Small Molecule Inhibitors

  • Xin Chen
  • Jian JinEmail author


Before the biomedical community had had any understanding of the molecular mechanisms that drive tumorigenesis, the discovery of cancer chemotherapy exclusively focused on the development of novel cytotoxic compounds targeting DNA processing and cell division including DNA alkylating and cross-linking agents, antimetabolites, topoisomerase inhibitors, and anti-tubulin agents. Although these drugs can be very efficacious in killing tumor cells, serious side effects accompanied due to the lack of selectivity for tumor cells versus normal cells. The side effects, such as bone marrow suppression and gastrointestinal, cardiac, hepatic, and renal toxicities, significantly limit their use. In addition, drug resistance was frequently observed after initial stabilization or regression of the disease.


Targeted cancer therapeutics Small molecule protein kinase inhibitors BCR-ABL inhibitors EGFR inhibitors VEGFR inhibitors Multitargeted tyrosine kinase inhibitors MEK inhibitors PARP inhibitors DNMT inhibitors HDAC inhibitors HSP90 inhibitors 


  1. 1.
    Thurston DE. Chemistry and pharmacology of anticancer drugs. Boca Raton, FL: Taylor & Francis Group; 2006. p. 290.CrossRefGoogle Scholar
  2. 2.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Saalfield S, Jackson-Allen P. Biopsychosocial consequences of sweetened drink consumption in children 0-6 years of age. Pediatr Nurs. 2006;32:467–71.Google Scholar
  5. 5.
    Cheng H, Force T. Why do Kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis. 2010;53:114–20.Google Scholar
  6. 6.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Haber DA, Settleman J. Cancer—drivers and passengers. Nature. 2007;446:145–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. 2010;Cell. 141:1117–34.Google Scholar
  9. 9.
    Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsatsanis C, Spandidos DA. The role of oncogenic kinases in human cancer (review). Int J Mol Med. 2000;5:583–90.PubMedGoogle Scholar
  11. 11.
    Shchemelinin I, Sefc L, Necas E. Protein kinases, their function and implication in cancer and other diseases. Folia Biol. 2006;52:81–100.Google Scholar
  12. 12.
    Blagden S, de Bono J. Drugging cell cycle kinases in cancer therapy. Curr Drug Targets. 2005;6:325–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4:177–83.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Forbes SA, Tang G, Bindal N, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 2010;38:D652–7.Google Scholar
  15. 15.
    Zhang JM, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39.PubMedCrossRefGoogle Scholar
  16. 16.
    Deininger MWN, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–56.PubMedGoogle Scholar
  17. 17.
    Kalidas MT, Kantarjian H, Talpaz M. Chronic myelogenous leukemia. JAMA. 2001;286:895–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Nowell PC, Hungerford DA. Minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497.Google Scholar
  19. 19.
    Rowley JD. New consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and giemsa staining. Nature. 1973;243:290–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Knight GWA, McLellan D. Use and limitations of imatinib mesylate (Glivec), a selective inhibitor of the tyrosine kinase Abl transcript in the treatment of chronic myeloid leukaemia. Br J Biomed Sci. 2004;61:103–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Daley GQ, Vanetten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the p210 Bcr/Abl gene of the philadelphia-chromosome. Science. 1990;247:824–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase-activity and transformation potency of Bcr-Abl oncogene products. Science. 1990;247:1079–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 2005;105:2640–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (ST1571, Imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1:493–502.PubMedCrossRefGoogle Scholar
  25. 25.
    Zimmermann J, Buchdunger E, Mett H, et al. Phenylamino-pyrimidine (PAP)—derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg Med Chem Lett. 1996;6:1221–6.CrossRefGoogle Scholar
  26. 26.
    Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB. Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives. Bioorg Med Chem Lett. 1997;7:187–92.CrossRefGoogle Scholar
  27. 27.
    Teague SJ, Davis AM, Leeson PD, Oprea T. The design of leadlike combinatorial libraries. Angew Chem Int Ed. 1999;38:3743–8.CrossRefGoogle Scholar
  28. 28.
