Advertisement

Targeting Oncoproteins for Molecular Cancer Therapy

  • Joshua E. Allen
  • Wafik S. El-DeiryEmail author
Chapter

Abstract

Cancer and efforts to treat cancer are described in Ancient Egyptian documents dating back to 1600B.C. The first successful cancer treatments were arsenic-based therapies for leukemias, with the first reported application to cancer in the nineteenth century. However, nitrogen mustards are often accredited as the first modern chemotherapy. Originally intended as a chemical warfare agent in World War I, nitrogen mustard was stockpiled by several countries. During World War II, Axis bombers sunk a ship containing large quantities of nitrogen mustard and killed numerous Allied sailors. This observation birthed the hypothesis that nitrogen mustards might prevent the rapid division of cancer cells, one of the few properties of cancer understood at that time. Today, the hallmarks of cancer as recently redefined by Hanahan and Weinberg include several complex and connected cellular properties that allow for this phenotype: resistance to cell death, sustained angiogenesis, limitless ability to replicate, self-sufficiency in growth factor signaling, unresponsiveness to anti-growth factor signaling, genomic instability and mutation, deregulating cellular energetics, evading immune-mediated destruction, oncogenic inflammation, and invasiveness and metastasis. The identification and understanding of these hallmarks is a direct result of our molecular understanding of cancer that has surfaced relatively recently. Each of these hallmarks is determined by a host of molecules that together represent distinct therapeutic opportunities to target molecules that give rise to these defining properties of cancer.

Keywords

Oncoproteins Molecular cancer therapy Imatinib Gefitinib Iapatinib Rapamycin Sorafenib Vemurafenib Antibodies Rituximab Bevacizumab Cell division Ipilimumab 

References

  1. 1.
    Lissauer. Zwei Falle von Leukamie. Berliner Klinische Wochenschrift. 1865;2:403–4.Google Scholar
  2. 2.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Zimmermann J, Caravatti G, Mett H, et al. Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC). Arch Pharm. 1996;329:371–6.CrossRefGoogle Scholar
  5. 5.
    Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB. Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives. Bioorg Med Chem Lett. 1997;7:187–92.CrossRefGoogle Scholar
  6. 6.
    Zimmermann J, Buchdunger E, Mett H, et al. Phenylamino-pyrimidine (PAP)—derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg Med Chem Lett. 1996;6:1221–6.CrossRefGoogle Scholar
  7. 7.
    Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science. 2000;289:1938–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Zimmermann J, Furet P, Buchdunger E. STI571: a new treatment modality for CML? In: Anticancer agents. Washington, DC, USA: American Chemical Society; 2001. p. 245–59.CrossRefGoogle Scholar
  9. 9.
    Okuda K, Weisberg E, Gilliland DG, Griffin JD. ARG tyrosine kinase activity is inhibited by STI571. Blood. 2001;97:2440–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Adams CP, Brantner VV. Estimating the cost of new drug development: is it really $802 million? Health Aff. 2006;25:420–8.CrossRefGoogle Scholar
  11. 11.
    Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood. 2000;95:3498–505.PubMedGoogle Scholar
  12. 12.
    le Coutre P, Tassi E, Varella-Garcia M, et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood. 2000;95:1758–66.PubMedGoogle Scholar
  13. 13.
    Mahon FX, Deininger MWN, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000;96:1070–9.PubMedGoogle Scholar
  14. 14.
    Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Rubin EH, de Alwis DP, Pouliquen I, et al. A phase I trial of a potent P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), administered orally in combination with doxorubicin in patients with advanced malignancies. Clin Cancer Res. 2002;8:3710–7.PubMedGoogle Scholar
  16. 16.
    Gandhi L, Harding MW, Neubauer M, et al. A phase II study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer. Cancer. 2007;109:924–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Bauer KS, Karp JE, Garimella TS, et al. A phase I and pharmacologic study of idarubicin, cytarabine, etoposide, and the multidrug resistance protein (MDR1/Pgp) inhibitor PSC-833 in patients with refractory leukemia. Leuk Res. 2005;29:263–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Kolitz JE, George SL, Dodge RK, et al. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B Study 9621. J Clin Oncol. 2004;22:4290–301.PubMedCrossRefGoogle Scholar
  19. 19.
    Agrawal M, Abraham J, Balis FM, et al. Increased 99mTc-sestamibi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576. Clin Cancer Res. 2003;9:650–6.PubMedGoogle Scholar
  20. 20.
    Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Giles FJ, Abruzzese E, Rosti G, et al. Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia. 2010;24:1299–301.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cortes J, Rousselot P, Kim D-W, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2007;109:3207–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Cortes J, Kim DW, Raffoux E, et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia. 2008;22:2176–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Apperley JF, Cortes JE, Kim D-W, et al. Dasatinib in the treatment of chronic myeloid leukemia in accelerated phase after imatinib failure: the START a trial. J Clin Oncol. 2009;27:3472–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kantarjian H, Cortes J, Kim D-W, et al. Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib: 15-month median follow-up. Blood. 2009;113:6322–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shah NP, Kantarjian HM, Kim D-W, et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol. 2008;26:3204–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110:2309–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Guilhot F, Apperley J, Kim D-W, et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood. 2007;109:4143–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Hochhaus A, Kantarjian HM, Baccarani M, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood. 2007;109:2303–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Woodburn J, Kendrew J, Fennell M. ZD1839 (“Iressa”) a selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI): inhibition of c-fos mRNA, an intermediate marker of EGFR activation, correlates with tumor growth inhibition [abstract no. 2552]. Proc Am Assoc Cancer Res. 2000.Google Scholar
  31. 31.
    Budillon A, Gennaro ED, Barbarino M. ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, upregulates p27Kip1inducing G1 arrest and enhancing the antitumor effect of Interferon α [abstract no. 4910]. Proc Am Assoc Cancer Res. 2000;41.Google Scholar
  32. 32.
    Ciardiello F, Caputo R, Bianco R, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res. 2000;6:2053–63.PubMedGoogle Scholar
  33. 33.
    Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res. 2000;6:4885–92.PubMedGoogle Scholar
  34. 34.
    Woodburn J, Wakeling A, Kelly H. Preclinical studies with the oral epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) ZD1839 (“Iressa”) demonstrate significant anti-tumor activity. Presented at the Signal Transduction Pathways and Regulation of Gene Expression as Therapeutic Targets meeting. 2000.Google Scholar
  35. 35.
    Kelly H, Laight A, Morris C. Phase I data of ZD1839—an oral epidermal growth factor receptor tyrosine kinase inhibitor [abstract no. 419]. Ann Oncol. 1998;2.Google Scholar
  36. 36.
    Kelly H, Ferry D, Hammond L. ZD1839 (“Iressa”), an oral EGFR-TKI (epidermal growth factor tyrosine kinase inhibitor): pharmacokinetics in a Phase I study of patients with advanced cancer [abstract no. 3896]. Proc Am Assoc Cancer Res. 2000;41.Google Scholar
  37. 37.
    Goss G, Hirte H, Batist G. NCIC CTG IND.122: a two-part phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) ZD1839 [abstract no. 880]. Proc Am Soc Clin Oncol. 2000;19.Google Scholar
  38. 38.
    Baselga J, Herbst R, LoRusso P. Continuous administration of ZD1839 (Iressa), a novel oral epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), in patients with five selected tumor types: evidence of activity and good tolerability [abstract no. 686]. Proc Am Soc Clin Oncol. 2000;19.Google Scholar
  39. 39.
    Nakagawa K, Yamamoto N, Kudoh S. A phase I intermittent dose-escalation trial of ZD1839 (Iressa) in Japanese patients with solid malignant tumours [abstract no. 711]. Proc Am Soc Clin Oncol. 2000;19.Google Scholar
  40. 40.
    Ranson M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor–tyrosine kinase inhibitor, is well tolerated and active in patients with solid. malignant tumors: results of a phase I trial. J Clin Oncol. 2002;20:2240–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Baselga J, Rischin D, Ranson M, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol. 2002;20:4292–302.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones HK, Stafford LE, Swaisland HC, Payne R. A sensitive assay for ZD1839 (Iressa) in human plasma by liquid-liquid extraction and high performance liquid chromatography with mass spectrometric detection: validation and use in phase I clinical trials. J Pharm Biomed Anal. 2002;29:221–8.PubMedCrossRefGoogle Scholar
  43. 43.
