliance with a home-based exercise program added to usual medical care in preventing postmenopausal osteoporosis: an 18-month prospective study. Osteoporos Int 2005;16:325–331.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Belinda R. Beck
    • 1
  • Kerri M. Winters-Stone
    • 2
  1. 1.School of Physiotherapy and Exercise Science, Gold Coast CampusGriffith UniversitySouthportAustralia
  2. 2.Department of Nutrition and Exercise ScienceOregon State UniversityCorvallisUSA

Personalised recommendations