    Zimmermann J, Furet P, Buchdunger E. STI571, a new treatment modality for CML. ACS Symp Ser. 2001;796:245–59.CrossRefGoogle Scholar
  29. 29.
    Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science. 2000;289:1938–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Moen MD, McKeage K, Plosker GL, Siddiqui MAA. Imatinib—a review of its use in chronic myeloid leukaemia. Drugs. 2007;67:299–320.PubMedCrossRefGoogle Scholar
  31. 31.
    Buchdunger E, Cioffi CL, Law N, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther. 2000;295:139–45.PubMedGoogle Scholar
  32. 32.
    Quintas-Cardama A, Kantarjian H, Cortes J. Imatinib and beyond-exploring the full potential of targeted therapy for CML. Nat Rev Clin Oncol. 2009;6:535–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.PubMedCrossRefGoogle Scholar
  34. 34.
    Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7:345–56.Google Scholar
  35. 35.
    Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.PubMedCrossRefGoogle Scholar
  37. 37.
    Puttini M, Coluccia AML, Boschelli F, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl(+) neoplastic cells. Cancer Res. 2006;66:11314–22.PubMedCrossRefGoogle Scholar
  38. 38.
    O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65:4500–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Redaelli S, Piazza R, Rostagno R, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol. 2009;27:469–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Deguchi Y, Kimura S, Ashihara E, et al. Comparison of imatinib, dasatinib, nilotinib and INNO-406 in imatinib-resistant cell lines. Leuk Res. 2008;32:980–3.PubMedCrossRefGoogle Scholar
  41. 41.
    O'Hare T, Eide CA, Deininger MW. New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin Investig Drugs. 2008;17:865–78.PubMedCrossRefGoogle Scholar
  42. 42.
    Tanaka R, Kimura S. Abl tyrosine kinase inhibitors for overriding Bcr-Abl/T315l: from the second to third generation. Expert Rev Anticancer. 2008;8:1387–98.CrossRefGoogle Scholar
  43. 43.
    Noronha G, Cao JG, Chow CP, et al. Inhibitors of ABL and the ABL-T315I mutation. Curr Top Med Chem. 2008;8:905–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Quintas-Cardama A, Cortes J. Therapeutic options against BCR-ABL1 T315I-positive chronic myelogenous leukemia. Clin Cancer Res. 2008;14:4392–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Huang WS, Metcalf CA, Sundaramoorthi R, et al. Discovery of 3-[2-(Imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-Abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem. 2010;53:4701–19.PubMedCrossRefGoogle Scholar
  46. 46.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21:2787–99.PubMedCrossRefGoogle Scholar
  48. 48.
    Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer. 2003;10:1–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Herbst RS, Fukuoka M, Baselga J. Timeline—gefitinib—a novel targeted approach to treating cancer. Nat Rev Cancer. 2004;4:956–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Cohen S. Isolation of a mouse submaxillart gland protein accelerating incisor eruption and eyelid opening in new-born animal. J Biol Chem. 1962;237:1555–62.PubMedGoogle Scholar
  51. 51.
    Cohen S, Carpenter G. Human epidermal growth-factor—isolation and chemical and biological properties. Proc Natl Acad Sci U S A. 1975;72:1317–21.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980;303:878–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Cohen S, Carpenter G, King L. Epidermal growth factor-receptor-protein kinase interactions. Prog Clin Biol Res. 1981;66(Pt A):557–67.PubMedGoogle Scholar
  54. 54.
    Ozanne B, Richards CS, Hendler F, Burns D, Gusterson B. Over-expression of the EGF receptor is a hallmark of squamous-cell carcinomas. J Pathol. 1986;149:9–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Milas L, Raju U, Liao ZX, Ajani J. Targeting molecular determinants of tumor chemo-radioresistance. Semin Oncol. 2005;32:S78–81.PubMedCrossRefGoogle Scholar
  56. 56.