    McKillop D, Guy SP, Spence MP, et al. Minimal contribution of desmethyl-gefitinib, the major human plasma metabolite of gefitinib, to epidermal growth factor receptor (EGFR)-mediated tumour growth inhibition. Xenobiotica. 2006;36:29–39.PubMedCrossRefGoogle Scholar
  44. 44.
    Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer. JAMA. 2003;290:2149–58.PubMedCrossRefGoogle Scholar
  45. 45.
    Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003;21:2237–46.PubMedCrossRefGoogle Scholar
  46. 46.
    Janne PA, Gurubhagavatula S, Yeap BY, et al. Outcomes of patients with advanced non-small cell lung cancer treated with gefitinib (ZD1839, Iressa™) on an expanded access study. Lung Cancer. 2004;44:221–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366:1527–37.PubMedCrossRefGoogle Scholar
  48. 48.
    Chang A, Parikh P, Thongprasert S, et al. Gefitinib (IRESSA) in patients of Asian origin with refractory advanced non-small cell lung cancer: subset analysis from the ISEL study. J Thorac Oncol. 2006;1:847–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Sunaga N, Tomizawa Y, Yanagitani N, et al. Phase II prospective study of the efficacy of gefitinib for the treatment of stage III/IV non-small cell lung cancer with EGFR mutations, irrespective of previous chemotherapy. Lung Cancer. 2007;56:383–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Sequist LV, Martins RG, Spigel D, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol. 2008;26:2442–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Tamura K, Okamoto I, Kashii T, et al. Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403). Br J Cancer. 2008;98:907–14.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cortes-Funes H, Gomez C, Rosell R, et al. Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small-cell lung cancer patients. Ann Oncol. 2005;16:1081–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim ES, Hirsh V, Mok T, et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet. 2008;372:1809–18.PubMedCrossRefGoogle Scholar
  54. 54.
    Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.PubMedCrossRefGoogle Scholar
  55. 55.
    Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.PubMedCrossRefGoogle Scholar
  56. 56.
    Kosaka T, Yatabe Y, Endoh H, et al. Mutations of the epidermal growth factor receptor gene in lung cancer. Cancer Res. 2004;64:8919–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002;277:46265–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Carey KD, Garton AJ, Romero MS, et al. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor. Erlotinib Cancer Res. 2006;66:8163–71.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee DH, Park K, Kim JH, et al. Randomized phase III trial of gefitinib versus docetaxel in non-small cell lung cancer patients who have previously received platinum-based chemotherapy. Clin Cancer Res. 2010;16:1307–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Takeda K, Hida T, Sato T, et al. Randomized phase III trial of platinum-doublet chemotherapy followed by gefitinib compared with continued platinum-doublet chemotherapy in Japanese patients with advanced non-small-cell lung cancer: results of a West Japan Thoracic Oncology Group Trial (WJTOG0203). J Clin Oncol. 2010;28:753–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Saijo N, Takeuchi M, Kunitoh H. Reasons for response differences seen in the V15-32. INTEREST and IPASS trials. Nat Rev Clin Oncol. 2009;6:287–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Moiseenko V, Protsenko S, Semenov I, et al. Effectiveness of gefitinib (Iressa) as first-line therapy for inoperable non-small-cell lung cancer with mutated EGFR gene (phase II study). Vopr Onkol. 2010;56:20–3.PubMedGoogle Scholar
  64. 64.
    Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11:121–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Rusnak DW, Affleck K, Cockerill SG, et al. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors. Cancer Res. 2001;61:7196–203.PubMedGoogle Scholar
  66. 66.
    Cockerill S, Stubberfield C, Stables J, et al. Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and c-erbB-2. Bioorg Med Chem Lett. 2001;11:1401–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Rusnak DW, Lackey K, Affleck K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther. 2001;1:85–94.PubMedGoogle Scholar
  68. 68.
    Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21:6255–63.Google Scholar
  69. 69.
    Christianson TA, Doherty JK, Lin YJ, et al. NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res. 1998;58:5123–9.PubMedGoogle Scholar
  70. 70.
    Di Fiore PP, Pierce JH, Kraus MH, et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987;237:178–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Bargmann C, Weinberg R. Oncogenic activation of the neu-encoded receptor protein by point mutation and deletion. EMBO J. 1988;7:2043–52.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Segatto O, King CR, Pierce JH, Di Fiore PP, Aaronson SA. Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene. Mol Cell Biol. 1988;8:5570–4.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kandl H, Seymour L, Bezwoda W. Soluble c-erbB-2 fragment in serum correlates with disease stage and predicts for shortened survival in patients with early-stage and advanced breast cancer. Br J Cancer. 1994;70:739–42.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Brandt-Rauf P. The c-erbB transmembrane growth factor receptors as serum biomarkers in human cancer studies. Mutation Res. 1995;333:203–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Yamauchi H, O'Neill A, Gelman R, et al. Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol. 1997;15:2518–25.PubMedGoogle Scholar
  76. 76.
    Colomer R, Montero S, Lluch A, et al. Circulating HER2 extracellular domain and resistance to chemotherapy in advanced breast cancer. Clin Cancer Res. 2000;6:2356–62.PubMedGoogle Scholar
  77. 77.
    Xia W, Liu L-H, Ho P, Spector NL. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR//ErbB2 kinase inhibitor GW572016. Oncogene. 2004;23:646–53.PubMedCrossRefGoogle Scholar
  78. 78.
    Gregory CW, Whang YE, McCall W, et al. Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth. Clin Cancer Res. 2005;11:1704–12.PubMedCrossRefGoogle Scholar
  79. 79.
    Liu Y, Majumder S, McCall W, et al. Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer. Cancer Res. 2005;65:3404–9.PubMedGoogle Scholar
  80. 80.
    Chu I, Blackwell K, Chen S, Slingerland J. The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016). Cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res. 2005;65:18–25.PubMedGoogle Scholar
  81. 81.
    Xia W, Bacus S, Hegde P, et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci. 2006;103:7795–800.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Xia W, Gerard CM, Liu L, et al. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene. 2005;24:6213–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Konecny GE, Pegram MD, Venkatesan N, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66:1630–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Nahta R, Yuan LXH, Du Y, Esteva FJ. Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: effects on insulin-like growth factor I signaling. Mol Cancer Ther. 2007;6:667–74.PubMedCrossRefGoogle Scholar
  85. 85.
    Bence AK, Anderson EB, Halepota MA, et al. Phase I pharmacokinetic studies evaluating single and multiple doses of oral GW572016, a dual EGFR-ErbB2 inhibitor, in healthy subjects. Invest New Drugs. 2005;23:39–49.PubMedCrossRefGoogle Scholar
  86. 86.
    Messori A. Effect of food on lapatinib pharmacokinetics. J Clin Oncol. 2007;25:5332–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Rahman A, Pazdur R, Wang Y, Huang S-M, Lesko L. The value meal: effect of food on lapatinib bioavailability. J Clin Oncol. 2007;25:5333–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Trippoli S. Controversies in using lapatinib at reduced dosage with food. J Clin Oncol. 2007;25:5333.PubMedCrossRefGoogle Scholar
  89. 89.
    Burris HA, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 2005;23:5305–13.PubMedCrossRefGoogle Scholar
  90. 90.
    Gomez HL, Doval DC, Chavez MA, et al. Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol. 2008;26:2999–3005.PubMedCrossRefGoogle Scholar
  91. 91.
    Harrington KJ, El-Hariry IA, Holford CS, et al. Phase I study of lapatinib in combination with chemoradiation in patients with locally advanced squamous cell carcinoma of the head and neck. J Clin Oncol. 2009;27:1100–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Burris HA, Taylor CW, Jones SF, et al. A phase I and pharmacokinetic study of oral lapatinib administered once or twice daily in patients with solid malignancies. Clin Cancer Res. 2009;15:6702–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ross HJ, Blumenschein GR, Aisner J, et al. Randomized phase II multicenter trial of two schedules of lapatinib as first- or second-line monotherapy in patients with advanced or metastatic non-small cell lung cancer. Clin Cancer Res. 2010;16:1938–49.PubMedCrossRefGoogle Scholar
  94. 94.
    Sridhar SS, Hotte SJ, Chin JL, et al. A multicenter phase II clinical trial of lapatinib (GW572016) in hormonally untreated advanced prostate cancer. Am J Clin Oncol. 2010;33:609–13.PubMedCrossRefGoogle Scholar
  95. 95.
    Siegel-Lakhai WS, Beijnen JH, Vervenne WL, et al. Phase I pharmacokinetic study of the safety and tolerability of lapatinib (GW572016) in combination with oxaliplatin/fluorouracil/leucovorin (FOLFOX4) in patients with solid tumors. Clin Cancer Res. 2007;13:4495–502.PubMedCrossRefGoogle Scholar
  96. 96.