    Umekita Y, Ohi Y, Sagara Y, Yoshida H. Co-expression of epidermal growth factor receptor and transforming growth factor-alpha predicts worse prognosis in breast-cancer patients. Int J Cancer. 2000;89:484–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Mendelsohn J. Blockade of receptors for growth factors: an anticancer therapy—the fourth annual Joseph H Burchenal American Association for Cancer Research Clinical Research Award Lecture. Clin Cancer Res. 2000;6:747–53.PubMedGoogle Scholar
  58. 58.
    Rewcastle GW, Denny WA, Bridges AJ, et al. Tyrosine kinase inhibitors. 5. Synthesis and structure-activity-relationships for 4-[(phenylmethyl)amino]-quinazolines and 4-(phenylamino)quinazolines as potent adenosine 5′-triphosphate binding-site inhibitors of the tyrosine kinase domain of the epidermal growth-factor receptor. J Med Chem. 1995;38:3482–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Denny WA, Rewcastle GW, Bridges AJ, Fry DW, Kraker AJ. Structure-activity relationships for 4-anilinoquinazolines as potent inhibitors at the ATP binding site of the epidermal growth factor receptor in vitro. Clin Exp Pharmacol Physiol. 1996;23:424–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Barker AJ, Gibson KH, Grundy W, et al. Studies leading to the identification of ZD1839 (Iressa (TM)): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg Med Chem Lett. 2001;11:1911–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62:5749–54.PubMedGoogle Scholar
  62. 62.
    Janne PA, Engelman JA, Johnson BE. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J Clin Oncol. 2005;23:3227–34.PubMedCrossRefGoogle Scholar
  63. 63.
    Riely GJ, Pao W, Pham DK, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res. 2006;12:839–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. Plos Med. 2005;2:225–35.CrossRefGoogle Scholar
  66. 66.
    Mulloy R, Ferrand A, Kim Y, et al. Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res. 2007;67:2325–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Schiffer HH, Reding EC, Fuhs SR, et al. Pharmacology and signaling properties of epidermal growth factor receptor isoforms studied by bioluminescence resonance energy transfer. Mol Pharmacol. 2007;71:508–18.PubMedCrossRefGoogle Scholar
  68. 68.
    Vikis H, Sato M, James M, et al. EGFR-T790M is a rare lung cancer susceptibility allele with enhanced kinase activity. Cancer Res. 2007;67:4665–70.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Yuza Y, Glatt KA, Jiang JR, et al. Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors. Cancer Biol Ther. 2007;6:661–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Greulich H, Chen TH, Feng W, et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. Plos Med. 2005;2:1167–76.CrossRefGoogle Scholar
  71. 71.
    Kwak EL, Sordella R, Bell DW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A. 2005;102:7665–70.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kobayashi S, Ji HB, Yuza Y, et al. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res. 2005;65:7096–101.PubMedCrossRefGoogle Scholar
  73. 73.
    Shimamura T, Lowell AM, Engelman JA, Shapiro GI. Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res. 2005;65:6401–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27:4702–11.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sos ML, Rode HB, Heynck S, et al. Chemogenomic profiling provides insights into the limited activity of irreversible EGFR inhibitors in tumor cells expressing the T790M EGFR resistance mutation. Cancer Res. 2010;70:868–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Lin NU, Winer EP, Wheatley D, et al. A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res Treat. 2012;133:1057–65.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Nahta R, Hortobagyi GN, Esteva FJ. Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist. 2003;8:5–17.PubMedCrossRefGoogle Scholar
  78. 78.
    El-Rayes BF, LoRusso PM. Targeting the epidermal growth factor receptor. Br J Cancer. 2004;91:418–24.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tsutsui S, Ohno S, Murakami S, Hachitanda Y, Oda S. Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat. 2002;71:67–75.PubMedCrossRefGoogle Scholar
  80. 80.
    Chu I, Blackwell K, Chen S, Slingerland J. The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res. 2005;65:18–25.PubMedGoogle Scholar
  81. 81.
    Slamon DJ, Clark GM, Wong SG, et al. Human-breast cancer—coreelation of relapse and survival with amplification of the HER-2 neu oncogene. Science. 1987;235:177–82.PubMedCrossRefGoogle Scholar
  82. 82.
    GrausPorta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16:1647–55.CrossRefGoogle Scholar
  83. 83.
    Karunagaran D, Tzahar E, Beerli RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 1996;15:254–64.PubMedPubMedCentralGoogle Scholar
  84. 84.
    King CR, Borrello I, Bellot F, Comoglio P, Schlessinger J. EGF binding to its receptor triggers a rapid tyrosine phosphorylation of the ERBB-2 protein in the mammary-tumor cell-line SK-BR-3. EMBO J. 1988;7:1647–51.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Burris HA. Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist. 2004;9:10–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Cockerill S, Stubberfield C, Stables J, et al. Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and C-erbB-2. Bioorg Med Chem Lett. 2001;11:1401–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Petrov KG, Zhang YM, Carter M, et al. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series. Bioorg Med Chem Lett. 2006;16:4686–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase-activity. Cell. 1990;61:203–12.PubMedCrossRefGoogle Scholar
  89. 89.
    Folkman J. What is the evidence that tumors are angiogenesis dependent. J Natl Cancer Inst. 1990;82:4–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Heng DYC, Bukowski RM. Anti-angiogenic targets in the treatment of advanced renal cell carcinoma. Curr Cancer Drug Targets. 2008;8:676–82.PubMedCrossRefGoogle Scholar
  91. 91.
    Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 2000;60:203–12.PubMedGoogle Scholar
  92. 92.
    Cherrington JM, Strawn LM, Shawver LK. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv Cancer Res. 2000;79:1–38.PubMedCrossRefGoogle Scholar
  93. 93.
    Bilodeau MT, Fraley ME, Hartman GD. Kinase insert domain-containing receptor kinase inhibitors as anti-angiogenic agents. Expert Opin Investig Drugs. 2002;11:737–45.PubMedCrossRefGoogle Scholar
  94. 94.
    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71.PubMedCrossRefGoogle Scholar
  95. 95.
    Caprioni F, Fornarini G. Bevacizumab in the treatment of metastatic colorectal cancer. Future Oncol. 2007;3:141–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Ramalingam S, Belani CP. Role of bevacizumab for the treatment of non-small-cell lung cancer. Future Oncol. 2007;3:131–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Duda DG, Batchelor TT, Willett CG, Jain RK. VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol Med. 2007;13:223–30.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Harris PA, Boloor A, Cheung M, et al. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2 -methylbenzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J Med Chem. 2008;51:4632–40.PubMedCrossRefGoogle Scholar
  99. 99.
    van Geel RMJM, Beijnen JH, Schellens JHM. Concise drug review: pazopanib and axitinib. Oncologist. 2012;17:1081–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14:7272–83.PubMedCrossRefGoogle Scholar
  101. 101.
    Escudier B, Gore M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R D. 2011;11:113–26.PubMedCrossRefGoogle Scholar
  102. 102.
    Faivre S, Djelloul S, Raymond E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol. 2006;33:407–20.PubMedCrossRefGoogle Scholar
  103. 103.
    le Coutre P, Tassi E, Varella-Garcia M, et al. Induction of resistance to the Abelson inhibitor ST1571 in human leukemic cells through gene amplification. Blood. 2000;95:1758–66.PubMedGoogle Scholar
  104. 104.
    Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.PubMedCrossRefGoogle Scholar
  105. 105.
    Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9:75.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Erber R, Thurnher A, Katsen AD, et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 2004;18:338–40.PubMedGoogle Scholar
  107. 107.
    Faivre S, Demetri G, Sargent W, Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 2007;6:734–45.PubMedCrossRefGoogle Scholar
  108. 108.
    Mendel DB, Laird AD, Xin XH, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9:327–37.PubMedGoogle Scholar
  109. 109.
    Sun L, Tran N, Tang F, et al. Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J Med Chem. 1998;41:2588–603.PubMedCrossRefGoogle Scholar
  110. 110.
    Fong TAT, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999;59:99–106.PubMedGoogle Scholar
  111. 111.