    Midgley RS, Kerr DJ, Flaherty KT, et al. A phase I and pharmacokinetic study of lapatinib in combination with infusional 5-fluorouracil, leucovorin and irinotecan. Ann Oncol. 2007;18:2025–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.PubMedCrossRefGoogle Scholar
  98. 98.
    Chu QSC, Schwartz G, de Bono J, et al. Phase I and pharmacokinetic study of lapatinib in combination with capecitabine in patients with advanced solid malignancies. J Clin Oncol. 2007;25:3753–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Cameron D, Casey M, Press M, et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat. 2008;112:533–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Johnston S, Trudeau M, Kaufman B, et al. Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol. 2008;26:1066–72.PubMedCrossRefGoogle Scholar
  101. 101.
    Dolloff NG, Mayes PA, Hart LS, et al. Off-target lapatinib activity sensitizes colon cancer cells through TRAIL death receptor up-regulation. Sci Transl Med. 2011;3:86ra50.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Johnston S, Pippen J, Pivot X, et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol. 2009;27:5538–46.PubMedCrossRefGoogle Scholar
  103. 103.
    Di Leo A, Gomez HL, Aziz Z, et al. Phase III, double-blind. Randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer. J Clin Oncol. 2008;26:5544–52.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Jagiello-Gruszfeld A, Tjulandin S, Dobrovolskaya N, et al. A single-arm phase II trial of first-line paclitaxel in combination with lapatinib in HER2-overexpressing metastatic breast cancer. Oncology. 2010;79:129–35.PubMedCrossRefGoogle Scholar
  105. 105.
    Blackwell KL, Burstein HJ, Storniolo AM, et al. Randomized study of lapatinib alone or in combination with trastuzumab in women with ErbB2-positive. Trastuzumab-refractory metastatic breast cancer. J Clin Oncol. 2010;28:1124–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22, 989), a new antifungal antibiotic. J Antibiot. 1975;28:721–6.Google Scholar
  107. 107.
    Baker H, Sidorowicz A, Sehgal SN, Vezina C. Rapamycin (AY-22, 989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J Antibiot. 1978;31:539–45.PubMedCrossRefGoogle Scholar
  108. 108.
    Martel R, Klicius J, Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol. 1977;55:48–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Sawada S, Suzuki G, Kawase Y, Takaku F. Novel immunosuppressive agent, FK506. In vitro effects on the cloned T cell activation. J Immunol. 1987;139:1797–803.PubMedGoogle Scholar
  110. 110.
    Dumont FJ, Melino MR, Staruch MJ, et al. The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol. 1990;144:1418–24.PubMedGoogle Scholar
  111. 111.
    Harding MW, Galat A, Uehling DE, Schreiber SL. A receptor for the immuno-suppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature. 1989;341:758–60.PubMedCrossRefGoogle Scholar
  112. 112.
    Siekierka JJ, Hung SHY, Poe M, Lin CS, Sigal NH. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature. 1989;341:755–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Standaert RF, Galat A, Verdine GL, Schreiber SL. Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature. 1990;346:671–4.PubMedCrossRefGoogle Scholar
  114. 114.
    Maki N, Sekiguchi F, Nishimaki J, et al. Complementary DNA encoding the human T-cell FK506-binding protein, a peptidylprolyl cis-trans isomerase distinct from cyclophilin. Proc Natl Acad Sci U S A. 1990;87:5440–3.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Bierer BE, Mattila PS, Standaert RF, et al. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci U S A. 1990;87:9231–5.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Michnick SW, Rosen MK, Wandless TJ, Karplus M, Schreiber SL. Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin. Science. 1991;252:836–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science. 1991;252:839–42.PubMedCrossRefGoogle Scholar
  118. 118.
    Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol. 1993;229:105–24.PubMedCrossRefGoogle Scholar
  119. 119.
    Kunz J, Henriquez R, Schneider U, et al. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993;73:585–96.PubMedCrossRefGoogle Scholar
  120. 120.
    Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78:35–43.PubMedCrossRefGoogle Scholar
  121. 121.
    Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A. 1994;91:12574–8.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270:815–22.PubMedCrossRefGoogle Scholar
  123. 123.
    Brown EJ, Albers MW, Bum Shin T, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369:756–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Francavilla A, Carr BI, Starzl TE, et al. Effects of rapamycin on cultured hepatocyte proliferation and gene expression. Hepatology. 1992;15:871–7.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE. Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science. 1992;257:973–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253:905–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Sekulik A, Hudson CC, Homme JL, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000;60:3504–13.Google Scholar
  128. 128.
    Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000;14:2712–24.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000;14:2689–94.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69:1227–36.PubMedCrossRefGoogle Scholar
  131. 131.
    Kuo CJ, Chung J, Fiorentino DF, et al. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992;358:70–3.PubMedCrossRefGoogle Scholar
  132. 132.
    Terada N, Lucas JJ, Szepesi A, et al. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun. 1992;186:1315–21.PubMedCrossRefGoogle Scholar
  133. 133.
    Lin TA, Kong X, Haystead TA, et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994;266:653–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Graves LM, Bornfeldt KE, Argast GM, et al. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1995;92:7222–6.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Pause A, Belsham GJ, Gingras A-C, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371:762–7.PubMedCrossRefGoogle Scholar
  136. 136.
    von Manteuffel SR, Dennis PB, Pullen N, et al. The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol. 1997;17:5426–36.CrossRefGoogle Scholar
  137. 137.
    Singh K, Sun S, Vezina C. Rapamycin (AY-22, 989), a new antifungal antibiotic. IV. Mechanism of action. J Antibiot. 1979;32:630–45.PubMedCrossRefGoogle Scholar
  138. 138.
    Eng C, Sehgal S, Vezina C. Activity of rapamycin (AY-22, 989) against transplanted tumors. J Antibiot. 1984;37:1231–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Muthukkumar S, Ramesh T, Bondada S. Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells. Transplantation. 1995;60:264–70.PubMedCrossRefGoogle Scholar
  140. 140.
    Seufferlein T, Rozengurt E. Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res. 1996;56:3895–7.PubMedGoogle Scholar
  141. 141.
    Hosoi H, Dilling MB, Shikata T, et al. Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res. 1999;59:886–94.PubMedGoogle Scholar
  142. 142.
    Busca R, Bertolotto C, Ortonne J-P, Ballotti R. Inhibition of the phosphatidylinositol 3-kinase/p70S6-kinase pathway induces B16 melanoma cell differentiation. J Biol Chem. 1996;271:31824–30.PubMedCrossRefGoogle Scholar
  143. 143.
    Grewe M, Gansauge F, Schmid RM, Adler G, Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 1999;59:3581–7.PubMedGoogle Scholar
  144. 144.
    Humar ROK, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR) -dependent signaling. FASEB J. 2002;16:771–80.PubMedCrossRefGoogle Scholar
  145. 145.
    Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8:128–35.PubMedCrossRefGoogle Scholar
  146. 146.
    Shi Y, Frankel A, Radvanyi LG, et al. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. 1995;55:1982–8.PubMedGoogle Scholar
  147. 147.
    Trepanier DJ, Gallant H, Legatt DF, Yatscoff RW. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin Biochem. 1998;31:345–51.PubMedCrossRefGoogle Scholar
  148. 148.
    Yatscoff R. Pharmacokinetics of rapamycin. Transplant Proc. 1996;28:970–3.PubMedGoogle Scholar
  149. 149.
    Yu K, Toral-Barza L, Discafani C, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer. 2001;8:249–58.PubMedCrossRefGoogle Scholar
  150. 150.
    Geoerger B, Kerr K, Tang C-B, et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res. 2001;61:1527–32.PubMedGoogle Scholar
  151. 151.
    Asano T, Yao Y, Zhu J, et al. The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun. 2005;331:295–302.PubMedCrossRefGoogle Scholar
  152. 152.
    Frost P, Moatamed F, Hoang B, et al. In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood. 2004;104:4181–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Ito D, Fujimoto K, Doi R, Shimada Y, Imamura M. mTOR, a novel target in pancreatic cancer: the effect of CCI-779 in preclinical models. AACR Meeting Abstr. 2004;2004:896.Google Scholar
  154. 154.
    Wu L, Birle DC, Tannock IF. Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res. 2005;65:2825–31.PubMedCrossRefGoogle Scholar
  155. 155.