    Laird AD, Vajkoczy P, Shawver LK, et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 2000;60:4152–60.PubMedGoogle Scholar
  112. 112.
    Sun L, Tran N, Liang CX, et al. Design, synthesis, and evaluations of substituted 3-[(3-or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J Med Chem. 1999;42:5120–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Laird AD, Li G, Potapova O, et al. Mechanism of action and biomarker studies of SU11248, a selective oral multi-targeted tyrosine kinase inhibitor with antitumor and anti-angiogenic activity through targeting PDGFR, VEGFR, KIT and FLT3. Proc Am Assoc Cancer Res Ann Meet. 2003;44:937.Google Scholar
  114. 114.
    Steinberg M. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2007;29:2289–308.PubMedCrossRefGoogle Scholar
  115. 115.
    Rix U, Hantschel O, Duernberger G, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib, reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–63.PubMedCrossRefGoogle Scholar
  116. 116.
    Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta Rev Cancer. 2002;1602:114–30.Google Scholar
  117. 117.
    Nam S, Kim DW, Cheng JQ, et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res. 2005;65:9185–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Wityak J, Das J, Moquin RV, et al. Discovery and initial SAR of 2-amino-5-carboxamidothiazoles as inhibitors of the Src-family kinase p56(Lck). Bioorg Med Chem Lett. 2003;13:4007–10.PubMedCrossRefGoogle Scholar
  119. 119.
    Chen P, Norris D, Das J, et al. Discovery of novel 2-(aminoheteroaryl)-thiazole-5-carboxamides as potent and orally active Src-family kinase p56Lck inhibitors. Bioorg Med Chem Lett. 2004;14:6061–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-m ethylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47:6658–61.PubMedCrossRefGoogle Scholar
  121. 121.
    Muller MC, Cortes J, Kim DW, et al. Dasatinib efficacy in patients with chronic myeloid leukemia in chronic phase (CML-CP) and pre-existing BCR-ABL mutations. Blood. 2008;112:171–2.Google Scholar
  122. 122.
    Konig H, Copland M, Chu S, et al. Effects of dasatinib on Src kinase activity and downstream intracellular signaling in primitive chronic myelogenous leukemia hematopoietic cells. Cancer Res. 2008;68:9624–33.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Younes MN, Kim S, Yigitbasi OG, et al. Integrin-linked kinase is a potential therapeutic target for anaplastic thyroid cancer. Mol Cancer Ther. 2005;4:1146–56.PubMedCrossRefGoogle Scholar
  124. 124.
    Hao HF, Naomoto Y, Bao XH, et al. Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep. 2009;22:973–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy target. Drug Des Devel Ther. 2009;2:255–64.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Liu XD, Newton RC, Scherle PA. Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med. 2010;16:37–45.Google Scholar
  127. 127.
    Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4:937–47.PubMedCrossRefGoogle Scholar
  128. 128.
    Hennessy BT, Smith DL, Ram PT, Lu YL, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.PubMedCrossRefGoogle Scholar
  129. 129.
    Ferrajoli A, Faderl S, Ravandi F, Estrov Z. The JAK-STAT pathway: a therapeutic target in hematological malignancies. Curr Cancer Drug Targets. 2006;6:671–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Hoshino R, Chatani Y, Yamori T, et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999;18:813–22.PubMedCrossRefGoogle Scholar
  131. 131.
    Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998;74:49–139.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhao Y, Adjei, AA. The clinical development of MEK inhibitors. Nature Rev. Clinical Oncol. 2014;11:385–400.Google Scholar
  133. 133.
    Wallace EM, Lyssikatos JP, Yeh T, Winkler JD, Koch K. Progress towards therapeutic small molecule MEK inhibitors for use in cancer therapy. Curr Top Med Chem. 2005;5:215–29.PubMedCrossRefGoogle Scholar
  134. 134.
    Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogen-activated protein-kinase cascade. Proc Natl Acad Sci U S A. 1995;92:7686–9.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–32.PubMedCrossRefGoogle Scholar
  136. 136.