    Nathan C-AO, Amirghahari N, Sibley D, et al. In vivo and in vitro effect of CCI-779 a rapamycin analogue on HNSCC. AACR Meeting Abstr. 2004;2004:850–1.Google Scholar
  156. 156.
    Podsypanina K, Lee RT, Politis C, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/+ mice. Proc Natl Acad Sci U S A. 2001;98:10320–5.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Dudkin L, Dilling MB, Cheshire PJ, et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res. 2001;7:1758–64.PubMedGoogle Scholar
  158. 158.
    Raymond E, Alexandre JRM, Faivre S, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004;22:2336–47.PubMedCrossRefGoogle Scholar
  159. 159.
    Peralba JM, deGraffenried L, Friedrichs W, et al. Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin Cancer Res. 2003;9:2887–92.PubMedGoogle Scholar
  160. 160.
    Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.PubMedCrossRefGoogle Scholar
  161. 161.
    Hess G, Herbrecht R, Romaguera J, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27:3822–9.PubMedCrossRefGoogle Scholar
  162. 162.
    Patel PH, Senico PL, Curiel RE, Motzer RJ. Phase I study combining treatment with temsirolimus and sunitinib malate in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2009;7:24–7.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Patnaik A, Ricart A, Cooper J, et al. A phase I, pharmacokinetic and pharmacodynamic study of sorafenib (S), a multi-targeted kinase inhibitor in combination with temsirolimus (T), an mTOR inhibitor in patients with advanced solid malignancies. J Clin Oncol. 2007;25. 2007 ASCO Annual Meeting Proceedings Part I.Google Scholar
  164. 164.
    Escudier BJ, Negrier S, Gravis G, et al. Can the combination of temsirolimus and bevacizumab improve the treatment of metastatic renal cell carcinoma (mRCC)? Results of the randomized TORAVA phase II trial. J Clin Oncol. 2010;28.Google Scholar
  165. 165.
    Chan S, Scheulen ME, Johnston S, et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2005;23:5314–22.PubMedCrossRefGoogle Scholar
  166. 166.
    Temkin SM, Yamada SD, Fleming GF. A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecol Oncol. 2010;117:473–6.PubMedCrossRefGoogle Scholar
  167. 167.
    Farag SS, Zhang S, Jansak BS, et al. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk Res. 2009;33:1475–80.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Kuhn JG, Chang SM, Wen PY, et al. Pharmacokinetic and tumor distribution characteristics of temsirolimus in patients with recurrent malignant glioma. Clin Cancer Res. 2007;13:7401–6.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Chang SM, Wen P, Cloughesy T, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs. 2005;23:357–61.PubMedCrossRefGoogle Scholar
  170. 170.
    Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2005;23:5294–304.PubMedCrossRefGoogle Scholar
  171. 171.
    Pandya KJ, Dahlberg S, Hidalgo M, et al. A randomized, phase II trial of two dose levels of temsirolimus (CCI-779) in patients with extensive-stage small-cell lung cancer who have responding or stable disease after induction chemotherapy: a Trial of the Eastern Cooperative Oncology Group (E1500). J Thorac Oncol. 2007;2:1036–41.PubMedCrossRefGoogle Scholar
  172. 172.
    Yee KWL, Zeng Z, Konopleva M, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006;12:5165–73.PubMedCrossRefGoogle Scholar
  173. 173.
    Fouladi M, Laningham F, Wu J, et al. Phase I study of everolimus in pediatric patients with refractory solid tumors. J Clin Oncol. 2007;25:4806–12.PubMedCrossRefGoogle Scholar
  174. 174.
    Tabernero J, Rojo F, Calvo E, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26:1603–10.PubMedCrossRefGoogle Scholar
  175. 175.
    O'Donnell A, Faivre S, Burris HA, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26:1588–95.PubMedCrossRefGoogle Scholar
  176. 176.
    Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372:449–56.PubMedCrossRefGoogle Scholar
  177. 177.
    Kreisl T, Lassman A, Mischel P, et al. A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM). J Neurooncol. 2009;92:99–105.PubMedCrossRefGoogle Scholar
  178. 178.
    Johnston PB, Inwards DJ, Colgan JP, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol. 2010;85:320–4.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Doi T, Muro K, Boku N, et al. Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer. J Clin Oncol. 2010;28:1904–10.PubMedCrossRefGoogle Scholar
  180. 180.
    Ramalingam SS, Harvey RD, Saba N, et al. Phase 1 and pharmacokinetic study of everolimus, a mammalian target of rapamycin inhibitor, in combination with docetaxel for recurrent/refractory nonsmall cell lung cancer. Cancer. 2010;116:3903–9.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Ellard SL, Clemons M, Gelmon KA, et al. Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163.. J Clin Oncol. 2009;27:4536–41.PubMedCrossRefGoogle Scholar
  182. 182.
    Awada A, Cardoso F, Fontaine C, et al. The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: Results of a phase I study with pharmacokinetics. Eur J Cancer. 2008;44:84–91.PubMedCrossRefGoogle Scholar
  183. 183.
    Baselga J, Semiglazov V, van Dam P, et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2009;27:2630–7.PubMedCrossRefGoogle Scholar
  184. 184.
    Andre F, Campone M, O'Regan R, et al. Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol. 2010;28:5110–5.PubMedCrossRefGoogle Scholar
  185. 185.
    Zent CS, LaPlant BR, Johnston PB, et al. The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer. 2010;116:2201–7.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28:69–76.PubMedCrossRefGoogle Scholar
  187. 187.
    Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Rizzieri DA, Feldman E, DiPersio JF, et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2008;14:2756–62.PubMedCrossRefGoogle Scholar
  189. 189.
    Hartford CM, Desai AA, Janisch L, et al. A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin Cancer Res. 2009;15:1428–34.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Mita MM, Mita AC, Chu QS, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008;26:361–7.PubMedCrossRefGoogle Scholar
  191. 191.
    Perotti A, Locatelli A, Sessa C, et al. Phase IB study of the mTOR inhibitor ridaforolimus with capecitabine. J Clin Oncol. 2010;28:4554–61.PubMedCrossRefGoogle Scholar
  192. 192.
    Sessa C, Tosi D, Vigano L, et al. Phase Ib study of weekly mammalian target of rapamycin inhibitor ridaforolimus (AP23573; MK-8669) with weekly paclitaxel. Ann Oncol. 2010;21:1315–22.PubMedCrossRefGoogle Scholar
  193. 193.
    Javle M, Shroff R, Xiong H, et al. Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: results of two phase II studies. BMC Cancer. 2010;10:368.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Mukherjee R, Bartlett JMS, Krishna NS, Underwood MA, Edwards J. Raf-1 expression may influence progression to androgen insensitive prostate cancer. Prostate. 2005;64:101–7.PubMedCrossRefGoogle Scholar
  195. 195.
    Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62:6997–7000.PubMedGoogle Scholar
  196. 196.
    Hwang YH, Choi JY, Kim S, et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res. 2004;29:113–21.PubMedCrossRefGoogle Scholar
  197. 197.
    McPhillips F, Mullen P, Monia BP, et al. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer. 2001;85:1753–8.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Kasid U, Pfeifer A, Brennan T, et al. Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science. 1989;243:1354–6.PubMedCrossRefGoogle Scholar
  199. 199.
    Kasid U, Pfeifer A, Weichselbaum RR, Dritschilo A, Mark GE. The raf oncogene is associated with a radiation-resistant human laryngeal cancer. Science. 1987;237:1039–41.PubMedCrossRefGoogle Scholar
  200. 200.
    Smith RA, Barbosa J, Blum CL, et al. Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorg Med Chem Lett. 2001;11:2775–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Lyons JF, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer. 2001;8:219–25.PubMedCrossRefGoogle Scholar
  202. 202.
    Lowinger TB, Riedl B, Dumas J, Smith RA. Design and discovery of small molecules targeting Raf-1 kinase. Curr Pharm Des. 2002;10:2269–78.CrossRefGoogle Scholar
  203. 203.
    Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.PubMedCrossRefGoogle Scholar
  204. 204.
    Carlomagno F, Anaganti S, Guida T, et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst. 2006;98:326–34.PubMedCrossRefGoogle Scholar
  205. 205.
    Wan PTC, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.PubMedCrossRefGoogle Scholar
  206. 206.
    Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 2005;23:965–72.PubMedCrossRefGoogle Scholar
  207. 207.
    Awada A, Hendlisz A, Gil T, et al. Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer. 2005;92:1855–61.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Moore M, Hirte HW, Siu L, et al. Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol. 2005;16:1688–94.PubMedCrossRefGoogle Scholar
  209. 209.
    Kupsch P, Henning B, Passarge K, et al. Results of a phase I trial of sorafenib (BAY 43-9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin Colorectal Cancer. 2005;5:188–96.PubMedCrossRefGoogle Scholar
  210. 210.
    Siu LL, Awada A, Takimoto CH, et al. Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res. 2006;12:144–51.PubMedCrossRefGoogle Scholar
  211. 211.
    Richly H, Henning BF, Kupsch P, et al. Results of a phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors. Ann Oncol. 2006;17:866–73.PubMedCrossRefGoogle Scholar
  212. 212.
    Steinbild S, Baas F, Gmehling D, et al. Phase I study of BAY 43–9006 (sorafenib), a Raf kinase and VEGFR inhibitor, combined with irinotecan (CPT-11) in advanced solid tumors. J Clin Oncol. 2005;23.Google Scholar
  213. 213.
    Eisen T, Ahmad T, Gore ME, et al. Phase I trial of BAY 43-9006 (sorafenib) combined with dacarbazine (DTIC) in metastatic melanoma patients. J Clin Oncol. 2005;23.Google Scholar
  214. 214.
    Gollob J, Richmond T, Jones J, et al. Phase II trial of sorafenib plus interferon-alpha 2b (IFN-α2b) as first- or second-line therapy in patients (pts) with metastatic renal cell cancer (RCC). J Clin Oncol. 2006;24.Google Scholar
  215. 215.
    Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:2505–12.PubMedCrossRefGoogle Scholar
  216. 216.
    Escudier B, Szczylik C, Demkow T, et al. Randomized phase II trial of the multi-kinase inhibitor sorafenib versus interferon (IFN) in treatment-naïve patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2006;24.Google Scholar
  217. 217.
    Motzer RJ, Bacik J, Schwartz LH, et al. Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol. 2004;22:454–63.PubMedCrossRefGoogle Scholar
  218. 218.
    Negrier S, Jäger E, Porta C, et al. Efficacy and safety of sorafenib in patients with advanced renal cell carcinoma with and without prior cytokine therapy, a subanalysis of TARGET. Med Oncol. 2010;27:899–906.PubMedCrossRefGoogle Scholar
  219. 219.
    Hutson TE, Bellmunt J, Porta C, et al. Long-term safety of sorafenib in advanced renal cell carcinoma: follow-up of patients from phase III TARGET. Eur J Cancer. 2010;46:2432–40.PubMedCrossRefGoogle Scholar
  220. 220.
    Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66:11851–8.PubMedCrossRefGoogle Scholar
  221. 221.
    Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24:4293–300.PubMedCrossRefGoogle Scholar
  222. 222.
    Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.PubMedCrossRefGoogle Scholar
  223. 223.
    Ott PA, Hamilton A, Min C, et al. A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One. 2010;5.Google Scholar
  224. 224.
    Flaherty KT, Schiller J, Schuchter LM, et al. A phase I trial of the oral. multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res. 2008;14:4836–42.PubMedCrossRefGoogle Scholar
  225. 225.
    Hauschild A, Agarwala SS, Trefzer U, et al. Results of a phase III, randomized. placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009;27:2823–30.PubMedCrossRefGoogle Scholar
  226. 226.
    Abou-Alfa GK, Johnson P, Knox JJ, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma. JAMA. 2010;304:2154–60.PubMedCrossRefGoogle Scholar
  227. 227.
    Cowey CL, Amin C, Pruthi RS, et al. Neoadjuvant clinical trial with sorafenib for patients with stage II or higher renal cell carcinoma. J Clin Oncol. 2010;28:1502–7.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Blumenschein GR, Gatzemeier U, Fossella F, et al. Phase II, multicenter, uncontrolled trial of single-agent sorafenib in patients with relapsed or refractory. advanced non-small-cell lung cancer. J Clin Oncol. 2009;27:4274–80.PubMedCrossRefGoogle Scholar
  229. 229.
    Lind JSW, Dingemans A-MC, Groen HJM, et al. A multicenter phase II study of erlotinib and sorafenib in chemotherapy-naïve patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:3078–87.PubMedCrossRefGoogle Scholar
  230. 230.
    Adjei AA, Molina JR, Mandrekar SJ, et al. Phase I trial of sorafenib in combination with gefitinib in patients with refractory or recurrent non-small cell lung cancer. Clin Cancer Res. 2007;13:2684–91.PubMedCrossRefGoogle Scholar
  231. 231.
    Bellmunt J, Trigo JM, Calvo E, et al. Activity of a multitargeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase 2 study (SOGUG-02-06). Lancet Oncol. 2010;11:350–7.PubMedCrossRefGoogle Scholar
  232. 232.
    Dubey S, Janne PA, Krug L, et al. A phase II study of sorafenib in malignant mesothelioma: results of Cancer and Leukemia Group B 30307. J Thorac Oncol. 2010;5:1655–61.PubMedCrossRefGoogle Scholar
  233. 233.
    Chi KN, Ellard SL, Hotte SJ, et al. A phase II study of sorafenib in patients with chemo-naive castration-resistant prostate cancer. Ann Oncol. 2008;19:746–51.PubMedCrossRefGoogle Scholar
  234. 234.
    Dahut WL, Scripture C, Posadas E, et al. A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res. 2008;14:209–14.PubMedCrossRefGoogle Scholar
  235. 235.
    Nimeiri HS, Oza AM, Morgan RJ, et al. A phase II study of sorafenib in advanced uterine carcinoma/carcinosarcoma: A trial of the Chicago, PMH, and California Phase II Consortia. Gynecol Oncol. 2010;117:37–40.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Dreicer R, Li H, Stein M, et al. Phase 2 trial of sorafenib in patients with advanced urothelial cancer. Cancer. 2009;115:4090–5.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Maki RG, D'Adamo DR, Keohan ML, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol. 2009;27:3133–40.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Williamson SK, Moon J, Huang CH, et al. Phase II evaluation of sorafenib in advanced and metastatic squamous cell carcinoma of the head and neck: Southwest Oncology Group Study S0420. J Clin Oncol. 2010;28:3330–5.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Scagliotti G, Novello S, von Pawel J, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:1835–42.PubMedCrossRefGoogle Scholar
  240. 240.
    Okamoto I, Miyazaki M, Morinaga R, et al. Phase I clinical and pharmacokinetic study of sorafenib in combination with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Invest New Drugs. 2010;28:844–53.PubMedCrossRefGoogle Scholar
  241. 241.
    Pölcher M, Eckhardt M, Coch C, et al. Sorafenib in combination with carboplatin and paclitaxel as neoadjuvant chemotherapy in patients with advanced ovarian cancer. Cancer Chemother Pharmacol. 2010;66:203–7.PubMedCrossRefGoogle Scholar
  242. 242.
    Di Lorenzo G, Carteni G, Autorino R, et al. Phase II study of sorafenib in patients with sunitinib-refractory metastatic renal cell cancer. J Clin Oncol. 2009;27:4469–74.PubMedCrossRefGoogle Scholar
  243. 243.
    Flaherty K, et al. Phase I/II, pharmacokinetic and pharmacodynamic trial of BAY 43-9006 alone in patients with metastatic melanoma. J Clin Oncol. 2005;23:3037.Google Scholar
  244. 244.
    Whittaker S, Kirk R, Hayward R, et al. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci Transl Med. 2010;2:35ra41.PubMedCrossRefGoogle Scholar
  245. 245.
    Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Joseph EW, Pratilas CA, Poulikakos PI, et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci. 2010;107:14903–8.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Lee JT, Li L, Brafford PA, et al. PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell Melanoma Res. 2010;23:820–7.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Flaherty K, et al. Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J Clin Oncol. 2009;27:9000.Google Scholar
  249. 249.
    Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated. Activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Ji Z, Flaherty KT, Tsao H. Targeting the RAS pathway in melanoma. Trends Mol Med. 2012;18:27–35.Google Scholar
  252. 252.
    Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Kaplan FM, Shao Y, Mayberry MM, Aplin AE. Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene. 2011;30:366–71.PubMedCrossRefGoogle Scholar
  254. 254.
    Shi H, Kong X, Ribas A, Lo RS. Combinatorial treatments that overcome PDGFRŒ≤-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res. 2011;71:5067–74.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Niehr F, von Euw E, Attar N, et al. Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations. J Transl Med. 2011;9:76.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Comin-Anduix B, Chodon T, Sazegar H, et al. The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin Cancer Res. 2010;16:6040–8.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Yu L, Favoino E, Wang Y, et al. The CSPG4-specific monoclonal antibody enhances and prolongs the effects of the BRAF inhibitor in melanoma cells. Immunol Res. 2011;50:294–302.PubMedCrossRefGoogle Scholar
  258. 258.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.PubMedCrossRefGoogle Scholar
  259. 259.