    Barrett SD, Bridges AJ, Dudley DT, et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett. 2008;18:6501–4.PubMedCrossRefGoogle Scholar
  137. 137.
    Ohren JF, Chen HF, Pavlovsky A, et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 2004;11:1192–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999;5:810–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Haura EB, Ricart AD, Larson TG, et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:2450–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Lyssikatos J, Yeh T, Wallace E, et al. ARRY-142886, a potent and selective MEK inhibitor: I) ATP-independent inhibition results in high enzymatic and cellular selectivity. AACR Meet Abstr. 2004;2004:896.Google Scholar
  141. 141.
    Lee P, Wallace E, Yeh T, et al. ARRY-142886, a potent and selective MEK inhibitor: III. Efficacy in murine xenograft models correlates with decreased ERK phosphorylation. AACR Meet Abstr. 2004;2004:897.Google Scholar
  142. 142.
    Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.PubMedCrossRefGoogle Scholar
  143. 143.
    Yamaguchi T, Yoshida T, Kurachi R, et al. Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci. 2007;98:1809–16.PubMedCrossRefGoogle Scholar
  144. 144.
    Abe H, Kikuchi S, Hayakawa K, et al. Discovery of a highly potent and selective MEK inhibitor: GSK1120212 (JTP-74057 DMSO solvate). ACS Med Chem Lett. 2011;2:320–4.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.PubMedCrossRefGoogle Scholar
  146. 146.
    Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.PubMedCrossRefGoogle Scholar
  147. 147.
    Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008;13:3046–82.PubMedCrossRefGoogle Scholar
  148. 148.
    Miwa M, Masutani M. PolyADP-ribosylation and cancer. Cancer Sci. 2007;98:1528–35.PubMedCrossRefGoogle Scholar
  149. 149.
    Zaremba T, Jane-Curtin N. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med Chem. 2007;7:515–23.PubMedCrossRefGoogle Scholar
  150. 150.
    Huber A, Bai P, de Murcia JM, de Murcia G. PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair. 2004;3:1103–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 2010;10:293–301.Google Scholar
  152. 152.
    Ferraris DV. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem. 2010;53:4561–84.Google Scholar
  153. 153.
    Ljungman M. Targeting the DNA damage response in cancer. Chem Rev. 2009;109:2929–50.PubMedCrossRefGoogle Scholar
  154. 154.
    Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.PubMedCrossRefGoogle Scholar
  156. 156.
    Banasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(adp-ribosyl)transferase. J Biol Chem. 1992;267:1569–75.PubMedGoogle Scholar
  157. 157.
    Zhu GD, Gandhi VB, Gong JC, et al. Synthesis and SAR of novel, potent and orally bioavailable benzimidazole inhibitors of poly(ADP-ribose) polymerase (PARP) with a quaternary methylene-amino substituent. Bioorg Med Chem Lett. 2008;18:3955–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Penning TD, Zhu GD, Gandhi VB, et al. Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: a potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg Med Chem. 2008;16:6965–75.PubMedCrossRefGoogle Scholar
  159. 159.
    Penning TD, Zhu GD, Gandhi VB, et al. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52:514–23.PubMedCrossRefGoogle Scholar
  160. 160.
    Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81.PubMedCrossRefGoogle Scholar
  161. 161.
    Gelato KA, Fischle W. Role of histone modifications in defining chromatin structure and function. Biol Chem. 2008;389:353–63.PubMedCrossRefGoogle Scholar
  162. 162.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.PubMedCrossRefGoogle Scholar
  164. 164.
    Egger G, Liang GN, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.PubMedCrossRefGoogle Scholar
  165. 165.
    Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97:1498–506.PubMedCrossRefGoogle Scholar
  166. 166.
    Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.PubMedCrossRefGoogle Scholar
  167. 167.
    Noyer-Weidner M, Trautner TA. Methylation of DNA in prokaryotes. EXS. 1993;64:39–108.PubMedGoogle Scholar
  168. 168.
    Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.PubMedCrossRefGoogle Scholar
  169. 169.
    Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med. 2001;134:573–86.PubMedCrossRefGoogle Scholar
  170. 170.