    Einfeld DA, Brown JP, Valentine MA, Clark EA, Ledbetter JA. Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. EMBO J. 1988;7:711–7.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Liu AY, Robinson RR, Murray ED, et al. Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol. 1987;139:3521–6.PubMedGoogle Scholar
  261. 261.
    Press OW, Appelbaum F, Ledbetter JA, et al. Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B cell lymphomas. Blood. 1987;69:584–91.PubMedGoogle Scholar
  262. 262.
    Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–45.PubMedGoogle Scholar
  263. 263.
    Bannerji R, Kitada S, Flinn IW, et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol. 2003;21:1466–71.PubMedCrossRefGoogle Scholar
  264. 264.
    Treon SP, Mitsiades C, Mitsiades N, et al. Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J Immunother. 2001;24:263–71.CrossRefGoogle Scholar
  265. 265.
    Kennedy AD, Beum PV, Solga MD, et al. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol. 2004;172:3280–8.PubMedCrossRefGoogle Scholar
  266. 266.
    Klepfish A, Schattner A, Ghoti H, Rachmilewitz EA. Addition of fresh frozen plasma as a source of complement to rituximab in advanced chronic lymphocytic leukaemia. Lancet Oncol. 2007;8:361–2.PubMedCrossRefGoogle Scholar
  267. 267.
    Gong Q, Ou Q, Ye S, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174:817–26.PubMedCrossRefGoogle Scholar
  268. 268.
    Beers SA, Chan CHT, James S, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood. 2008;112:4170–7.PubMedCrossRefGoogle Scholar
  269. 269.
    Weng W-K, Levy R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood. 2001;98:1352–7.PubMedCrossRefGoogle Scholar
  270. 270.
    Hamaguchi Y, Xiu Y, Komura K, Nimmerjahn F, Tedder TF. Antibody isotype-specific engagement of Fcgamma receptors regulates B lymphocyte depletion during CD20 immunotherapy. J Exp Med. 2006;203:743–53.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol. 2001;19:275–90.PubMedCrossRefGoogle Scholar
  272. 272.
    Nimmerjahn F, Ravetch JV. Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science. 2005;310:1510–2.PubMedCrossRefGoogle Scholar
  273. 273.
    Nimmerjahn F, Ravetch JV. Fc[gamma] receptors: old friends and new family members. Immunity. 2006;24:19–28.PubMedCrossRefGoogle Scholar
  274. 274.
    Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fcgamma RIIIa gene. Blood. 2002;99:754–8.PubMedCrossRefGoogle Scholar
  275. 275.
    Dall'Ozzo S, Tartas S, Paintaud G, et al. Rituximab-dependent cytotoxicity by natural killer cells. Cancer Res. 2004;64:4664–9.PubMedCrossRefGoogle Scholar
  276. 276.
    Bowles JA, Weiner GJ. CD16 polymorphisms and NK activation induced by monoclonal antibody-coated target cells. J Immunol Methods. 2005;304:88–99.PubMedCrossRefGoogle Scholar
  277. 277.
    Lefebvre M-L, Krause SW, Salcedo M, Nardin A. Ex vivo-activated human macrophages kill chronic lymphocytic leukemia cells in the presence of rituximab: mechanism of antibody-dependent cellular cytotoxicity and impact of human serum. J Immunother. 2006;29:388–97.PubMedCrossRefGoogle Scholar
  278. 278.
    Tedder TF, Forsgren A, Boyd AW, Nadler LM, Schlossman SF. Antibodies reactive with the B1 molecule inhibit cell cycle progression but not activation of human B lymphocytes. Eur J Immunol. 1986;16:881–7.PubMedCrossRefGoogle Scholar
  279. 279.
    Golay JT, Clark EA, Beverley PC. The CD20 (Bp35) antigen is involved in activation of B cells from the G0 to the G1 phase of the cell cycle. J Immunol. 1985;135:3795–801.PubMedGoogle Scholar
  280. 280.
    Clark EA, Shu G. Activation of human B cell proliferation through surface Bp35 (CD20) polypeptides or immunoglobulin receptors. J Immunol. 1987;138:720–5.PubMedGoogle Scholar
  281. 281.
    Shan D, Ledbetter JA, Press OW. Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother. 2000;48:673–83.PubMedCrossRefGoogle Scholar
  282. 282.
    Hofmeister JK, Cooney D, Coggeshall KM. Clustered CD20 induced apoptosis: Src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis. 2000;26:133–43.PubMedCrossRefGoogle Scholar
  283. 283.
    Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood. 2002;99:1314–9.PubMedCrossRefGoogle Scholar
  284. 284.
    Cardarelli PM, Quinn M, Buckman D, et al. Binding to CD20 by anti-B1 antibody or F(ab′)2 is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol Immunother. 2002;51:15–24.PubMedCrossRefGoogle Scholar
  285. 285.
    Tobinai K, Kobayashi Y, Narabayashi M, et al. Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma. Ann Oncol. 1998;9:527–34.PubMedCrossRefGoogle Scholar
  286. 286.
    Maloney DG, Grillo-Lopez AJ, White CA, et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90:2188–95.PubMedGoogle Scholar
  287. 287.
    Maloney DG, Grillo-Lopez AJ, Bodkin DJ, et al. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol. 1997;15:3266–74.PubMedGoogle Scholar
  288. 288.
    McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16:2825–33.PubMedGoogle Scholar
  289. 289.
    Coiffier B, Haioun C, Ketterer N, et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood. 1998;92:1927–32.PubMedGoogle Scholar
  290. 290.
    Nguyen D, Amess J, Doughty H, Hendry L, Diamond L. IDEC-C2B8 anti-CD20 (rituximab) immunotherapy in patients with low-grade non-Hodgkin’s lymphoma and lymphoproliferative disorders: evaluation of response on 48 patients. Eur J Haematol. 1999;62:76–82.PubMedCrossRefGoogle Scholar
  291. 291.
    Feuring-Buske M, Kneba M, Unterhalt M, et al. IDEC-C2B8 (rituximab) anti-CD20 antibody treatment in relapsed advanced-stage follicular lymphomas: results of a phase-II study of the German Low-Grade Lymphoma Study Group. Ann Hematol. 2000;79:493–500.PubMedCrossRefGoogle Scholar
  292. 292.
    Colombat P, Salles G, Brousse N, et al. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood. 2001;97:101–6.PubMedCrossRefGoogle Scholar
  293. 293.
    Czuczman MS, Grillo-LÃpez AJ, White CA, et al. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol. 1999;17:268.PubMedGoogle Scholar
  294. 294.
    Vose JM, Link BK, Grossbard ML, et al. Phase II study of rituximab in combination with CHOP chemotherapy in patients with previously untreated. Aggressive Non-Hodgkin’s Lymphoma. J Clin Oncol. 2001;19:389–97.PubMedGoogle Scholar
  295. 295.
    Czuczman M. CHOP plus rituximab chemoimmunotherapy of indolent B-cell lymphoma. Semin Oncol. 1999;26:88–96.PubMedGoogle Scholar
  296. 296.
    Czuczman MS, Grillo-Lopez AJ, McLaughlin P, et al. Clearing of cells bearing the bcl-2 [t(14;18)] translocation from blood and marrow of patients treated with rituximab alone or in combination with CHOP chemotherapy. Ann Oncol. 2001;12:109–14.PubMedCrossRefGoogle Scholar
  297. 297.
    Winter JN, Li S, Aurora V, et al. Expression of p21 protein predicts clinical outcome in DLBCL patients older than 60 years treated with R-CHOP but not CHOP: a prospective ECOG and Southwest Oncology Group Correlative Study on E4494. Clinical Cancer Res. 2010;16:2435–42.Google Scholar
  298. 298.
    Davis TA, Grillo-Lopez AJ, White CA, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000;18:3135–43.PubMedGoogle Scholar
  299. 299.
    Davis TA, Maloney DG, Grillo-Lopez AJ, et al. Combination immunotherapy of relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma with rituximab and interferon-2a. Clin Cancer Res. 2000;6:2644–52.PubMedGoogle Scholar
  300. 300.
    Byrd JC, Murphy T, Howard RS, et al. Rituximab using A thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol. 2001;19:2153–64.PubMedGoogle Scholar
  301. 301.
    O’Brien SM, Kantarjian H, Thomas DA, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol. 2001;19:2165–70.PubMedGoogle Scholar
  302. 302.
    Keating MJ, OÂ’Brien S, Albitar M, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol. 2005;23:4079–88.PubMedCrossRefGoogle Scholar
  303. 303.
    Schulz H, Klein SK, Rehwald U, et al. Phase 2 study of a combined immunochemotherapy using rituximab and fludarabine in patients with chronic lymphocytic leukemia. Blood. 2002;100:3115–20.PubMedCrossRefGoogle Scholar
  304. 304.
    Byrd JC, Rai K, Peterson BL, et al. Addition of rituximab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011. Blood. 2005;105:49–53.PubMedCrossRefGoogle Scholar
  305. 305.
    Wierda W, O’Brien S, Wen S, et al. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol. 2005;23:4070–8.PubMedCrossRefGoogle Scholar
  306. 306.
    Tam CS, O’Brien S, Wierda W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112:975–80.PubMedPubMedCentralCrossRefGoogle Scholar
  307. 307.
    Robak T, Dmoszynska A, Solal-Celigny P, et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol. 2010;28:1756–65.PubMedCrossRefGoogle Scholar
  308. 308.
    Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–74.PubMedCrossRefGoogle Scholar
  309. 309.
    Salles G, Seymour JF, Offner F, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2010;377:42–51.PubMedCrossRefGoogle Scholar
  310. 310.
    Alinari L, White VL, Earl CT, et al. Combination bortezomib and rituximab treatment affects multiple survival and death pathways to promote apoptosis in mantle cell lymphoma. mAbs. 2009;1:31–40.PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Czuczman MS, Olejniczak S, Gowda A, et al. Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res. 2008;14:1561–70.PubMedCrossRefGoogle Scholar
  312. 312.
    Baiocchi RA, Alinari L, Lustberg ME, et al. Phase 2 trial of rituximab and bortezomib in patients with relapsed or refractory mantle cell and follicular lymphoma. Cancer. 2011;117:2442–51.Google Scholar
  313. 313.
    Sato JD, Kawamoto T, Le AD, Mendelsohn J, Polikoff J, Sato GH. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med. 1983;1:511–29.PubMedGoogle Scholar
  314. 314.
    Masui H, Kawamoto T, Sato JD, et al. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res. 1984;44:1002–7.PubMedGoogle Scholar
  315. 315.
    Sunada H, Magun BE, Mendelsohn J, MacLeod CL. Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci U S A. 1986;83:3825–9.PubMedPubMedCentralCrossRefGoogle Scholar
  316. 316.
    Vollmar AM, Banker DE, Mendelsohn J, Herschman HR. Toxicity of ligand and antibody-directed ricin A-chain conjugates recognizing the epidermal growth factor receptor. J Cell Physiol. 1987;131:418–25.PubMedCrossRefGoogle Scholar
  317. 317.
    Wu X, Rubin M, Fan Z, et al. Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene. 1996;12:1397–403.PubMedGoogle Scholar
  318. 318.
    Peng D, Fan Z, Lu Y, et al. Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res. 1996;56:3666–9.PubMedGoogle Scholar
  319. 319.
    Kiyota A, Shintani S, Mihara M, et al. Anti-epidermal growth factor receptor monoclonal antibody 225 upregulates p27KIP1 and p15INK4B and induces G1 arrest in oral squamous carcinoma cell lines. Oncology. 2002;63:92–8.PubMedCrossRefGoogle Scholar
  320. 320.
    Fan BLAZ. The monoclonal antibody 225 activates caspase-8 and induces apoptosis through a tumor necrosis factor receptor family-independent pathway. Oncogene. 2001;20:3726–34.PubMedCrossRefGoogle Scholar
  321. 321.
    Goldenberg A, Masui H, Divgi C, et al. Imaging of human tumor xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst. 1989;81:1616–25.PubMedCrossRefGoogle Scholar
  322. 322.
    Divgi CR, Welt S, Kris M, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst. 1991;83:97–104.PubMedCrossRefGoogle Scholar
  323. 323.
    Saltz L, Rubin M, Hochster H, et al. Cetuximab (IMC-C225) plus irinotecan (CPT-11) is active in CPT-11-refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR). Proc Am Soc Clin Oncol. 2001;2001.Google Scholar
  324. 324.
    Rosenberg AH, Loehrer PJ, Needle MN, et al. Erbitux (IMC-C225) plus weekly irinotecan (CPT-11), fluorouracil (5FU) and leucovorin (LV) in colorectal cancer (CRC) that expresses the epidermal growth factor receptor (EGFR). Proc Am Soc Clin Oncol. 2002;21.Google Scholar
  325. 325.
    Laethem J-LV, Raoul J-L, Mitry E, et al. Cetuximab (C225) in combination with bi-weekly irinotecan (CPT-11), infusional 5-fluorouracil (5-FU) and folinic acid (FA) in patients (pts) with metastatic colorectal cancer (CRC) expressing the epidermal growth factor receptor (EGFR). Preliminary safety and efficacy results. Proc Am Soc Clin Oncol. 2003;22.Google Scholar
  326. 326.
    Folprecht G, Lutz MP, Schoffski P, et al. Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination for the first-line treatment of patients with epidermal growth factor receptor expressing metastatic colorectal carcinoma. Ann Oncol. 2006;17:450–6.PubMedCrossRefGoogle Scholar
  327. 327.
    Saltz LB, Meropol NJ, Loehrer PJ, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22:1201–8.PubMedCrossRefGoogle Scholar
  328. 328.
    Lenz HJ, Mayer RJ, Mirtsching B, et al. Consistent response to treatment with cetuximab monotherapy in patients with metastatic colorectal cancer. J Clin Oncol. 2005;23:3536.PubMedCrossRefGoogle Scholar
  329. 329.
    Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.PubMedCrossRefGoogle Scholar
  330. 330.
    Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27:663–71.PubMedCrossRefGoogle Scholar
  331. 331.
    Scott J, Dakhil S, Cosgriff T, et al. Cetuximab + FOLFOX 6 as first line therapy for metastatic colorectal cancer. J Clin Oncol. 2005;23.Google Scholar
  332. 332.
    Dakhil S, Cosgriff T, Headley D, Boccia RV, Badarinath S. Cetuximab + FOLFOX6 as first line therapy for metastatic colorectal cancer (An International Oncology Network study, I-03-002). J Clin Oncol. 2006;24:3557.Google Scholar
  333. 333.
    Tabernero J, Van Cutsem E, Diaz-Rubio E, et al. Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2007;25:5225–32.PubMedCrossRefGoogle Scholar
  334. 334.
    Tabernero JM, Cutsem EV, Sastre J, et al. An international phase II study of cetuximab in combination with oxaliplatin/5-fluorouracil (5-FU)/folinic acid (FA) (FOLFOX-4) in the first-line treatment of patients with metastatic colorectal cancer (CRC) expressing Epidermal Growth Factor Receptor (EGFR). J Clin Oncol. 2004;22.Google Scholar
  335. 335.
    Rubio ED, Tabernero J, Cutsem EV, et al. Cetuximab in combination with oxaliplatin/5-fluorouracil (5-FU)/folinic acid (FA) (FOLFOX-4) in the first-line treatment of patients with epidermal growth factor receptor (EGFR)-expressing metastatic colorectal cancer: an international phase II study. J Clin Oncol. 2005;23:3535.Google Scholar
  336. 336.
    Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 2005;23:1803–10.PubMedCrossRefGoogle Scholar
  337. 337.
    Lievre A, Bachet J-B, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.PubMedCrossRefGoogle Scholar
  338. 338.
    Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.PubMedCrossRefGoogle Scholar
  339. 339.
    Van Cutsem E, Kohne C-H, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.PubMedCrossRefGoogle Scholar
  340. 340.
    Mack GS. FDA holds court on post hoc data linking KRAS status to drug response. Nat Biotech. 2009;27:110–2.CrossRefGoogle Scholar
  341. 341.
    Kim KJ, Li B, Houck K, Winer J, Ferrara N. The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors. 1992;7:53–64.PubMedCrossRefGoogle Scholar
  342. 342.
    Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–4.PubMedCrossRefGoogle Scholar
  343. 343.
    Gerber H-P, Kowalski J, Sherman D, Eberhard DA, Ferrara N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 2000;60:6253–8.PubMedGoogle Scholar
  344. 344.
    Holash J, Davis S, Papadopoulos N, et al. VEGF-trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A. 2002;99:11393–8.PubMedPubMedCentralCrossRefGoogle Scholar
  345. 345.