    Baylin SB, Esteller M, Rountree MR, et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10:687–92.PubMedCrossRefGoogle Scholar
  171. 171.
    Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20:3139–55.PubMedCrossRefGoogle Scholar
  172. 172.
    Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999;274:33002–10.PubMedCrossRefGoogle Scholar
  173. 173.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.PubMedCrossRefGoogle Scholar
  174. 174.
    Sorm F, Cihak A, Vesely J, Piskala A. 5-Azacytidine, new highly effective cancerostatic. Experientia. 1964;20:202–3.PubMedCrossRefGoogle Scholar
  175. 175.
    Jones PA, Taylor SM. Cellular-differentiation, cytidine analogs and DNA methylation. Cell. 1980;20:85–93.PubMedCrossRefGoogle Scholar
  176. 176.
    Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984;81:6993–7.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Momparler RL, Momparler LF, Samson J. Comparison of the antileukemic activity of 5-aza-2′-deoxycytidine, 1-beta-d-arabinofuranosylcytosine and 5-azacytidine against L1210 leukemia. Leuk Res. 1984;8:1043–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Issa J-P. Decitabine. Curr Opin Oncol. 2003;15:446–51.PubMedCrossRefGoogle Scholar
  179. 179.
    Leone G, Vosoa MT, Teofili L, Lubbert M. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin Immunol. 2003;109:89–102.PubMedCrossRefGoogle Scholar
  180. 180.
    Issa JPJ, Gharibyan V, Cortes J, et al. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol. 2005;23:3948–56.PubMedCrossRefGoogle Scholar
  181. 181.
    Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2'-deoxycytidine to mammalian-cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A. 1994;91:11797–801.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Zhou L, Cheng X, Connolly BA, et al. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol. 2002;321:591–9.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Holleran JL, Parise RA, Joseph E, et al. Plasma pharmacokinetics, oral bioavailability, and interspecies scaling of the DNA methyltransferase inhibitor, zebularine. Clin Cancer Res. 2005;11:3862–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Fischle W, Wang YM, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature. 2003;425:475–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Zhou Q, Melkoumian ZK, Lucktong A, et al. Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J Biol Chem. 2000;275:35256–63.PubMedCrossRefGoogle Scholar
  186. 186.
    Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet. 2003;19:286–93.PubMedCrossRefGoogle Scholar
  187. 187.
    Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.PubMedCrossRefGoogle Scholar
  188. 188.
    Lehrmann H, Pritchard LL, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res. 2002;86:41–65.PubMedCrossRefGoogle Scholar
  189. 189.
    Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31.PubMedCrossRefGoogle Scholar
  190. 190.
    Smith BC, Hallows WC, Denu JM. Mechanisms and molecular probes of sirtuins. Chem Biol. 2008;15:1002–13.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene. 2007;26:1351–6.PubMedCrossRefGoogle Scholar
  192. 192.
    Friend C, Scher W, Holland JG, Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in-vitro—stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971;68:378–82.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Tanaka M, Levy J, Terada M, et al. Induction of erythroid differentiation in murine virus-infected erythroleukemia cells by highly polar compounds. Proc Natl Acad Sci U S A. 1975;72:1003–6.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Reuben RC, Wife RL, Breslow R, Rifkind RA, Marks PA. New group of potent inducers of differentiation in murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1976;73:862–6.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Marks PA, Rifkind RA. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–48.PubMedCrossRefGoogle Scholar
  196. 196.
    Marks PA, Sheffery M, Rifkind RA. Induction of transformed-cells to terminal differentiation and the modulation of gene-expression. Cancer Res. 1987;47:659–66.PubMedGoogle Scholar
  197. 197.
    Richon VM, Ramsay RG, Rifkind RA, Marks PA. Modulation of the c-myb, c-myc and p53 messenger-RNA and protein-levels during induced murine erythroleukemia cell-differentiation. Oncogene. 1989;4:165–73.PubMedGoogle Scholar
  198. 198.