    Presta LG, Chen H, O'Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997;57:4593–9.PubMedGoogle Scholar
  346. 346.
    Muller YA, Chen Y, Christinger HW, et al. VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Å resolution and mutational analysis of the interface. Structure. 1998;6:1153–67.PubMedCrossRefGoogle Scholar
  347. 347.
    Ryan AM, Eppler DB, Hagler KE, et al. Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol Pathol. 1999;27:78–86.PubMedCrossRefGoogle Scholar
  348. 348.
    Margolin K, Gordon MS, Holmgren E, et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol. 2001;19:851–6.PubMedGoogle Scholar
  349. 349.
    Gordon MS, Margolin K, Talpaz M, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19:843–50.PubMedGoogle Scholar
  350. 350.
    Reese DM, Fratesi P, Corry M, et al. A phase II trial of humanized anti-vascular endothelial growth factor antibody for the treatment of androgen-independent prostate cancer. Prostate J. 2001;3:65–70.CrossRefGoogle Scholar
  351. 351.
    Cobleigh MA, Langmuir VK, Sledge GW, et al. A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol. 2003;30:117–24.PubMedCrossRefGoogle Scholar
  352. 352.
    Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–34.PubMedPubMedCentralCrossRefGoogle Scholar
  353. 353.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21:60–5.PubMedCrossRefGoogle Scholar
  354. 354.
    DeVore R, Fehrenbacher L, Herbst R, et al. A randomized phase II trial comparing Rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage IIIB/IV NSCLC. Proc Am Soc Clin Oncol. 2000;19.Google Scholar
  355. 355.
    Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.PubMedCrossRefGoogle Scholar
  356. 356.
    Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.PubMedCrossRefGoogle Scholar
  357. 357.
    Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients. JAMA. 2008;300:2277–85.PubMedCrossRefGoogle Scholar
  358. 358.
    Minor DR. Risk of venous thromboembolism with bevacizumab in cancer patients. JAMA. 2009;301:1434.PubMedCrossRefGoogle Scholar
  359. 359.
    Kilickap S, Arslan C. Risk of venous thromboembolism with bevacizumab in cancer patients. JAMA. 2009;301:1435.PubMedCrossRefGoogle Scholar
  360. 360.
    Cortes J, Saura C, Atzori F. Risk of venous thromboembolism with bevacizumab in cancer patients. JAMA. 2009;301:1434–5.PubMedCrossRefGoogle Scholar
  361. 361.
    Chu D, Wu S. Risk of venous thromboembolism with bevacizumab in cancer patients-reply. JAMA. 2009;301:1435–6.CrossRefGoogle Scholar
  362. 362.
    Hapania S, Shera A, Chub D, Wu S. Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology. 2010;79:27–38.CrossRefGoogle Scholar
  363. 363.
    Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.PubMedCrossRefGoogle Scholar
  364. 364.
    Fojo T, Grady C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J Natl Cancer Inst. 2009;101:1044–8.PubMedPubMedCentralCrossRefGoogle Scholar
  365. 365.
    Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450:903–7.PubMedCrossRefGoogle Scholar
  366. 366.
    Suzanne O-R. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008;18:11–8.CrossRefGoogle Scholar
  367. 367.
    Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte‚associated antigen 4 plays an essential role in the function of Cd25 + Cd4+ regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302.PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.PubMedCrossRefGoogle Scholar
  369. 369.
    Keler T, Halk E, Vitale L, et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol. 2003;171:6251–9.PubMedCrossRefGoogle Scholar
  370. 370.
    Hodi FS, Mihm MC, Soiffer RJ, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci. 2003;100:4712–7.PubMedPubMedCentralCrossRefGoogle Scholar
  371. 371.
    Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci. 2003;100:8372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  372. 372.
    Attia P, Phan GQ, Maker AV, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol. 2005;23:6043–53.PubMedPubMedCentralCrossRefGoogle Scholar
  373. 373.
    Beck KE, Blansfield JA, Tran KQ, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyten associated antigen 4. J Clin Oncol. 2006;24:2283–9.PubMedPubMedCentralCrossRefGoogle Scholar
  374. 374.
    Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL, Suri KB, Levy C, Allen T, Mavroukakis S, Lowy I, White DE, Rosenberg SA. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30:825–30.PubMedPubMedCentralCrossRefGoogle Scholar
  375. 375.
    Wolchok JD, Neyns B, Linette G, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010;11:155–64.PubMedCrossRefGoogle Scholar
  376. 376.
    Hersh E, O’Day S, Powderly J, et al. A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naïve patients with advanced melanoma. Invest New Drugs. 2011;29:489–98.PubMedCrossRefGoogle Scholar
  377. 377.
    Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.PubMedCrossRefGoogle Scholar
  378. 378.
    Falschlehner C, Schaefer U, Walczak H. Following TRAIL’s path in the immune system. Immunology. 2009;127:145–54.PubMedPubMedCentralCrossRefGoogle Scholar
  379. 379.
    Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther. 2005;4:139–63.PubMedCrossRefGoogle Scholar
  380. 380.
    Ricci MS, Kim S-H, Ogi K, et al. Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell. 2007;12:66–80.PubMedCrossRefGoogle Scholar
  381. 381.
    Abdulghani J, El-Deiry WS. TRAIL receptor signaling and therapeutics. Expert Opin Ther Targets. 2010;14:1091–108.PubMedCrossRefGoogle Scholar
  382. 382.
    Plummer R, Attard G, Pacey S, et al. Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res. 2007;13:6187–94.PubMedCrossRefGoogle Scholar
  383. 383.
    Wakelee HA, Patnaik A, Sikic BI, et al. Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol. 2010;21:376–81.PubMedCrossRefGoogle Scholar
  384. 384.
    Marini P, Denzinger S, Schiller D, et al. Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene. 2006;25:5145–54.PubMedGoogle Scholar
  385. 385.
    Gong J, Yang D, Kohanim S, et al. Novel in vivo imaging shows up-regulation of death receptors by paclitaxel and correlates with enhanced antitumor effects of receptor agonist antibodies. Mol Cancer Ther. 2006;5:2991–3000.PubMedCrossRefGoogle Scholar
  386. 386.
    Saulle E, Petronelli A, Pasquini L, et al. Proteasome inhibitors sensitize ovarian cancer cells to TRAIL induced apoptosis. Apoptosis. 2007;12:635–55.PubMedCrossRefGoogle Scholar
  387. 387.
    Smith MR, Jin F, Joshi I. Bortezomib sensitizes non-Hodgkin’s lymphoma cells to apoptosis induced by antibodies to tumor necrosis factor‚ ÄìRelated apoptosis-inducing ligand (TRAIL) receptors TRAIL-R1 and TRAIL-R2. Clin Cancer Res. 2007;13:5528s–34.PubMedCrossRefGoogle Scholar
  388. 388.
    Luster TA, Carrell JA, McCormick K, Sun D, Humphreys R. Mapatumumab and lexatumumab induce apoptosis in TRAIL-R1 and TRAIL-R2 antibody-resistant NSCLC cell lines when treated in combination with bortezomib. Mol Cancer Ther. 2009;8:292–302.PubMedCrossRefGoogle Scholar
  389. 389.
    Nawrocki ST, Carew JS, Douglas L, et al. Histone deacetylase inhibitors enhance lexatumumab-induced apoptosis via a p21Cip1-dependent decrease in survivin levels. Cancer Res. 2007;67:6987–94.PubMedCrossRefGoogle Scholar
  390. 390.
    Wu X-X, Jin X-H, Zeng Y, El Hamed AMA, Kakehi Y. Low concentrations of doxorubicin sensitizes human solid cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptor (R) 2-mediated apoptosis by inducing TRAIL-R2 expression. Cancer Sci. 2007;98:1969–76.PubMedCrossRefGoogle Scholar
  391. 391.
    Wu X-X, Kakehi Y. Enhancement of lexatumumab-induced apoptosis in human solid cancer cells by cisplatin in caspase-dependent manner. Clin Cancer Res. 2009;15:2039–47.PubMedCrossRefGoogle Scholar
  392. 392.
    Sikic BI, Wakelee HA, von Mehren M, Lewis N, Calvert AH, Plummer ER, Fox NL, Howard T, Jones SF, Burris HA. A phase Ib study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI. J Clin Oncol. 2007;25:14006.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Biochemistry and Molecular Biophysics Graduate GroupUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology)Penn State College of Medicine, Penn State Hershey Cancer InstituteHersheyUSA

Personalised recommendations