    Breslow R, Jursic B, Yan ZF, et al. Potent cytodifferentiating agents related to hexamethylenebisacetamide. Proc Natl Acad Sci U S A. 1991;88:5542–6.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Richon VM, Webb Y, Merger R, et al. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci U S A. 1996;93:5705–8.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–93.PubMedCrossRefGoogle Scholar
  201. 201.
    Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: Is transcription the primary target? Cancer Cell. 2003;4:13–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51.PubMedCrossRefGoogle Scholar
  203. 203.
    Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50.PubMedCrossRefGoogle Scholar
  204. 204.
    Butler LM, Zhou XB, Xu WS, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci U S A. 2002;99:11700–5.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21(WAF1) expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000;97:10014–9.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2005;102:3697–702.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Scott GK, Mattie ND, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–81.PubMedCrossRefGoogle Scholar
  208. 208.
    Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 1998;241:126–33.PubMedCrossRefGoogle Scholar
  209. 209.
    Shigematsu N, Ueda H, Takase S, et al. Fr901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium-violaceum No-968. 2. Structure determination. J Antibiot. 1994;47:311–4.PubMedCrossRefGoogle Scholar
  210. 210.
    Biamonte MA, Van de Water R, Arndt JW, et al. Heat shock protein 90: inhibitors in clinical trials. J Med Chem. 53:3–17.Google Scholar
  211. 211.
    Jego G, Hazoume A, Seiqneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332:275–85.Google Scholar
  212. 212.
    Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem. 2006;75:271–94.PubMedCrossRefGoogle Scholar
  213. 213.
    Welch WJ, Feramisco JR. Purification of the major mammalian heat-shock proteins. J Biol Chem. 1982;257:4949–59.Google Scholar
  214. 214.
    Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL. BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood. 2002;100:3041–4.PubMedCrossRefGoogle Scholar
  215. 215.
    Messaoudi S, Peyrat JF, Brion JD, Alami M. Recent advances in Hsp90 inhibitors as antitumor agents. Anticancer Agents Med Chem. 2008;8:761–82.PubMedCrossRefGoogle Scholar
  216. 216.
    Dymock BW, Drysdale MJ, McDonald E, Workman P. Inhibitors of HSP90 and other chaperones for the treatment of cancer. Expert Opin Ther Pat. 2004;14:837–47.CrossRefGoogle Scholar
  217. 217.
    Isaacs JS, Xu WP, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell. 2003;3:213–7.PubMedCrossRefGoogle Scholar
  218. 218.
    Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther. 2002;2:3–24.PubMedCrossRefGoogle Scholar
  219. 219.
    Richter K, Buchner J. Hsp90: chaperoning signal transduction. J Cell Physiol. 2001;188:281–90.PubMedCrossRefGoogle Scholar
  220. 220.
    Kamal A, Boehm MF, Burrows FJ. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med. 2004;10:283–90.PubMedCrossRefGoogle Scholar
  221. 221.
    Workman P, Powers MV. Chaperoning cell death: a critical dual role for Hsp90 in small-cell lung cancer. Nat Chem Biol. 2007;3:455–7.PubMedCrossRefGoogle Scholar
  222. 222.
    Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 2003;425:407–10.PubMedCrossRefGoogle Scholar
  223. 223.
    Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med. 2003;228:111–33.Google Scholar
  224. 224.
    Jhaveri K, Taldone T, Modi S, Chiosis G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta. 2012;1823:742–55.PubMedCrossRefGoogle Scholar
  225. 225.
    Huang KH, Veal JM, Fadden RP, et al. Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent. Selective and orally active antitumor agents. J Med Chem. 2009;52:4288–305.PubMedCrossRefGoogle Scholar
  226. 226.
    Barta TE, Veal JM, Rice JW, et al. Discovery of benzamide tetrahydro-4H-carbazol-4-ones as novel small molecule inhibitors of Hsp90. Bioorg Med Chem Lett. 2008;18:3517–21.PubMedCrossRefGoogle Scholar
  227. 227.
    Rajan A, Kelly RJ, Trepel JB, et al. A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin Cancer Res. 2011;17:6831–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems TherapeuticsIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations